1
|
Humphreys AM, Govaerts R, Ficinski SZ, Nic Lughadha E, Vorontsova MS. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat Ecol Evol 2019; 3:1043-1047. [DOI: 10.1038/s41559-019-0906-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/24/2019] [Indexed: 11/09/2022]
|
|
6 |
158 |
2
|
Kameneva P, Artemov AV, Kastriti ME, Faure L, Olsen TK, Otte J, Erickson A, Semsch B, Andersson ER, Ratz M, Frisén J, Tischler AS, de Krijger RR, Bouderlique T, Akkuratova N, Vorontsova M, Gusev O, Fried K, Sundström E, Mei S, Kogner P, Baryawno N, Kharchenko PV, Adameyko I. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet 2021; 53:694-706. [PMID: 33833454 PMCID: PMC7610777 DOI: 10.1038/s41588-021-00818-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
100 |
3
|
Saarela JM, Burke SV, Wysocki WP, Barrett MD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 2018; 6:e4299. [PMID: 29416954 PMCID: PMC5798404 DOI: 10.7717/peerj.4299] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.
Collapse
|
research-article |
7 |
76 |
4
|
Osborne CP, Salomaa A, Kluyver TA, Visser V, Kellogg EA, Morrone O, Vorontsova MS, Clayton WD, Simpson DA. A global database of C4 photosynthesis in grasses. THE NEW PHYTOLOGIST 2014; 204:441-446. [PMID: 25046685 DOI: 10.1111/nph.12942] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
Letter |
11 |
64 |
5
|
Lundgren MR, Besnard G, Ripley BS, Lehmann CER, Chatelet DS, Kynast RG, Namaganda M, Vorontsova MS, Hall RC, Elia J, Osborne CP, Christin PA. Photosynthetic innovation broadens the niche within a single species. Ecol Lett 2015; 18:1021-9. [DOI: 10.1111/ele.12484] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/27/2022]
|
|
10 |
60 |
6
|
Besnard G, Christin PA, Malé PJG, Lhuillier E, Lauzeral C, Coissac E, Vorontsova MS. From museums to genomics: old herbarium specimens shed light on a C3 to C4 transition. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6711-21. [PMID: 25258360 DOI: 10.1093/jxb/eru395] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Collections of specimens held by natural history museums are invaluable material for biodiversity inventory and evolutionary studies, with specimens accumulated over 300 years readily available for sampling. Unfortunately, most museum specimens yield low-quality DNA. Recent advances in sequencing technologies, so called next-generation sequencing, are revolutionizing phylogenetic investigations at a deep level. Here, the Illumina technology (HiSeq) was used on herbarium specimens of Sartidia (subfamily Aristidoideae, Poaceae), a small African-Malagasy grass lineage (six species) characteristic of wooded savannas, which is the C3 sister group of Stipagrostis, an important C4 genus from Africa and SW Asia. Complete chloroplast and nuclear ribosomal sequences were assembled for two Sartidia species, one of which (S. perrieri) is only known from a single specimen collected in Madagascar 100 years ago. Partial sequences of a few single-copy genes encoding phosphoenolpyruvate carboxylases (ppc) and malic enzymes (nadpme) were also assembled. Based on these data, the phylogenetic position of Malagasy Sartidia in the subfamily Aristidoideae was investigated and the biogeographical history of this genus was analysed with full species sampling. The evolutionary history of two genes for C4 photosynthesis (ppc-aL1b and nadpme-IV) in the group was also investigated. The gene encoding the C4 phosphoenolpyruvate caroxylase of Stipagrostis is absent from S. dewinteri suggesting that it is not essential in C3 members of the group, which might have favoured its recruitment into a new metabolic pathway. Altogether, the inclusion of historical museum specimens in phylogenomic analyses of biodiversity opens new avenues for evolutionary studies.
