1
|
Chen DH, Below JE, Shimamura A, Keel SB, Matsushita M, Wolff J, Sul Y, Bonkowski E, Castella M, Taniguchi T, Nickerson D, Papayannopoulou T, Bird TD, Raskind WH. Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L. Am J Hum Genet 2016; 98:1146-1158. [PMID: 27259050 DOI: 10.1016/j.ajhg.2016.04.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/14/2016] [Indexed: 11/25/2022] Open
Abstract
Ataxia-pancytopenia (AP) syndrome is characterized by cerebellar ataxia, variable hematologic cytopenias, and predisposition to marrow failure and myeloid leukemia, sometimes associated with monosomy 7. Here, in the four-generation family UW-AP, linkage analysis revealed four regions that provided the maximal LOD scores possible, one of which was in a commonly microdeleted chromosome 7q region. Exome sequencing identified a missense mutation (c.2640C>A, p.His880Gln) in the sterile alpha motif domain containing 9-like gene (SAMD9L) that completely cosegregated with disease. By targeted sequencing of SAMD9L, we subsequently identified a different missense mutation (c.3587G>C, p.Cys1196Ser) in affected members of the first described family with AP syndrome, Li-AP. Neither variant is reported in the public databases, both affect highly conserved amino acid residues, and both are predicted to be damaging. With time in culture, lymphoblastic cell lines (LCLs) from two affected individuals in family UW-AP exhibited copy-neutral loss of heterozygosity for large portions of the long arm of chromosome 7, resulting in retention of only the wild-type SAMD9L allele. Newly established LCLs from both individuals demonstrated the same phenomenon. In addition, targeted capture and sequencing of SAMD9L in uncultured blood DNA from both individuals showed bias toward the wild-type allele. These observations indicate in vivo hematopoietic mosaicism. The hematopoietic cytopenias that characterize AP syndrome and the selective advantage for clones that have lost the mutant allele support the postulated role of SAMD9L in the regulation of cell proliferation. Furthermore, we show that AP syndrome is distinct from the dyskeratoses congenita telomeropathies, with which it shares some clinical characteristics.
Collapse
|
Journal Article |
9 |
134 |
2
|
Castella M, Pujol R, Callén E, Trujillo JP, Casado JA, Gille H, Lach FP, Auerbach AD, Schindler D, Benítez J, Porto B, Ferro T, Muñoz A, Sevilla J, Madero L, Cela E, Beléndez C, de Heredia CD, Olivé T, de Toledo JS, Badell I, Torrent M, Estella J, Dasí A, Rodríguez-Villa A, Gómez P, Barbot J, Tapia M, Molinés A, Figuera A, Bueren JA, Surrallés J. Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations. Blood 2011; 117:3759-69. [PMID: 21273304 PMCID: PMC3083295 DOI: 10.1182/blood-2010-08-299917] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/30/2010] [Indexed: 12/17/2022] Open
Abstract
Fanconi anemia is characterized by congenital abnormalities, bone marrow failure, and cancer predisposition. To investigate the origin, functional role, and clinical impact of FANCA mutations, we determined a FANCA mutational spectrum with 130 pathogenic alleles. Some of these mutations were further characterized for their distribution in populations, mode of emergence, or functional consequences at cellular and clinical level. The world most frequent FANCA mutation is not the result of a mutational "hot-spot" but results from worldwide dissemination of an ancestral Indo-European mutation. We provide molecular evidence that total absence of FANCA in humans does not reduce embryonic viability, as the observed frequency of mutation carriers in the Gypsy population equals the expected by Hardy-Weinberg equilibrium. We also prove that long distance Alu-Alu recombination can cause Fanconi anemia by originating large interstitial deletions involving FANCA and 2 adjacent genes. Finally, we show that all missense mutations studied lead to an altered FANCA protein that is unable to relocate to the nucleus and activate the FA/BRCA pathway. This may explain the observed lack of correlation between type of FANCA mutation and cellular phenotype or clinical severity in terms of age of onset of hematologic disease or number of malformations.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
