1
|
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91:479-89. [PMID: 9390557 DOI: 10.1016/s0092-8674(00)80434-1] [Citation(s) in RCA: 5434] [Impact Index Per Article: 194.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report here the purification of the third protein factor, Apaf-3, that participates in caspase-3 activation in vitro. Apaf-3 was identified as a member of the caspase family, caspase-9. Caspase-9 and Apaf-1 bind to each other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome c and dATP, an event that leads to caspase-9 activation. Activated caspase-9 in turn cleaves and activates caspase-3. Depletion of caspase-9 from S-100 extracts diminished caspase-3 activation. Mutation of the active site of caspase-9 attenuated the activation of caspase-3 and cellular apoptotic response in vivo, indicating that caspase-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
Collapse
|
|
28 |
5434 |
2
|
Abstract
Oxidative stress generated by an imbalance between reactive oxygen species (ROS) and antioxidants contributes to the pathogenesis of arthritis, cancer, cardiovascular, liver and respiratory diseases. Proinflammatory cytokines and growth factors stimulate ROS production as signaling mediators. Antioxidants such as N-acetylcysteine (NAC) have been used as tools for investigating the role of ROS in numerous biological and pathological processes. NAC inhibits activation of c-Jun N-terminal kinase, p38 MAP kinase and redox-sensitive activating protein-1 and nuclear factor kappa B transcription factor activities regulating expression of numerous genes. NAC can also prevent apoptosis and promote cell survival by activating extracellular signal-regulated kinase pathway, a concept useful for treating certain degenerative diseases. NAC directly modifies the activity of several proteins by its reducing activity. Despite its nonspecificity, ability to modify DNA and multiple molecular modes of action, NAC has therapeutic value for reducing endothelial dysfunction, inflammation, fibrosis, invasion, cartilage erosion, acetaminophen detoxification and transplant prolongation.
Collapse
|
Review |
22 |
980 |
3
|
Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1998; 1:949-57. [PMID: 9651578 DOI: 10.1016/s1097-2765(00)80095-7] [Citation(s) in RCA: 831] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation of procaspase-9 by Apaf-1 in the cytochrome c/dATP-dependent pathway requires proteolytic cleavage to generate the mature caspase molecule. To elucidate the mechanism of activation of procaspase-9 by Apaf-1, we designed an in vitro Apaf-1-procaspase-9 activation system using recombinant components. Here, we show that deletion of the Apaf-1 WD-40 repeats makes Apaf-1 constitutively active and capable of processing procaspase-9 independent of cytochrome c an dATP. Apaf-1-mediated processing of procaspase-9 occurs at Asp-315 by an intrinsic autocatalytic activity of procaspase-9 itself. We provide evidence that Apaf-1 can form oligomers and may facilitate procaspase-9 autoactivation by oligomerizing its precursor molecules. Once activated, caspase-9 can initiate a caspase cascade involving the downstream executioners caspase-3, -6, and -7.
Collapse
|
|
27 |
831 |
4
|
Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 1993; 92:1866-74. [PMID: 7691889 PMCID: PMC288351 DOI: 10.1172/jci116778] [Citation(s) in RCA: 811] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oxidative stress and expression of the vascular cell adhesion molecule-1 (VCAM-1) on vascular endothelial cells are early features in the pathogenesis of atherosclerosis and other inflammatory diseases. Regulation of VCAM-1 gene expression may be coupled to oxidative stress through specific reduction-oxidation (redox) sensitive transcriptional or posttranscriptional regulatory factors. In cultured human umbilical vein endothelial (HUVE) cells, the cytokine interleukin 1 beta (IL-1 beta) activated VCAM-1 gene expression through a mechanism that was repressed approximately 90% by the antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetylcysteine (NAC). Furthermore, PDTC selectively inhibited the induction of VCAM-1, but not intercellular adhesion molecule-1 (ICAM-1), mRNA and protein accumulation by the cytokine tumor necrosis factor-alpha (TNF alpha) as well as the noncytokines bacterial endotoxin lipopolysaccharide (LPS) and double-stranded RNA, poly(I:C) (PIC). PDTC also markedly attenuated TNF alpha induction of VCAM-1-mediated cellular adhesion. In a distinct pattern, PDTC partially inhibited E-selectin gene expression in response to TNF alpha but not to LPS, IL-1 beta, or PIC. TNF alpha and LPS-mediated transcriptional activation of the human VCAM-1 promoter through NF-kappa B-like DNA enhancer elements and associated NF-kappa B-like DNA binding proteins was inhibited by PDTC. These studies suggest a molecular linkage between an antioxidant sensitive transcriptional regulatory mechanism and VCAM-1 gene expression that expands on the notion of oxidative stress as an important regulatory signal in the pathogenesis of atherosclerosis.