Collapse
|
|
11 |
60 |
7
|
Vorontsova MS, Besnard G, Forest F, Malakasi P, Moat J, Clayton WD, Ficinski P, Savva GM, Nanjarisoa OP, Razanatsoa J, Randriatsara FO, Kimeu JM, Luke WRQ, Kayombo C, Linder HP. Madagascar's grasses and grasslands: anthropogenic or natural? Proc Biol Sci 2016; 283:rspb.2015.2262. [PMID: 26791612 PMCID: PMC4795014 DOI: 10.1098/rspb.2015.2262] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Grasses, by their high productivity even under very low pCO2, their ability to survive repeated burning and to tolerate long dry seasons, have transformed the terrestrial biomes in the Neogene and Quaternary. The expansion of grasslands at the cost of biodiverse forest biomes in Madagascar is often postulated as a consequence of the Holocene settlement of the island by humans. However, we show that the Malagasy grass flora has many indications of being ancient with a long local evolutionary history, much predating the Holocene arrival of humans. First, the level of endemism in the Madagascar grass flora is well above the global average for large islands. Second, a survey of many of the more diverse areas indicates that there is a very high spatial and ecological turnover in the grass flora, indicating a high degree of niche specialization. We also find some evidence that there are both recently disturbed and natural stable grasslands: phylogenetic community assembly indicates that recently severely disturbed grasslands are phylogenetically clustered, whereas more undisturbed grasslands tend to be phylogenetically more evenly distributed. From this evidence, it is likely that grass communities existed in Madagascar long before human arrival and so were determined by climate, natural grazing and other natural factors. Humans introduced zebu cattle farming and increased fire frequency, and may have triggered an expansion of the grasslands. Grasses probably played the same role in the modification of the Malagasy environments as elsewhere in the tropics.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
56 |
8
|
Knapp S, Vorontsova MS, Prohens J. Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS One 2013; 8:e57039. [PMID: 23451138 PMCID: PMC3579775 DOI: 10.1371/journal.pone.0057039] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The common or brinjal eggplant (Solanum melongena L.) belongs to the Leptostemonum Clade (the "spiny" solanums) of the species-rich genus Solanum (Solanaceae). Unlike most of the genus, the eggplant and its relatives are from the Old World; most eggplant wild relatives are from Africa. An informal system for naming eggplant wild relatives largely based on crossing and other biosystematics data has been in use for approximately a decade. This system recognises several forms of two broadly conceived species, S. incanum L. and S. melongena. Recent morphological and molecular work has shown that species-level differences exist between these entities, and a new species-level nomenclature has been identified as necessary for plant breeders and for the maintenance of accurately named germplasm. METHODOLOGY/PRINCIPAL FINDINGS We examined herbarium specimens from throughout the wild species ranges as part of a larger revision of the spiny solanums of Africa. Based on these morphological and molecular studies, we delimited species in the group to which the common eggplant belongs and constructed identification keys for the group. We also examined the monophyly of the group considered as the eggplant relatives by previous authors. CONCLUSIONS/SIGNIFICANCE WE RECOGNISE TEN SPECIES IN THIS GROUP: S. aureitomentosum Bitter, S. campylacanthum A.Rich., S. cerasiferum Dunal, S. incanum L., S. insanum L., S. lichtensteinii Willd., S. linnaeanum Hepper & P.-M.L.Jaeger, S. melongena L., S. rigidum Lam. and S. umtuma Voronts. & S.Knapp. We review the history of naming and provide keys and character lists for all species. Ploidy level differences have not been investigated in the eggplant wild relatives; we identify this as a priority for improvement of crop wild relative use in breeding. The application of species-level names to these entities will help focus new collecting efforts for brinjal eggplant improvement and help facilitate information exchange.
Collapse
|
research-article |
12 |
55 |
9
|
Corbet SA, Bee J, Dasmahapatra K, Gale S, Gorringe E, La Ferla B, Moorhouse T, Trevail A, Van Bergen Y, Vorontsova M. Native or Exotic? Double or Single? Evaluating Plants for Pollinator-friendly Gardens. ANNALS OF BOTANY 2001; 87:219-232. [PMID: 32050738 DOI: 10.1006/anbo.2000.1322] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In a series of dawn-to-dusk studies, we examined the nature and accessibility of nectar rewards for pollinating insects by monitoring insect visits and the secretion rate and standing crop of nectar in the British native plant species Salvia pratensis , Stachys palustris , S. officinalis , Lythrum salicaria , Linaria vulgaris , the non-native Calendula officinalis , Petunia × hybrida , Salvia splendens , and the possibly introduced Saponaria officinalis . We also compared single with double variants of Lotus corniculatus , Saponaria officinalis , Petunia × hybrida and Calendula officinalis . All the British species studied are nectar-rich and are recommended for pollinator-friendly gardens. They showed maximal secretion rates of about 10-90 μg sugar per flower h -1 , and most had mean standing crops of about 5-60 μg sugar per flower. In all British species studied, the corolla was deep enough for the relatively long-tongued bumblebee Bombus pascuorum , but the shallower flowers of Lythrum salicaria were also much visited by shorter-tongued bees and hoverflies, as well as by butterflies. The exotic Salvia splendens , presumably coevolved with hummingbirds in the Neotropics, has such deep flowers that British bees cannot reach the nectar except by crawling down the corolla. With a secretion rate approaching 300 μg sugar per flower h -1 and little depletion by insects, S. splendens accumulated high standing crops of nectar. S. splendens , and single and double flowers of the two probably moth-pollinated species Petunia × hybrida and Saponaria officinalis , received few daytime visits despite abundant nectar but Calendula was well visited by hoverflies and bees. We compared single and double variants of Lotus corniculatus , Petunia × hybrida and Calendula officinalis , and also Saponaria officinalis , the last being probably introduced in Britain (Stace, 1997 New flora of the British Isles. 2nd edn. Cambridge: Cambridge University Press). In Petunia , Saponaria and Lotus , double flowers secreted little or no nectar. In Calendula , where doubling involved a change in the proportion of disc and ray florets rather than modification of individual flower structure, double and single capitula had similar standing crops of nectar. Except in Calendula , exotic or double flowers were little exploited by insect visitors. In the exotics, this was probably due to the absence or scarcity of coevolved pollinators, coupled, in double flowers, with the absence of nectar.