103 |
3
|
Castella M, Caballero-Baños M, Ortiz-Maldonado V, González-Navarro EA, Suñé G, Antoñana-Vidósola A, Boronat A, Marzal B, Millán L, Martín-Antonio B, Cid J, Lozano M, García E, Tabera J, Trias E, Perpiña U, Canals JM, Baumann T, Benítez-Ribas D, Campo E, Yagüe J, Urbano-Ispizua Á, Rives S, Delgado J, Juan M. Point-Of-Care CAR T-Cell Production (ARI-0001) Using a Closed Semi-automatic Bioreactor: Experience From an Academic Phase I Clinical Trial. Front Immunol 2020; 11:482. [PMID: 32528460 PMCID: PMC7259426 DOI: 10.3389/fimmu.2020.00482] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Development of semi-automated devices that can reduce the hands-on time and standardize the production of clinical-grade CAR T-cells, such as CliniMACS Prodigy from Miltenyi, is key to facilitate the development of CAR T-cell therapies, especially in academic institutions. However, the feasibility of manufacturing CAR T-cell products from heavily pre-treated patients with this system has not been demonstrated yet. Here we report and characterize the production of 28 CAR T-cell products in the context of a phase I clinical trial for CD19+ B-cell malignancies (NCT03144583). The system includes CD4-CD8 cell selection, lentiviral transduction and T-cell expansion using IL-7/IL-15. Twenty-seven out of 28 CAR T-cell products manufactured met the full list of specifications and were considered valid products. Ex vivo cell expansion lasted an average of 8.5 days and had a mean transduction rate of 30.6 ± 13.44%. All products obtained presented cytotoxic activity against CD19+ cells and were proficient in the secretion of pro-inflammatory cytokines. Expansion kinetics was slower in patient's cells compared to healthy donor's cells. However, product potency was comparable. CAR T-cell subset phenotype was highly variable among patients and largely determined by the initial product. TCM and TEM were the predominant T-cell phenotypes obtained. 38.7% of CAR T-cells obtained presented a TN or TCM phenotype, in average, which are the subsets capable of establishing a long-lasting T-cell memory in patients. An in-depth analysis to identify individual factors contributing to the optimal T-cell phenotype revealed that ex vivo cell expansion leads to reduced numbers of TN, TSCM, and TEFF cells, while TCM cells increase, both due to cell expansion and CAR-expression. Overall, our results show for the first time that clinical-grade production of CAR T-cells for heavily pre-treated patients using CliniMACS Prodigy system is feasible, and that the obtained products meet the current quality standards of the field. Reduced ex vivo expansion may yield CAR T-cell products with increased persistence in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
89 |
4
|
van Zeeburg HJT, Snijders PJF, Wu T, Gluckman E, Soulier J, Surralles J, Castella M, van der Wal JE, Wennerberg J, Califano J, Velleuer E, Dietrich R, Ebell W, Bloemena E, Joenje H, Leemans CR, Brakenhoff RH. Clinical and molecular characteristics of squamous cell carcinomas from Fanconi anemia patients. J Natl Cancer Inst 2008; 100:1649-53. [PMID: 19001603 DOI: 10.1093/jnci/djn366] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fanconi anemia is a recessively inherited disease that is characterized by congenital abnormalities, bone marrow failure, and a predisposition to develop cancer, particularly squamous cell carcinomas (SCCs) in the head and neck and anogenital regions. Previous studies of Fanconi anemia SCCs, mainly from US patients, revealed the presence of high-risk human papillomavirus (HPV) DNA in 21 (84%) of 25 tumors analyzed. We examined a panel of 21 SCCs mainly from European Fanconi anemia patients (n = 19 FA patients; 16 head and neck squamous cell carcinomas [HNSCCs], 2 esophageal SCCs, and 3 anogenital SCCs) for their clinical and molecular characteristics, including patterns of allelic loss, TP53 mutations, and the presence of HPV DNA by GP5+/6+ polymerase chain reaction. HPV DNA was detected in only two (10%) of 21 tumors (both anogenital SCCs) but in none of the 16 HNSCCs. Of the 18 tumors analyzed, 10 contained a TP53 mutation. The patterns of allelic loss were comparable to those generally found in sporadic SCCs. Our data show that HPV does not play a major role in squamous cell carcinogenesis in this cohort of Fanconi anemia patients and that the Fanconi anemia SCCs are genetically similar to sporadic SCCs despite having a different etiology.