Collapse
|
research-article |
32 |
811 |
5
|
Ahmad M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993; 366:162-6. [PMID: 8232555 DOI: 10.1038/366162a0] [Citation(s) in RCA: 744] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Specific responses to blue light are found throughout the biological kingdom. These responses--which in higher plants include phototropism, inhibition of hypocotyl elongation, and stomatal opening--are in many cases thought to be mediated by flavin-type photoreceptors. But no such blue-light photoreceptor has yet been identified or isolated, although blue-light responses in plants were reported by Darwin over a century ago, long before the discovery of the now relatively well characterized red/far-red light photoreceptor, phytochrome. Here we describe the isolation of a gene corresponding to the HY4 locus of Arabidopsis thaliana. The hy4 mutant is one of several mutants that are selectively insensitive to blue light during the blue-light-dependent inhibition of hypocotyl elongation response, which suggests that they lack an essential component of the cryptochrome-associated light-sensing pathway. The HY4 gene, isolated by gene tagging, was shown to encode a protein with significant homology to microbial DNA photolyases. As photolyases are a rare class of flavoprotein that catalyse blue-light-dependent reactions, the protein encoded by HY4 has a structure consistent with that of a flavin-type blue-light photoreceptor.
Collapse
|
|
32 |
744 |
6
|
MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 1997; 272:25417-20. [PMID: 9325248 DOI: 10.1074/jbc.272.41.25417] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A human receptor for the cytotoxic ligand TRAIL (TRAIL receptor-1, designated DR4) was identified recently as a member of the tumor necrosis factor receptor family. In this report we describe the identification of two additional human TRAIL receptors, TRAIL receptor-2 and TRAIL receptor-3, that belong to the tumor necrosis factor receptor family. Interestingly, TRAIL receptor-2 but not TRAIL receptor-3 contains a cytoplasmic "death domain" necessary for induction of apoptosis and is hence designated death receptor-5 (DR5). Like DR4, DR5 engages the apoptotic pathway independent of the adaptor molecule FADD/MORT1. Because of its lack of a death domain, TRAIL receptor-3 is not capable of inducing apoptosis. However, by competing for TRAIL, it is capable of inhibiting TRAIL-induced apoptosis. Thus, TRAIL receptor-3 may function as an antagonistic decoy receptor to attenuate the cytotoxic effect of TRAIL in most tissues that are TRAIL+, DR4+, and DR5+.
Collapse
|
|
28 |
423 |
7
|
Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci U S A 1996; 93:14486-91. [PMID: 8962078 PMCID: PMC26159 DOI: 10.1073/pnas.93.25.14486] [Citation(s) in RCA: 403] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1996] [Accepted: 10/11/1996] [Indexed: 02/03/2023] Open
Abstract
The Fas/APO-1-receptor associated cysteine protease Mch5 (MACH/FLICE) is believed to be the enzyme responsible for activating a protease cascade after Fas-receptor ligation, leading to cell death. The Fas-apoptotic pathway is potently inhibited by the cowpox serpin CrmA, suggesting that Mch5 could be the target of this serpin. Bacterial expression of proMch5 generated a mature enzyme composed of two subunits, which are derived from the pre-cursor proenzyme by processing at Asp-227, Asp-233, Asp-391, and Asp-401. We demonstrate that recombinant Mch5 is able to process/activate all known ICE/Ced-3-like cysteine proteases and is potently inhibited by CrmA. This contrasts with the observation that Mch4, the second FADD-related cysteine protease that is also able to process/activate all known ICE/Ced-3-like cysteine proteases, is poorly inhibited by CrmA. These data suggest that Mch5 is the most upstream protease that receives the activation signal from the Fas-receptor to initiate the apoptotic protease cascade that leads to activation of ICE-like proteases (TX, ICE, and ICE-relIII), Ced-3-like proteases (CPP32, Mch2, Mch3, Mch4, and Mch6), and the ICH-1 protease. On the other hand, Mch4 could be a second upstream protease that is responsible for activation of the same protease cascade in CrmA-insensitive apoptotic pathways.