Collapse
Key Words
-
Salvia pratensis
,
Salvia splendens
,
Stachys palustris
,
Stachys officinalis
,
Lythrum salicaria
,
Linaria vulgaris
,
Lotus corniculatus
,
Saponaria officinalis
,
Petunia
×
hybrida
,
Calendula officinalis
, wild flowers, double flowers, gardens, nectar, secretion rate, standing crop, pollinators, bumblebees,
Bombus
, honeybees,
Apis
, hoverflies, butterflies,
Anthidium manicatum
Collapse
|
|
24 |
43 |
10
|
Olofsson JK, Bianconi M, Besnard G, Dunning LT, Lundgren MR, Holota H, Vorontsova MS, Hidalgo O, Leitch IJ, Nosil P, Osborne CP, Christin P. Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait. Mol Ecol 2016; 25:6107-6123. [PMID: 27862505 PMCID: PMC6849575 DOI: 10.1111/mec.13914] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023]
Abstract
Physiological novelties are often studied at macro-evolutionary scales such that their micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C4 and non-C4 genotypes, with some populations using laterally acquired C4 -adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C4 and non-C4 A. semialata individuals spanning the species' range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C4 functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C4 -related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations.
Collapse
|
research-article |
9 |
36 |
11
|
Lundgren MR, Dunning LT, Olofsson JK, Moreno‐Villena JJ, Bouvier JW, Sage TL, Khoshravesh R, Sultmanis S, Stata M, Ripley BS, Vorontsova MS, Besnard G, Adams C, Cuff N, Mapaura A, Bianconi ME, Long CM, Christin P, Osborne CP. C 4 anatomy can evolve via a single developmental change. Ecol Lett 2019; 22:302-312. [PMID: 30557904 PMCID: PMC6849723 DOI: 10.1111/ele.13191] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023]
Abstract
C4 photosynthesis is a complex trait that boosts productivity in warm environments. Paradoxically, it evolved independently in numerous plant lineages, despite requiring specialised leaf anatomy. The anatomical modifications underlying C4 evolution have previously been evaluated through interspecific comparisons, which capture numerous changes besides those needed for C4 functionality. Here, we quantify the anatomical changes accompanying the transition between non-C4 and C4 phenotypes by sampling widely across the continuum of leaf anatomical traits in the grass Alloteropsis semialata. Within this species, the only trait that is shared among and specific to C4 individuals is an increase in vein density, driven specifically by minor vein development that yields multiple secondary effects facilitating C4 function. For species with the necessary anatomical preconditions, developmental proliferation of veins can therefore be sufficient to produce a functional C4 leaf anatomy, creating an evolutionary entry point to complex C4 syndromes that can become more specialised.