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
81 |
5
|
Castella M, Jacquemont C, Thompson EL, Yeo JE, Cheung RS, Huang JW, Sobeck A, Hendrickson EA, Taniguchi T. FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2. PLoS Genet 2015; 11:e1005563. [PMID: 26430909 PMCID: PMC4592014 DOI: 10.1371/journal.pgen.1005563] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
The Fanconi anemia (FA)-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex). However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway. Fanconi anemia is a genetic disease characterized by bone marrow failure, congenital malformations and cancer predisposition. Cells derived from Fanconi anemia patients have a dysfunctional FA-BRCA pathway and are deficient in the repair of a specific form of DNA damage, DNA interstrand-crosslinks, that are induced by certain chemotherapeutic drugs. Therefore, the study of FA-BRCA pathway regulation is essential for developing new treatments for Fanconi anemia patients and cancer patients in general. One of the first steps in the pathway is the detection of DNA lesions by the FA core complex. We have optimized a method to visualize the recruitment of the FA core complex to sites of DNA damage and, for the first time, explored how this process occurs. We have uncovered several factors that are required for this recruitment. Among them is a FA core complex substrate, FANCI. We report that non-phosphorylated FANCI, previously believed to be an inactive form, has an important role in the recruitment of the FA core complex and DNA interstrand-crosslink repair. Our findings change the current view of the FA-BRCA pathway and have implications for potential clinical strategies aimed at activating or inhibiting the FA-BRCA pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
58 |
6
|
Martín-Antonio B, Suñe G, Perez-Amill L, Castella M, Urbano-Ispizua A. Natural Killer Cells: Angels and Devils for Immunotherapy. Int J Mol Sci 2017; 18:ijms18091868. [PMID: 28850071 PMCID: PMC5618517 DOI: 10.3390/ijms18091868] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, the relevance of the immune system to fight cancer has led to the development of immunotherapy, including the adoptive cell transfer of immune cells, such as natural killer (NK) cells and chimeric antigen receptors (CAR)-modified T cells. The discovery of donor NK cells’ anti-tumor activity in acute myeloid leukemia patients receiving allogeneic stem cell transplantation (allo-SCT) was the trigger to conduct many clinical trials infusing NK cells. Surprisingly, many of these studies did not obtain optimal results, suggesting that many different NK cell parameters combined with the best clinical protocol need to be optimized. Various parameters including the high array of activating receptors that NK cells have, the source of NK cells selected to treat patients, different cytotoxic mechanisms that NK cells activate depending on the target cell and tumor cell survival mechanisms need to be considered before choosing the best immunotherapeutic strategy using NK cells. In this review, we will discuss these parameters to help improve current strategies using NK cells in cancer therapy. Moreover, the chimeric antigen receptor (CAR) modification, which has revolutionized the concept of immunotherapy, will be discussed in the context of NK cells. Lastly, the dark side of NK cells and their involvement in inflammation will also be discussed.