Collapse
|
research-article |
29 |
403 |
8
|
Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 1998; 188:2375-80. [PMID: 9858524 PMCID: PMC2212426 DOI: 10.1084/jem.188.12.2375] [Citation(s) in RCA: 394] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/1998] [Indexed: 12/14/2022] Open
Abstract
Mature natural killer (NK) cells use Ca2+-dependent granule exocytosis and release of cytotoxic proteins, Fas ligand (FasL), and membrane-bound or secreted cytokines (tumor necrosis factor [TNF]-alpha) to induce target cell death. Fas belongs to the TNF receptor family of molecules, containing a conserved intracytoplasmic "death domain" that indirectly activates the caspase enzymatic cascade and ultimately apoptotic mechanisms in numerous cell types. Two additional members of this family, DR4 and DR5, transduce apoptotic signals upon binding soluble TNF-related apoptosis-inducing ligand (TRAIL) that, like FasL, belongs to the growing TNF family of molecules. Here, we report that TRAIL produced or expressed by different populations of primary human NK cells is functional, and represents a marker of differentiation or activation of these, and possibly other, cytotoxic leukocytes. During differentiation NK cells, sequentially and differentially, use distinct members of the TNF family or granule exocytosis to mediate target cell death. Phenotypically immature CD161(+)/CD56(-) NK cells mediate TRAIL-dependent but not FasL- or granule release-dependent cytotoxicity, whereas mature CD56(+) NK cells mediate the latter two.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/analysis
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins
- Calcium/metabolism
- Cell Degranulation
- Cell Differentiation
- Cells, Cultured
- Cytotoxicity, Immunologic/drug effects
- Fas Ligand Protein
- Humans
- Interleukins/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- RNA, Messenger/analysis
- Receptors, Tumor Necrosis Factor/metabolism
- Recombinant Fusion Proteins/pharmacology
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/physiology
- fas Receptor/physiology
Collapse
|
research-article |
27 |
394 |
9
|
Ahmad W, Faiyaz ul Haque M, Brancolini V, Tsou HC, ul Haque S, Lam H, Aita VM, Owen J, deBlaquiere M, Frank J, Cserhalmi-Friedman PB, Leask A, McGrath JA, Peacocke M, Ahmad M, Ott J, Christiano AM. Alopecia universalis associated with a mutation in the human hairless gene. Science 1998; 279:720-4. [PMID: 9445480 DOI: 10.1126/science.279.5351.720] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There are several forms of hereditary human hair loss, known collectively as alopecias, the molecular bases of which are entirely unknown. A kindred with a rare, recessively inherited type of alopecia universalis was used to search for a locus by homozygosity mapping, and linkage was established in a 6-centimorgan interval on chromosome 8p12 (the logarithm of the odds favoring linkage score was 6.19). The human homolog of a murine gene, hairless, was localized in this interval by radiation hybrid mapping, and a missense mutation was found in affected individuals. Human hairless encodes a putative single zinc finger transcription factor protein with restricted expression in the brain and skin.
Collapse
|
|
27 |
280 |
10
|
Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S, Wang Y, Fernandes-Alnemri T, Croce CM, Litwack G, Tomaselli KJ, Armstrong RC, Alnemri ES. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 1997; 272:18542-5. [PMID: 9228018 DOI: 10.1074/jbc.272.30.18542] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We identified and cloned a novel human protein that contains FADD/Mort1 death effector domain homology regions, designated FLAME-1. FLAME-1, although most similar in structure to Mch4 and Mch5, does not possess caspase activity but can interact specifically with FADD, Mch4, and Mch5. Interestingly, FLAME-1 is recruited to the Fas receptor complex and can abrogate Fas/TNFR-induced apoptosis upon expression in FasL/tumor necrosis factor-sensitive MCF-7 cells, possibly by acting as a dominant-negative inhibitor. These findings identify a novel endogenous control point that regulates Fas/TNFR1-mediated apoptosis.