Collapse
|
Letter |
6 |
35 |
12
|
Falster D, Gallagher R, Wenk EH, Wright IJ, Indiarto D, Andrew SC, Baxter C, Lawson J, Allen S, Fuchs A, Monro A, Kar F, Adams MA, Ahrens CW, Alfonzetti M, Angevin T, Apgaua DMG, Arndt S, Atkin OK, Atkinson J, Auld T, Baker A, von Balthazar M, Bean A, Blackman CJ, Bloomfield K, Bowman DMJS, Bragg J, Brodribb TJ, Buckton G, Burrows G, Caldwell E, Camac J, Carpenter R, Catford JA, Cawthray GR, Cernusak LA, Chandler G, Chapman AR, Cheal D, Cheesman AW, Chen SC, Choat B, Clinton B, Clode PL, Coleman H, Cornwell WK, Cosgrove M, Crisp M, Cross E, Crous KY, Cunningham S, Curran T, Curtis E, Daws MI, DeGabriel JL, Denton MD, Dong N, Du P, Duan H, Duncan DH, Duncan RP, Duretto M, Dwyer JM, Edwards C, Esperon-Rodriguez M, Evans JR, Everingham SE, Farrell C, Firn J, Fonseca CR, French BJ, Frood D, Funk JL, Geange SR, Ghannoum O, Gleason SM, Gosper CR, Gray E, Groom PK, Grootemaat S, Gross C, Guerin G, Guja L, Hahs AK, Harrison MT, Hayes PE, Henery M, Hochuli D, Howell J, Huang G, Hughes L, Huisman J, Ilic J, Jagdish A, Jin D, Jordan G, Jurado E, Kanowski J, Kasel S, et alFalster D, Gallagher R, Wenk EH, Wright IJ, Indiarto D, Andrew SC, Baxter C, Lawson J, Allen S, Fuchs A, Monro A, Kar F, Adams MA, Ahrens CW, Alfonzetti M, Angevin T, Apgaua DMG, Arndt S, Atkin OK, Atkinson J, Auld T, Baker A, von Balthazar M, Bean A, Blackman CJ, Bloomfield K, Bowman DMJS, Bragg J, Brodribb TJ, Buckton G, Burrows G, Caldwell E, Camac J, Carpenter R, Catford JA, Cawthray GR, Cernusak LA, Chandler G, Chapman AR, Cheal D, Cheesman AW, Chen SC, Choat B, Clinton B, Clode PL, Coleman H, Cornwell WK, Cosgrove M, Crisp M, Cross E, Crous KY, Cunningham S, Curran T, Curtis E, Daws MI, DeGabriel JL, Denton MD, Dong N, Du P, Duan H, Duncan DH, Duncan RP, Duretto M, Dwyer JM, Edwards C, Esperon-Rodriguez M, Evans JR, Everingham SE, Farrell C, Firn J, Fonseca CR, French BJ, Frood D, Funk JL, Geange SR, Ghannoum O, Gleason SM, Gosper CR, Gray E, Groom PK, Grootemaat S, Gross C, Guerin G, Guja L, Hahs AK, Harrison MT, Hayes PE, Henery M, Hochuli D, Howell J, Huang G, Hughes L, Huisman J, Ilic J, Jagdish A, Jin D, Jordan G, Jurado E, Kanowski J, Kasel S, Kellermann J, Kenny B, Kohout M, Kooyman RM, Kotowska MM, Lai HR, Laliberté E, Lambers H, Lamont BB, Lanfear R, van Langevelde F, Laughlin DC, Laugier-Kitchener BA, Laurance S, Lehmann CER, Leigh A, Leishman MR, Lenz T, Lepschi B, Lewis JD, Lim F, Liu U, Lord J, Lusk CH, Macinnis-Ng C, McPherson H, Magallón S, Manea A, López-Martinez A, Mayfield M, McCarthy JK, Meers T, van der Merwe M, Metcalfe DJ, Milberg P, Mokany K, Moles AT, Moore BD, Moore N, Morgan JW, Morris W, Muir A, Munroe S, Nicholson Á, Nicolle D, Nicotra AB, Niinemets Ü, North T, O'Reilly-Nugent A, O'Sullivan OS, Oberle B, Onoda Y, Ooi MKJ, Osborne CP, Paczkowska G, Pekin B, Guilherme Pereira C, Pickering C, Pickup M, Pollock LJ, Poot P, Powell JR, Power SA, Prentice IC, Prior L, Prober SM, Read J, Reynolds V, Richards AE, Richardson B, Roderick ML, Rosell JA, Rossetto M, Rye B, Rymer PD, Sams MA, Sanson G, Sauquet H, Schmidt S, Schönenberger J, Schulze ED, Sendall K, Sinclair S, Smith B, Smith R, Soper F, Sparrow B, Standish RJ, Staples TL, Stephens R, Szota C, Taseski G, Tasker E, Thomas F, Tissue DT, Tjoelker MG, Tng DYP, de Tombeur F, Tomlinson K, Turner NC, Veneklaas EJ, Venn S, Vesk P, Vlasveld C, Vorontsova MS, Warren CA, Warwick N, Weerasinghe LK, Wells J, Westoby M, White M, Williams NSG, Wills J, Wilson PG, Yates C, Zanne AE, Zemunik G, Ziemińska K. AusTraits, a curated plant trait database for the Australian flora. Sci Data 2021; 8:254. [PMID: 34593819 PMCID: PMC8484355 DOI: 10.1038/s41597-021-01006-6] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
Collapse
|
Dataset |
4 |
35 |
13
|