Collapse
|
Review |
8 |
53 |
7
|
Wang Y, Huang JW, Castella M, Huntsman DG, Taniguchi T. p53 is positively regulated by miR-542-3p. Cancer Res 2014; 74:3218-27. [PMID: 24762395 DOI: 10.1158/0008-5472.can-13-1706] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tumor suppressor p53 and miRNAs are linked through a complex network. Several miRNAs modulate p53 expression, while p53 regulates the transcription and/or biogenesis of several other miRNAs. Here, we report the development of a cell-based assay used with a library of human miRNA mimics in a high-throughput screen for miRNAs that modulate p53 expression. Overexpression of miRNA (miR)-542-3p in cancer cells elevated p53 expression, stimulated the expression of p53 targets, and inhibited cell proliferation. Mechanistically, miR-542-3p increased p53 protein stability by weakening interactions between p53 and its negative regulator MDM2. Furthermore, miR-542-3p suppressed ribosome biogenesis by downregulating a subset of ribosomal proteins such as RPS23, leading to upregulation of RPL11 and stabilization of p53. The 3'untranslated region in the RPS23 transcript contained a miR-542-3p-binding site, suggesting that RPS23 is a direct target of miR-542-3p. Our results define miR-542-3p as an important new positive regulator of p53 with potential applications in cancer treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
51 |
8
|
Buckberg GD, Clemente C, Cox JL, Coghlan HC, Castella M, Torrent-Guasp F, Gharib M. The structure and function of the helical heart and its buttress wrapping. IV. Concepts of dynamic function from the normal macroscopic helical structure. Semin Thorac Cardiovasc Surg 2001; 13:342-57. [PMID: 11807733 DOI: 10.1053/stcs.2001.29956] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Torrent-Guasp's model of the helical heart is presented, which includes the cardiac muscular structures that produce 2 simple loops and that start at the pulmonary artery and end in the aorta. These components include a horizontal basal loop that surrounds the right and left ventricles, changes direction through a spiral fold in the ventricular band to cause a ventricular helix produced by now obliquely oriented fibers, forming a descending and ascending segment of the apical loop with an apical vortex. These anatomic concepts are successively activated to produce a sequence of narrowing by the basal loop, shortening by the descending segment, lengthening by the ascending segment, and widening in the cardiac cycle that causes ventricular ejection to empty and suction to fill. The factors responsible for internal torsional movements for cardiac output and suction are defined, together with mechanisms responsible for electromechanical activity produced during sequential changes in contraction and relaxation properties. These interactions of mechanical structure and function are defined in relation to pressure-related cardiac events observed from aortic, left ventricular, and left atrial recordings.
Collapse
|
Review |
24 |
43 |
9
|
Antonio Casado J, Callén E, Jacome A, Río P, Castella M, Lobitz S, Ferro T, Muñoz A, Sevilla J, Cantalejo A, Cela E, Cervera J, Sánchez-Calero J, Badell I, Estella J, Dasí A, Olivé T, José Ortega J, Rodriguez-Villa A, Tapia M, Molinés A, Madero L, Segovia JC, Neveling K, Kalb R, Schindler D, Hanenberg H, Surrallés J, Bueren JA. A comprehensive strategy for the subtyping of patients with Fanconi anaemia: conclusions from the Spanish Fanconi Anemia Research Network. J Med Genet 2006; 44:241-9. [PMID: 17105750 PMCID: PMC2598052 DOI: 10.1136/jmg.2006.044719] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fanconi anaemia is a heterogeneous genetic disease, where 12 complementation groups have been already described. Identifying the complementation group in patients with Fanconi anaemia constitutes a direct procedure to confirm the diagnosis of the disease and is required for the recruitment of these patients in gene therapy trials. OBJECTIVE To determine the subtype of Fanconi anaemia patients in Spain, a Mediterranean country with a relatively high population (23%) of Fanconi anaemia patients belonging to the gypsy race. METHODS Most patients could be subtyped by retroviral complementation approaches in peripheral blood T cells, although some mosaic patients were subtyped in cultured skin fibroblasts. Other approaches, mainly based on western blot analysis and generation of nuclear RAD51 and FANCJ foci, were required for the subtyping of a minor number of patients. RESULTS AND CONCLUSIONS From a total of 125 patients included in the Registry of Fanconi Anaemia, samples from 102 patients were available for subtyping analyses. In 89 cases the subtype could be determined and in 8 cases exclusions of common complementation groups were made. Compared with other international studies, a skewed distribution of complementation groups was observed in Spain, where 80% of the families belonged to the Fanconi anaemia group A (FA-A) complementation group. The high proportion of gypsy patients, all of them FA-A, and the absence of patients with FA-C account for this characteristic distribution of complementation groups.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