Collapse
|
|
28 |
276 |
11
|
Aszódi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L, Andersson KE, Kehrel B, Offermanns S, Fässler R. The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J 1999; 18:37-48. [PMID: 9878048 PMCID: PMC1171100 DOI: 10.1093/emboj/18.1.37] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vasodilator-stimulated phosphoprotein (VASP) is associated with actin filaments and focal adhesions, which form the interface between the cytoskeleton and the extracellular matrix. VASP is phosphorylated by both the cAMP- and cGMP-dependent protein kinases in a variety of cells, including platelets and smooth muscle cells. Since both the cAMP and cGMP signalling cascades relax smooth muscle and inhibit platelet activation, it was speculated that VASP mediates these effects by modulating actin filament dynamics and integrin activation. To study the physiological relevance of VASP in these processes, we inactivated the VASP gene in mice. Adult VASP-deficient mice had normal agonist-induced contraction, and normal cAMP- and cGMP-dependent relaxation of intestinal and vascular smooth muscle. In contrast, cAMP- and cGMP-mediated inhibition of platelet aggregation was significantly reduced in the absence of VASP. Other cAMP- and cGMP-dependent effects in platelets, such as inhibition of agonist-induced increases in cytosolic calcium concentrations and granule secretion, were not dependent on the presence of VASP. Our data show that two different cyclic, nucleotide-dependent mechanisms are operating during platelet activation: a VASP-independent mechanism for inhibition of calcium mobilization and granule release and a VASP-dependent mechanism for inhibition of platelet aggregation which may involve regulation of integrin function.
Collapse
|
research-article |
26 |
267 |
12
|
Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 1995; 269:968-70. [PMID: 7638620 DOI: 10.1126/science.7638620] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The arabidopsis thaliana HY4 gene encodes CRY1, a 75-kilodalton flavoprotein mediating blue light-dependent regulation of seedling development. CRY1 is demonstrated here to noncovalently bind stoichiometric amounts of flavin adenine dinucleotide (FAD). The redox properties of FAD bound by CRY1 include an unexpected stability of the neutral radical flavosemiquinone (FADH.). The absorption properties of this flavosemiquinone provide a likely explanation for the additional sensitivity exhibited by CRY1-mediated responses in the green region of the visible spectrum. Despite the sequence homology to microbial DNA photolyases, CRY1 was found to have no detectable photolyase activity.
Collapse
|
|
30 |
255 |
13
|
Ahmad M, Jarillo JA, Smirnova O, Cashmore AR. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1998; 1:939-48. [PMID: 9651577 DOI: 10.1016/s1097-2765(00)80094-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants have at least two major photosensory receptors: phytochrome (absorbing primarily red/far-red light) and cryptochrome (absorbing blue/UV-A light); considerable physiological and genetic evidence suggests some form of communication or functional dependence between the receptors. Here, we demonstrate in vitro, using purified recombinant photoreceptors, that Arabidopsis CRY1 and CRY2 (cryptochrome) are substrates for phosphorylation by a phytochrome A-associated kinase activity. Several mutations within the CRY1 C terminus lead to reduced phosphorylation by phytochrome preparations in vitro. Yeast two-hybrid interaction studies using expressed C-terminal fragments of CRY1 and phytochrome A from Arabidopsis confirm a direct physical interaction between both photoreceptors. In vivo labeling studies and specific mutant alleles of CRY1, which interfere with the function of phytochrome, suggest the possible relevance of these findings in vivo.
Collapse
|
|
27 |
210 |
14
|
Ahmad M, Pitt Ford TJ, Crum LA. Ultrasonic debridement of root canals: acoustic streaming and its possible role. J Endod 1987; 13:490-9. [PMID: 3482226 DOI: 10.1016/s0099-2399(87)80016-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
Comparative Study |
38 |
202 |
15
|
Pushpamalar V, Langford S, Ahmad M, Lim Y. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr Polym 2006. [DOI: 10.1016/j.carbpol.2005.12.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
19 |
191 |
16
|
Kelly DJ, Ahmad M, Brull SJ. Preemptive analgesia I: physiological pathways and pharmacological modalities. Can J Anaesth 2001; 48:1000-10. [PMID: 11698320 DOI: 10.1007/bf03016591] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE This two-part review summarizes the current knowledge of physiological mechanisms, pharmacological modalities and controversial issues surrounding preemptive analgesia. SOURCE Articles from 1966 to present were obtained from the MEDLINE databases. Search terms included: analgesia, preemptive; neurotransmitters; pain, postoperative; hyperalgesia; sensitization, central nervous system; pathways, nociception; anesthetic techniques; analgesics, agents. PRINCIPAL FINDINGS The physiological basis of preemptive analgesia is complex and involves modification of the pain pathways. The pharmacological modalities available may modify the physiological responses at various levels. Effective preemptive analgesic techniques require multi-modal interception of nociceptive input, increasing threshold for nociception, and blocking or decreasing nociceptor receptor activation. Although the literature is controversial regarding the effectiveness of preemptive analgesia, some general recommendations can be helpful in guiding clinical care. Regional anesthesia induced prior to surgical trauma and continued well into the postoperative period is effective in attenuating peripheral and central sensitization. Pharmacologic agents such as NSAIDs (non-steroidal anti-inflammatory drugs) opioids, and NMDA (N-methyl-D-aspartate) - and alpha-2-receptor antagonists, especially when used in combination, act synergistically to decrease postoperative pain. CONCLUSION The variable patient characteristics and timing of preemptive analgesia in relation to surgical noxious input requires individualization of the technique(s) chosen. Multi-modal analgesic techniques appear most effective.