Rosenkranz AA, Slastnikova TA, Karmakova TA, Vorontsova MS, Morozova NB, Petriev VM, Abrosimov AS, Khramtsov YV, Lupanova TN, Ulasov AV, Yakubovskaya RI, Georgiev GP, Sobolev AS. Antitumor Activity of Auger Electron Emitter 111In Delivered by Modular Nanotransporter for Treatment of Bladder Cancer With EGFR Overexpression. Front Pharmacol 2018; 9:1331. [PMID: 30510514 PMCID: PMC6252321 DOI: 10.3389/fphar.2018.01331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Gamma-ray emitting 111In, which is extensively used for imaging, is also a source of short-range Auger electrons (AE). While exhibiting negligible effect outside cells, these AE become highly toxic near DNA within the cell nucleus. Therefore, these radionuclides can be used as a therapeutic anticancer agent if delivered precisely into the nuclei of tumor target cells. Modular nanotransporters (MNTs) designed to provide receptor-targeted delivery of short-range therapeutic cargoes into the nuclei of target cells are perspective candidates for specific intracellular delivery of AE emitters. The objective of this study was to evaluate the in vitro and in vivo efficacy of 111In attached MNTs to kill human bladder cancer cells overexpressing epidermal growth factor receptor (EGFR). The cytotoxicity of 111In delivered by the EGFR-targeted MNT (111In-MNT) was greatly enhanced on EJ-, HT-1376-, and 5637-expressing EGFR bladder cancer cell lines compared with 111In non-targeted control. In vivo microSPECT/CT imaging and antitumor efficacy studies revealed prolonged intratumoral retention of 111In-MNT with t½ = 4.1 ± 0.5 days as well as significant dose-dependent tumor growth delay (up to 90% growth inhibition) after local infusion of 111In-MNT in EJ xenograft-bearing mice.
Collapse
|
Journal Article |
7 |
28 |
14
|
Solofondranohatra CL, Vorontsova MS, Hackel J, Besnard G, Cable S, Williams J, Jeannoda V, Lehmann CER. Grass Functional Traits Differentiate Forest and Savanna in the Madagascar Central Highlands. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00184] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
7 |
27 |
15
|
Besnard G, Christin PA, Malé PJG, Coissac E, Ralimanana H, Vorontsova MS. Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar. ANNALS OF BOTANY 2013; 112:1057-66. [PMID: 23985988 PMCID: PMC3783238 DOI: 10.1093/aob/mct174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS An accurate characterization of biodiversity requires analyses of DNA sequences in addition to classical morphological descriptions. New methods based on high-throughput sequencing may allow investigation of specimens with a large set of genetic markers to infer their evolutionary history. In the grass family, the phylogenetic position of the monotypic genus Lecomtella, a rare bamboo-like endemic from Madagascar, has never been appropriately evaluated. Until now its taxonomic treatment has remained controversial, indicating the need for re-evaluation based on a combination of molecular and morphological data. METHODS The phylogenetic position of Lecomtella in Poaceae was evaluated based on sequences from the nuclear and plastid genomes generated by next-generation sequencing (NGS). In addition, a detailed morphological description of L. madagascariensis was produced, and its distribution and habit were investigated in order to assess its conservation status. KEY RESULTS The complete plastid sequence, a ribosomal DNA unit and fragments of low-copy nuclear genes (phyB and ppc) were obtained. All phylogenetic analyses place Lecomtella as an isolated member of the core panicoids, which last shared a common ancestor with other species >20 million years ago. Although Lecomtella exhibits morphological characters typical of Panicoideae, an unusual combination of traits supports its treatment as a separate group. CONCLUSIONS The study showed that NGS can be used to generate abundant phylogenetic information rapidly, opening new avenues for grass phylogenetics. These data clearly showed that Lecomtella forms an isolated lineage, which, in combination with its morphological peculiarities, justifies its treatment as a separate tribe: Lecomtelleae. New descriptions of the tribe, genus and species are presented with a typification, a distribution map and an IUCN conservation assessment.
Collapse
|
research-article |
12 |
23 |
16
|
Ma PF, Vorontsova MS, Nanjarisoa OP, Razanatsoa J, Guo ZH, Haevermans T, Li DZ. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics. BMC PLANT BIOLOGY 2017; 17:260. [PMID: 29268709 PMCID: PMC5740905 DOI: 10.1186/s12870-017-1199-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. RESULTS Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. CONCLUSIONS Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.