42 |
10
|
Castella M, Pujol R, Callén E, Ramírez MJ, Casado JA, Talavera M, Ferro T, Muñoz A, Sevilla J, Madero L, Cela E, Beléndez C, de Heredia CD, Olivé T, de Toledo JS, Badell I, Estella J, Dasí Á, Rodríguez-Villa A, Gómez P, Tapia M, Molinés A, Figuera Á, Bueren JA, Surrallés J. Chromosome fragility in patients with Fanconi anaemia: diagnostic implications and clinical impact. J Med Genet 2011; 48:242-50. [PMID: 21217111 DOI: 10.1136/jmg.2010.084210] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Fanconi anaemia (FA) is a rare syndrome characterized by bone marrow failure, malformations and cancer predisposition. Chromosome fragility induced by DNA interstrand crosslink (ICL)-inducing agents such as diepoxybutane (DEB) or mitomycin C (MMC) is the 'gold standard' test for the diagnosis of FA. OBJECTIVE To study the variability, the diagnostic implications and the clinical impact of chromosome fragility in FA. METHODS Data are presented from 198 DEB-induced chromosome fragility tests in patients with and without FA where information on genetic subtype, cell sensitivity to MMC and clinical data were available. RESULTS This large series allowed quantification of the variability and the level of overlap in ICL sensitivity among patients with FA and the normal population. A new chromosome fragility index is proposed that provides a cut-off diagnostic level to unambiguously distinguish patients with FA, including mosaics, from non-FA individuals. Spontaneous chromosome fragility and its correlation with DEB-induced fragility was also analysed, indicating that although both variables are correlated, 54% of patients with FA do not have spontaneous fragility. The data reveal a correlation between malformations and sensitivity to ICL-inducing agents. This correlation was also statistically significant when the analysis was restricted to patients from the FA-A complementation group. Finally, chromosome fragility does not correlate with the age of onset of haematological disease. CONCLUSIONS This study proposes a new chromosome fragility index and suggests that genome instability during embryo development may be related to malformations in FA, while DEB-induced chromosome breaks in T cells have no prognostic value for the haematological disease.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
39 |
11
|
Baroni ML, Sanchez Martinez D, Gutierrez Aguera F, Roca Ho H, Castella M, Zanetti SR, Velasco Hernandez T, Diaz de la Guardia R, Castaño J, Anguita E, Vives S, Nomdedeu J, Lapillone H, Bras AE, van der Velden VHJ, Junca J, Marin P, Bataller A, Esteve J, Vick B, Jeremias I, Lopez A, Sorigue M, Bueno C, Menendez P. 41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. J Immunother Cancer 2020; 8:e000845. [PMID: 32527933 PMCID: PMC7292050 DOI: 10.1136/jitc-2020-000845] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy which is biologically, phenotypically and genetically very heterogeneous. Outcome of patients with AML remains dismal, highlighting the need for improved, less toxic therapies. Chimeric antigen receptor T-cell (CART) immunotherapies for patients with refractory or relapse (R/R) AML are challenging because of the absence of a universal pan-AML target antigen and the shared expression of target antigens with normal hematopoietic stem/progenitor cells (HSPCs), which may lead to life-threating on-target/off-tumor cytotoxicity. CD33-redirected and CD123-redirected CARTs for AML are in advanced preclinical and clinical development, and they exhibit robust antileukemic activity. However, preclinical and clinical controversy exists on whether such CARTs are myeloablative. METHODS We set out to comparatively characterize in vitro and in vivo the efficacy and safety of 41BB-based and CD28-based CARCD123. We analyzed 97 diagnostic and relapse AML primary samples to investigate whether CD123 is a suitable immunotherapeutic target, and we used several xenograft models and in vitro assays to assess the myeloablative potential of our second-generation CD123 CARTs. RESULTS Here, we show that CD123 represents a bona fide target for AML and show that both 41BB-based and CD28-based CD123 CARTs are very efficient in eliminating both AML cell lines and primary cells in vitro and in vivo. However, both 41BB-based and CD28-based CD123 CARTs ablate normal human hematopoiesis and prevent the establishment of de novo hematopoietic reconstitution by targeting both immature and myeloid HSPCs. CONCLUSIONS This study calls for caution when clinically implementing CD123 CARTs, encouraging its preferential use as a bridge to allo-HSCT in patients with R/R AML.