Collapse
|
Review |
24 |
182 |
17
|
Chang CD, Waki M, Ahmad M, Meienhofer J, Lundell EO, Haug JD. Preparation and properties of Nalpha-9-fluorenylmethyloxycarbonylamino acids bearing tert.-butyl side chain protection. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1980; 15:59-66. [PMID: 7358458 DOI: 10.1111/j.1399-3011.1980.tb02550.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The preparation is described by several Nalpha-9-fluorenylmethyloxycarbonylamino acids and derivatives bearing tert.-butyl type side-chain protection of amine, carboxyl, guanido, hydroxyl, imidazol, and sulfhydryl functionalities. Physicochemical properties of these compounds have been determined. Cleavage of the Fmoc group by various amines appears to depend on the base strength and steric hindrance. Premature deblocking of Fmoc group by amine on solid support is very slow and may be negligible under the conditions of solid-phase synthesis.
Collapse
|
|
45 |
165 |
18
|
Hedlund P, Aszodi A, Pfeifer A, Alm P, Hofmann F, Ahmad M, Fassler R, Andersson KE. Erectile dysfunction in cyclic GMP-dependent kinase I-deficient mice. Proc Natl Acad Sci U S A 2000; 97:2349-54. [PMID: 10688876 PMCID: PMC15804 DOI: 10.1073/pnas.030419997] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The generation of nitric oxide (NO) in penile erectile tissue and the subsequent elevation of cyclic GMP (cGMP) levels are important for normal penile erection. Current treatments of erectile dysfunction elevate either cGMP levels by blocking cGMP degrading phosphodiesterase 5 or cyclic AMP (cAMP) levels by intrapenile injection of prostaglandin E1. The molecular target or targets of cGMP in erectile tissue and the role of cAMP for normal penile erection are not known. Herein, we report that mice lacking cGMP-dependent kinase I (cGKI) have a very low ability to reproduce and that their corpora cavernosa fail to relax on activation of the NO/cGMP signaling cascade. Elevation of cAMP by forskolin, however, induces similar relaxation in normal and cGKI-null corpus cavernosum. In addition, sperm derived from cGKI-null mice is normal, can undergo acrosomal reactions, and can efficiently fertilize eggs. Altogether, these data identify cGKI as the downstream target of cGMP in erectile tissue and provide evidence that cAMP signaling cannot compensate for the absence of the cGMP/cGKI signaling cascade in vivo.
Collapse
|
research-article |
25 |
160 |
19
|
Ahmad M, Theofanidis P, Medford RM. Role of activating protein-1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-alpha. J Biol Chem 1998; 273:4616-21. [PMID: 9468519 DOI: 10.1074/jbc.273.8.4616] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell surface expression of VCAM-1 is one of the initial steps in the pathogenesis of atherosclerosis. The inflammatory response transcription factor nuclear factor (NF)-kappaB plays an important role in the regulation of VCAM-1 expression by various stimuli including tumor necrosis factor (TNF)-alpha. Other transcription factors may modulate this response through interaction with NF-kappaB factors. Since c-Fos/c-Jun (activating protein-1 (AP-1)) are expressed in vascular endothelium during proinflammatory conditions, we investigated the role of AP-1 proteins in the expression of VCAM-1 by TNF-alpha in SV40 immortalized human microvascular endothelial cells (HMEC). TNF-alpha induced expression of both early protooncogenes, c-fos and c-jun. The ability of TNF-alpha to activate the kappaB-motif (kappaL-kappaR)-dependent VCAM-1 promoter-chloramphenicol acetyltransferase (CAT) reporter gene lacking a consensus AP-1 element was markedly inhibited by co-transfection of the expression vector encoding c-fos ribozyme, which decreases the level of c-fos by degrading c-fos mRNA, or c-fos or c-jun oligonucleotides. Conversely, co-transfection of c-Fos and c-Jun encoding expression vectors potentiated the p65/NF-kappaB-mediated transactivation of the VCAM-1 promoter-CAT reporter gene. Furthermore the c-Fos encoding expression vector potentiated by 2-fold the transactivation activity of a chimeric transcriptional factor Gal/p65 (containing the transactivation domain of p65 and the DNA binding domain of the yeast transcriptional factor Gal-4). Consistent with the promoter studies, curcumin and NDGA, inhibitors of AP-1 activation, markedly inhibited the ability of TNF-alpha to activate the expression of VCAM-1 mRNA levels at concentrations that did not inhibit the activation of NF-kappaB. In gel mobility supershift assays, the antibodies to c-Fos or c-Jun inhibited the binding of TNF-alpha-activated nuclear NF-kappaB to the kappaL-kappaR, suggesting that both c-Fos and c-Jun interacted with NF-kappaB. These results suggest that AP-1 proteins may mediate the effect of TNF-alpha in the regulation of VCAM-1 expression through interaction with NF-kappaB factors in endothelial cells.