Collapse
|
research-article |
8 |
22 |
17
|
Slastnikova TA, Rosenkranz AA, Morozova NB, Vorontsova MS, Petriev VM, Lupanova TN, Ulasov AV, Zalutsky MR, Yakubovskaya RI, Sobolev AS. Preparation, cytotoxicity, and in vivo antitumor efficacy of 111In-labeled modular nanotransporters. Int J Nanomedicine 2017; 12:395-410. [PMID: 28138237 PMCID: PMC5238804 DOI: 10.2147/ijn.s125359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Modular nanotransporters (MNTs) are a polyfunctional platform designed to achieve receptor-specific delivery of short-range therapeutics into the cell nucleus by receptor-mediated endocytosis, endosome escape, and targeted nuclear transport. This study evaluated the potential utility of the MNT platform in tandem with Auger electron emitting 111In for cancer therapy. METHODS Three MNTs developed to target either melanocortin receptor-1 (MC1R), folate receptor (FR), or epidermal growth factor receptor (EGFR) that are overexpressed on cancer cells were modified with p-SCN-Bn-NOTA and then labeled with 111In in high specific activity. Cytotoxicity of the 111In-labeled MNTs was evaluated on cancer cell lines bearing the appropriate receptor target (FR: HeLa, SK-OV-3; EGFR: A431, U87MG.wtEGFR; and MC1R: B16-F1). In vivo micro-single-photon emission computed tomography/computed tomography imaging and antitumor efficacy studies were performed with intratumoral injection of MC1R-targeted 111In-labeled MNT in B16-F1 melanoma tumor-bearing mice. RESULTS The three NOTA-MNT conjugates were labeled with a specific activity of 2.7 GBq/mg with nearly 100% yield, allowing use without subsequent purification. The cytotoxicity of 111In delivered by these MNTs was greatly enhanced on receptor-expressing cancer cells compared with 111In nontargeted control. In mice with B16-F1 tumors, prolonged retention of 111In by serial imaging and significant tumor growth delay (82% growth inhibition) were found. CONCLUSION The specific in vitro cytotoxicity, prolonged tumor retention, and therapeutic efficacy of MC1R-targeted 111In-NOTA-MNT suggest that this Auger electron emitting conjugate warrants further evaluation as a locally delivered radiotherapeutic, such as for ocular melanoma brachytherapy. Moreover, the high cytotoxicity observed with FR- and EGFR-targeted 111In-NOTA-MNT suggests further applications of the MNT delivery strategy should be explored.
Collapse
|
research-article |
8 |
22 |
18
|
Canavan S, Richardson DM, Visser V, Roux JJL, Vorontsova MS, Wilson JRU. The global distribution of bamboos: assessing correlates of introduction and invasion. AOB PLANTS 2016; 9:plw078. [PMID: 28013249 PMCID: PMC5499700 DOI: 10.1093/aobpla/plw078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/30/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
There is a long history of species being moved around the world by humans. These introduced species can provide substantial benefits, but they can also have undesirable consequences. We explore the importance of human activities on the processes of species dissemination and potential invasions using the grass subfamily Bambusoideae ("bamboos"), a group that contains taxa that are widely utilised and that are often perceived as weedy. We (1) compiled an inventory of bamboo species and their current distributions; (2) determined which species have been introduced and become invasive outside their native ranges; and (3) explored correlates of introduction and invasion. Distribution data were collated from Kew's GrassBase, the Global Biodiversity Information Facility and other online herbarium information sources. Our list comprised 1662 species in 121 genera, of which 232 (14%) have been introduced beyond their native ranges. Twelve species were found to be invasive. A non-random selection of bamboos have been introduced and become invasive. Asiatic species in particular have been widely introduced. There was a clear over-representation of introduced species in the genera Bambusa and Phyllostachys which also contain most of the listed invasive species. The introduction of species also correlated with certain traits: taxa with larger culm dimensions were significantly more likely to have been moved to new areas; and those with many cultivars had a higher rate of dissemination and invasion. It is difficult to determine whether the patterns of introduction and invasion are due simply to differences in propagule pressure, or whether humans have deliberately selected inherently invasive taxa. In general, we suggest that human usage is a stronger driver of introductions and invasions in bamboos than in other taxa that have been well studied. It is likely that as bamboos are used more widely, the number and impact of invasions will increase unless environmental risks are carefully managed.