Collapse
|
research-article |
5 |
35 |
12
|
Castella M, Puerto S, Creus A, Marcos R, Surralles J. Telomere length modulates human radiation sensitivity in vitro. Toxicol Lett 2007; 172:29-36. [PMID: 17604920 DOI: 10.1016/j.toxlet.2007.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular basis of the interindividual differences of normal individuals to ionizing radiation is poorly understood. Several studies in telomerase KO mice with short telomeres have uncovered an inverse relationship between telomere length and radiation sensitivity. The present work aims to determine if chromosome radiosensitivity is correlated with telomere length in healthy individuals. With this purpose, individual radiosensitivity was determined by the micronucleus assay in peripheral blood lymphocytes from two groups of individuals of the same age but with highly heterogeneous telomere length, selected from a population of 181 individuals where we previously measured telomere length. Our study demonstrates that telomere length modulates chromosome in vitro radiosensitivity in healthy individuals as the group with short telomeres presented higher frequencies of ionizing radiation-induced micronuclei when compared to the long telomeres group. This result supports the conclusion that individual telomere length acts as biomarker of individual chromosome instability upon exposure to ionizing radiation.
Collapse
|
|
18 |
35 |
13
|
Perez-Amill L, Suñe G, Antoñana-Vildosola A, Castella M, Najjar A, Bonet J, Fernández-Fuentes N, Inogés S, López A, Bueno C, Juan M, Urbano-Ispizua Á, Martín-Antonio B. Preclinical development of a humanized chimeric antigen receptor against B cell maturation antigen for multiple myeloma. Haematologica 2021; 106:173-184. [PMID: 31919085 PMCID: PMC7776337 DOI: 10.3324/haematol.2019.228577] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/03/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple myeloma is a prevalent and incurable disease, despite the development of new and effective drugs. The recent development of chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in the treatment of patients with relapsed or refractory hematological B cell malignancies. In the recent years, B-cell maturation antigen (BCMA) has appeared as a promising antigen to target using a variety of immuno-therapy treatments including CART cells, for MM patients. To this end, we generated clinical-grade murine CART cells directed against BCMA, named ARI2m cells. Having demonstrated its efficacy, and in an attempt to avoid the immune rejection of CART cells by the patient, the single chain variable fragment was humanized, creating ARI2h cells. ARI2h cells demonstrated comparable in vitro and in vivo efficacy to ARI2m cells, and superiority in cases of high tumor burden disease. In terms of inflammatory response, ARI2h cells showed a lower TNFα production and lower in vivo toxicity profile. Large-scale expansion of both ARI2m and ARI2h cells was efficiently conducted following Good Manufacturing Practice guidelines, obtaining the target CART cell dose required for treatment of multiple myeloma patients. Moreover, we demonstrate that soluble BCMA and BCMA released in vesicles impacts on CAR-BCMA activity. In summary, this study sets the bases for the implementation of a clinical trial (EudraCT code: 2019-001472-11) to study the efficacy of ARI2h cell treatment for multiple myeloma patients.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
34 |
14
|
Cheung RS, Castella M, Abeyta A, Gafken PR, Tucker N, Taniguchi T. Ubiquitination-Linked Phosphorylation of the FANCI S/TQ Cluster Contributes to Activation of the Fanconi Anemia I/D2 Complex. Cell Rep 2018. [PMID: 28636932 DOI: 10.1016/j.celrep.2017.05.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Repair of interstrand crosslinks by the Fanconi anemia (FA) pathway requires both monoubiquitination and de-ubiquitination of the FANCI/FANCD2 (FANCI/D2) complex. In the standing model, the phosphorylation of six sites in the FANCI S/TQ cluster domain occurs upstream of, and promotes, FANCI/D2 monoubiquitination. We generated phospho-specific antibodies against three different S/TQ cluster sites (serines 556, 559, and 565) on human FANCI and found that, in contrast to the standing model, distinct FANCI sites were phosphorylated either predominantly upstream (ubiquitination independent; serine 556) or downstream (ubiquitination-linked; serines 559 and 565) of FANCI/D2 monoubiquitination. Ubiquitination-linked FANCI phosphorylation inhibited FANCD2 de-ubiquitination and bypassed the need to de-ubiquitinate FANCD2 to achieve effective interstrand crosslink repair. USP1 depletion suppressed ubiquitination-linked FANCI phosphorylation despite increasing FANCI/D2 monoubiquitination, providing an explanation of why FANCD2 de-ubiquitination is important for function of the FA pathway. Our work results in a refined model of how FANCI phosphorylation activates the FANCI/D2 complex.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
27 |
15
|
Castella M, Prochorow J, Tramer A. van der Waals and charge‐transfer states of molecular complexes formed in supersonic jets. J Chem Phys 1984. [DOI: 10.1063/1.447912] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
41 |
27 |
16
|
Castella M, López-Calahorra F, Velasco D, Finkelmann H. The first asymmetrically beta-polysubstituted porphyrin-based hexagonal columnar liquid crystal. Chem Commun (Camb) 2002:2348-9. [PMID: 12430434 DOI: 10.1039/b203710f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of a new beta-tetrasubstituted porphyrin through a short synthesis with liquid crystalline properties in a wide range of temperatures including room temperature is described.
