Jansen J, Friesema ECH, Kester MHA, Milici C, Reeser M, Grüters A, Barrett TG, Mancilla EE, Svensson J, Wemeau JL, Busi da Silva Canalli MH, Lundgren J, McEntagart ME, Hopper N, Arts WF, Visser TJ. Functional analysis of monocarboxylate transporter 8 mutations identified in patients with X-linked psychomotor retardation and elevated serum triiodothyronine.
J Clin Endocrinol Metab 2007;
92:2378-81. [PMID:
17356046 DOI:
10.1210/jc.2006-2570]
[Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CONTEXT
T(3) action in neurons is essential for brain development. Recent evidence indicates that monocarboxylate transporter 8 (MCT8) is important for neuronal T(3) uptake. Hemizygous mutations have been identified in the X-linked MCT8 gene in boys with severe psychomotor retardation and elevated serum T(3) levels.
OBJECTIVE
The objective of this study was to determine the functional consequences of MCT8 mutations regarding transport of T(3).
DESIGN
MCT8 function was studied in wild-type or mutant MCT8-transfected JEG3 cells by analyzing: 1) T(3) uptake, 2) T(3) metabolism in cells cotransfected with human type 3 deiodinase, 3) immunoblotting, and 4) immunocytochemistry.
RESULTS
The mutations identified in MCT8 comprise four deletions (24.5 kb, 2.4 kb, 14 bp, and 3 bp), three missense mutations (Ala224Val, Arg271His, and Leu471Pro), a nonsense mutation (Arg245stop), and a splice site mutation (94 amino acid deletion). All tested mutants were inactive in uptake and metabolism assays, except MCT8 Arg271His, which showed approximately 20% activity vs. wild-type MCT8.
CONCLUSION
These findings support the hypothesis that the severe psychomotor retardation and elevated serum T(3) levels in these patients are caused by inactivation of the MCT8 transporter, preventing action and metabolism of T(3) in central neurons.
Collapse