Collapse
|
research-article |
9 |
20 |
19
|
Bianconi ME, Dunning LT, Curran EV, Hidalgo O, Powell RF, Mian S, Leitch IJ, Lundgren MR, Manzi S, Vorontsova MS, Besnard G, Osborne CP, Olofsson JK, Christin PA. Contrasted histories of organelle and nuclear genomes underlying physiological diversification in a grass species. Proc Biol Sci 2020; 287:20201960. [PMID: 33171085 PMCID: PMC7735283 DOI: 10.1098/rspb.2020.1960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
18 |
20
|
Solofondranohatra CL, Vorontsova MS, Hempson GP, Hackel J, Cable S, Vololoniaina J, Lehmann CER. Fire and grazing determined grasslands of central Madagascar represent ancient assemblages. Proc Biol Sci 2020; 287:20200598. [PMID: 32396803 PMCID: PMC7287345 DOI: 10.1098/rspb.2020.0598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
The ecology of Madagascar's grasslands is under-investigated and the dearth of ecological understanding of how disturbance by fire and grazing shapes these grasslands stems from a perception that disturbance shaped Malagasy grasslands only after human arrival. However, worldwide, fire and grazing shape tropical grasslands over ecological and evolutionary timescales, and it is curious Madagascar should be a global anomaly. We examined the functional and community ecology of Madagascar's grasslands across 71 communities in the Central Highlands. Combining multivariate abundance models of community composition and clustering of grass functional traits, we identified distinct grass assemblages each shaped by fire or grazing. The fire-maintained assemblage is primarily composed of tall caespitose species with narrow leaves and low bulk density. By contrast, the grazer-maintained assemblage is characterized by mat-forming, high bulk density grasses with wide leaves. Within each assemblage, levels of endemism, diversity and grass ages support these as ancient assemblages. Grazer-dependent grasses can only have co-evolved with a now-extinct megafauna. Ironically, the human introduction of cattle probably introduced a megafaunal substitute facilitating modern day persistence of a grazer-maintained grass assemblage in an otherwise defaunated landscape, where these landscapes now support the livelihoods of millions of people.
Collapse
|
|
5 |
18 |
21
|
Bianconi ME, Hackel J, Vorontsova MS, Alberti A, Arthan W, Burke SV, Duvall MR, Kellogg EA, Lavergne S, McKain MR, Meunier A, Osborne CP, Traiperm P, Christin PA, Besnard G. Continued Adaptation of C4 Photosynthesis After an Initial Burst of Changes in the Andropogoneae Grasses. Syst Biol 2020; 69:445-461. [PMID: 31589325 PMCID: PMC7672695 DOI: 10.1093/sysbio/syz066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022] Open
Abstract
C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} photosynthesis is a complex trait that sustains fast growth and high productivity in tropical and subtropical conditions and evolved repeatedly in flowering plants. One of the major C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} lineages is Andropogoneae, a group of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}1200 grass species that includes some of the world’s most important crops and species dominating tropical and some temperate grasslands. Previous efforts to understand C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} evolution in the group have compared a few model C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} plants to distantly related C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} species so that changes directly responsible for the transition to C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} could not be distinguished from those that preceded or followed it. In this study, we analyze the genomes of 66 grass species, capturing the earliest diversification within Andropogoneae as well as their C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} relatives. Phylogenomics combined with molecular dating and analyses of protein evolution show that many changes linked to the evolution of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} photosynthesis in Andropogoneae happened in the Early Miocene, between 21 and 18 Ma, after the split from its C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} sister lineage, and before the diversification of the group. This initial burst of changes was followed by an extended period of modifications to leaf anatomy and biochemistry during the diversification of Andropogoneae, so that a single C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} origin gave birth to a diversity of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} phenotypes during 18 million years of speciation events and migration across geographic and ecological spaces. Our comprehensive approach and broad sampling of the diversity in the group reveals that one key transition can lead to a plethora of phenotypes following sustained adaptation of the ancestral state. [Adaptive evolution; complex traits; herbarium genomics; Jansenelleae; leaf anatomy; Poaceae; phylogenomics.]