Collapse
|
|
23 |
26 |
17
|
Castella M, Millie P, Piuzzi F, Caillet J, Langlet J, Claverie P, Tramer A. Molecular complexes with interacting van der Waals and ionic excited states. 1. Calculations of potential energy surfaces. ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100347a016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
25 |
18
|
Castella M, Millie P, Piuzzi F, Caillet J, Langlet J, Claverie P, Tramer A. Molecular complexes with interacting van der Waals and ionic excited states. 2. Electronic spectra of jet-cooled complexes. ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100347a017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
23 |
24 |
19
|
Castella M, Tramer A, Piuzzi F. Isomeric forms of aromatic hydrocarbon-aromatic amine complexes. Chem Phys Lett 1986. [DOI: 10.1016/0009-2614(86)80179-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
39 |
22 |
20
|
Castella M, Tenderich G, Koerner MM, Arusoglu L, El-Banayosy A, Schulz U, Schulze B, Schulte-Eistrup S, Wolff C, Minami K, Koerfer R. Outcome of heart transplantation in patients previously infected with hepatitis C virus. J Heart Lung Transplant 2001; 20:595-8. [PMID: 11343988 DOI: 10.1016/s1053-2498(00)00198-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The lack of knowledge about the course of hepatitis C virus infection (HCV) before heart transplantation (HTx) prompted us to describe our experience with 4 such patients who presented with positive HCV serology before surgery. Two experienced non-liver related deaths at 3.5 and 5 years after HTx, and none of the patients developed signs of hepatic insufficiency during the follow-up (mean 3.8 years). Tests for HCV antibodies were frequently negative, whereas viral RNA was detected in 81% of the measurements, showing that virus detection techniques seem to be more sensitive than serology techniques in detecting HCV infection in this group of patients. Although immunosuppression promotes active HCV replication, it does not seem to change the chronic features of HCV infection during the first years in patients with good liver function.
Collapse
|
Case Reports |
24 |
19 |
21
|
Castella M, Calahorra F, Sainz D, Velasco D. New Heck-type reaction applied to the synthesis of protoporphyrin-IX derivatives. Org Lett 2001; 3:541-4. [PMID: 11178820 DOI: 10.1021/ol000370s] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: se text] A new Heck-type reaction under catalysis by Pd for obtaining polysubstituted arylvinylydene derivatives of porphyrin systems is reported. The coupling between the Zn(II)-protoporphyrin-IX dimethylester Zn-2 and several bromo-aryl and iodo-aryl compounds in the presence of a new Pd catalyst has been studied. This coupling reaction, although providing moderate regioselectivity, gives quantitative conversion.
Collapse
|
|
24 |
17 |
22
|
Abeyta A, Castella M, Jacquemont C, Taniguchi T. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection. Cell Cycle 2016; 16:335-347. [PMID: 27892797 PMCID: PMC5324754 DOI: 10.1080/15384101.2016.1259038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.
Collapse
|
Journal Article |
9 |
15 |
23
|
Amirav A, Castella M, Piuzzi F, Tramer A. Radiative and nonradiative decay constants of jet-cooled molecular exciplexes. ACTA ACUST UNITED AC 2002. [DOI: 10.1021/j100330a033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
15 |
24
|
Benhameid O, Jamieson WRE, Castella M, Carrier M, Pomar JL, Germann E, Pellerin M, Brownlee RT. CarboMedics Mitroflow pericardial aortic bioprosthesis - performance in patients aged 60 years and older after 15 years. Thorac Cardiovasc Surg 2008; 56:195-9. [PMID: 18481236 DOI: 10.1055/s-2008-1038385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The purpose of this study was to carry out a current assessment of the Mitroflow pericardial bioprosthesis (model 11) according to the durability of the prosthesis after 15 years in patients aged 60 years or older. METHODS This bioprosthesis was implanted in 161 patients (mean age 69.5 +/- 6.3 years; range 60 - 94 years) undergoing aortic valve replacement (AVR) between 1982 and 1992. There were 84 patients aged 60 - 69 years (mean 64.5 +/- 3.1years) and 77 patients aged 70 years or older (mean 74.8 +/- 4.3 years). Of the total population, concomitant procedures were performed in 63 patients (39.1 %); of these, coronary artery bypass grafting was performed in 39 (24.2 %). RESULTS Early mortality was 4.8 % (4 patients) in the 60 - 69 year age group and 10.4 % (8) in patients aged 70 years or older ( P = 0.290). Late mortality was 4.5 %/patient-year (35) for those aged 60 - 69 years and 8.1 %/patient-year (49) for those aged 70 years or older ( P = 0.007). Patient survival at 15 years of patients aged 60 - 69 years was 47.6 +/- 6.3 % and of patients aged 70 years or older was 20.9 +/- 5.4 % ( P = 0.003) ( ). Freedom from valve-related mortality for patients in the 60 - 69 year age group was 92.1 +/- 3.5 % at 15 years (0.6 %/patient-year [5]), and in the patient group aged 70 years or older it was 84.4 +/- 5.3 % (1.3 %/patient-year [8]; P = 0.194). Freedom from reoperation for patients in the 60 - 69 year age group was 73.9 +/- 5.0 % (2.6 %/patient-year [20]), and for patients aged 70 years or older it was 91.4 +/- 3.4 % (1.0 %/patient-year [6]; P = 0.029). The structural valve deterioration (SVD) rate for patients in the 60 - 69 year age group was 2.4 %/patient-year (19), and for patients aged 70 years or older it was 1.0 %/patient-year (6) ( P = 0.041). Actuarial freedom from structural valve deterioration at 15 years for patients aged 60 - 69 years was 62.0 +/- 7.3 %, and 80.8 +/- 7.9 % for patients aged 70 years and older ( P = 0.049) (actual freedom 73.9 +/- 5.2 % and 91.4 +/- 3.4 %, respectively). CONCLUSIONS The Mitroflow pericardial bioprosthesis can still be recommended for aortic valve replacement in patients 70 years and older.
Collapse
|
Journal Article |
17 |
11 |
25
|
Ortiz-Maldonado V, Rives S, Español-Rego M, Alonso-Saladrigues A, Montoro M, Magnano L, Giné E, Pascal M, Díaz-Beyá M, Castella M, Català A, Faura A, Rodríguez-Lobato LG, Oliver-Caldes A, Martínez-Roca A, Rovira M, González-Navarro EA, Ortega JR, Cid J, Lozano M, Garcia-Rey E, Fernández S, Castro P, Jordan I, Villamor N, Aymerich M, Torrebadell M, Deyà À, Fernández de Larrea C, Benitez-Ribas D, Trias E, Varea S, Calvo G, Esteve J, Urbano-Ispizua A, Juan M, Delgado J. Factors associated with the clinical outcome of patients with relapsed/refractory CD19 + acute lymphoblastic leukemia treated with ARI-0001 CART19-cell therapy. J Immunother Cancer 2021; 9:jitc-2021-003644. [PMID: 34907029 PMCID: PMC8671976 DOI: 10.1136/jitc-2021-003644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
|
Letter |
4 |
10 |