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
15 |
22
|
Grace OM, Pérez-Escobar OA, Lucas EJ, Vorontsova MS, Lewis GP, Walker BE, Lohmann LG, Knapp S, Wilkie P, Sarkinen T, Darbyshire I, Lughadha EN, Monro A, Woudstra Y, Demissew S, Muasya AM, Díaz S, Baker WJ, Antonelli A. Botanical Monography in the Anthropocene. TRENDS IN PLANT SCIENCE 2021; 26:433-441. [PMID: 33579621 DOI: 10.1016/j.tplants.2020.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented changes in the Earth's biota are prompting urgent efforts to describe and conserve plant diversity. For centuries, botanical monographs - comprehensive systematic treatments of a family or genus - have been the gold standard for disseminating scientific information to accelerate research. The lack of a monograph compounds the risk that undiscovered species become extinct before they can be studied and conserved. Progress towards estimating the Tree of Life and digital information resources now bring even the most ambitious monographs within reach. Here, we recommend best practices to complete monographs urgently, especially for tropical plant groups under imminent threat or with expected socioeconomic benefits. We also highlight the renewed relevance and potential impact of monographies for the understanding, sustainable use, and conservation of biodiversity.
Collapse
|
Review |
4 |
11 |
23
|
Salmona J, Olofsson JK, Hong-Wa C, Razanatsoa J, Rakotonasolo F, Ralimanana H, Randriamboavonjy T, Suescun U, Vorontsova MS, Besnard G. Late Miocene origin and recent population collapse of the Malagasy savanna olive tree (Noronhia lowryi). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Debates regarding the origin of tropical savannas have attempted to disentangle the role of human, biotic and abiotic factors. Understanding the origins of savanna remains essential to identifying processes that gave rise to habitat mosaics, particularly those found in the Central Plateau of Madagascar. Documenting the evolutionary history and demography of native trees occurring in open habitats may reveal footprints left by past and recent environmental changes. We conducted a population genetic analysis of an endangered Malagasy shrub (Noronhia lowryi, Oleaceae) of the Central Plateau. Seventy-seven individuals were sampled from three sites and genotyped at 14 nuclear and 24 chloroplast microsatellites. We found a highly contrasting nuclear and plastid genetic structure, suggesting that pollen-mediated gene flow allows panmixia, while seed-based dispersal may rarely exceed tens of metres. From a phylogeny based on full plastomes, we dated the surprisingly old crown age of maternal lineages back to ~6.2 Mya, perhaps co-occurring with the global expansion of savanna. In contrast, recent demographic history inferred from nuclear data shows a bottleneck signature ~350 generations ago, probably reflecting an environmental shift during the Late Pleistocene or the Holocene. Ancient in situ adaptation and recent demographic collapse of an endangered woody plant highlight the unique value and vulnerability of the Malagasy savannas.
Collapse
|
|
6 |
11 |
24
|
Raveloaritiana E, Wurz A, Grass I, Osen K, Soazafy MR, Martin DA, Faliniaina L, Rakotomalala NH, Vorontsova MS, Tscharntke T, Rakouth B. Land‐use intensification increases richness of native and exotic herbaceous plants, but not endemics, in Malagasy vanilla landscapes. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
|
4 |
10 |
25
|
Silva C, Besnard G, Piot A, Razanatsoa J, Oliveira RP, Vorontsova MS. Museomics resolve the systematics of an endangered grass lineage endemic to north-western Madagascar. ANNALS OF BOTANY 2017; 119:339-351. [PMID: 28028020 PMCID: PMC5314640 DOI: 10.1093/aob/mcw208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/28/2016] [Accepted: 08/24/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Recent developments in DNA sequencing, so-called next-generation sequencing (NGS) methods, can help the study of rare lineages that are known from museum specimens. Here, the taxonomy and evolution of the Malagasy grass lineage Chasechloa was investigated with the aid of NGS. METHODS Full chloroplast genome data and some nuclear sequences were produced by NGS from old herbarium specimens, while some selected markers were generated from recently collected Malagasy grasses. In addition, a scanning electron microscopy analysis of the upper floret and cross-sections of the rachilla appendages followed by staining with Sudan IV were performed on Chasechloa to examine the morphology of the upper floret and the presence of oils in the appendages. KEY RESULTS Chasechloa was recovered within tribe Paniceae, sub-tribe Boivinellinae, contrary to its previous placement as a member of the New World genus Echinolaena (tribe Paspaleae). Chasechloa originated in Madagascar between the Upper Miocene and the Pliocene. It comprises two species, one of them collected only once in 1851. The genus is restricted to north-western seasonally dry deciduous forests. The appendages at the base of the upper floret of Chasechloa have been confirmed as elaiosomes, an evolutionary adaptation for myrmecochory. CONCLUSIONS Chasechloa is reinstated at the generic level and a taxonomic treatment is presented, including conservation assessments of its species. Our study also highlights the power of NGS technology to analyse relictual or probably extinct groups.
Collapse
|
research-article |
8 |
9 |