Collapse
|
|
27 |
153 |
20
|
Rubin RH, Fischman AJ, Callahan RJ, Khaw BA, Keech F, Ahmad M, Wilkinson R, Strauss HW. 111In-labeled nonspecific immunoglobulin scanning in the detection of focal infection. N Engl J Med 1989; 321:935-40. [PMID: 2779615 DOI: 10.1056/nejm198910053211404] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We performed radionuclide scanning after the intravenous injection of human IgG labeled with indium-111 in 128 patients with suspected focal sites of inflammation. Localization of 111In-labeled IgG correlated with clinical findings in 51 infected patients (21 with abdominal or pelvic infections, 11 with intravascular infections, 7 with pulmonary infections, and 12 with skeletal infections). Infecting organisms included gram-positive bacteria, gram-negative bacteria, Pneumocystis carinii, Mycoplasma pneumoniae, and Candida albicans. No focal localization of 111In-labeled IgG was observed in 63 patients without infection. There were five false negative results, and nine results were unusable. Serial scans were carried out in eight patients: continued localization correctly predicted relapse in six, and the absence of localization indicated resolution in two. To determine whether 111In-labeled IgG localization was specific for inflammation, we studied 16 patients with cancer. Focal localization occurred in 13 of these patients (5 with melanomas, 5 with gynecologic cancers, and 1 each with lymphoma, prostate cancer, and malignant fibrous histiocytoma). No localization was seen in patients with renal or colon cancer or metastatic medullary carcinoma of the thyroid. We conclude that 111In-labeled IgG imaging is effective for the detection of focal infection and that serial scans may be useful in assessing therapeutic efficacy. This technique may also be helpful in the evaluation of certain cancers.
Collapse
|
|
36 |
148 |
21
|
Druilhe A, Srinivasula SM, Razmara M, Ahmad M, Alnemri ES. Regulation of IL-1beta generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ 2001; 8:649-57. [PMID: 11536016 DOI: 10.1038/sj.cdd.4400881] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2001] [Revised: 03/15/2001] [Accepted: 03/16/2001] [Indexed: 11/09/2022] Open
Abstract
We report here the identification and functional characterization of two new human caspase recruitment domain (CARD) molecules, termed Pseudo-interleukin-1beta converting enzyme (ICE) and ICEBERG. Both proteins share a high degree of homology, reaching 92% and 53% identity, respectively, to the prodomain of caspase-1/ICE. Interestingly, both Pseudo-ICE and ICEBERG are mapped to chromosome 11q22 that bears caspases-1, -4- and -5 genes, all involved in cytokine production rather than in apoptosis. We demonstrate that Pseudo-ICE and ICEBERG interact physically with caspase-1 and block, in a monocytic cell line, the interferon-gamma and lipopolysaccharide-induced secretion of interleukin-1beta which is a well-known consequence of caspase-1 activation. Moreover, Pseudo-ICE, but not ICEBERG, interacts with the CARD-containing kinase RICK/RIP2/CARDIAK and activates NF-kappaB. Our data suggest that Pseudo-ICE and ICEBERG are intracellular regulators of caspase-1 activation and could play a role in the regulation of IL-1beta secretion and NF-kappaB activation during the pro-inflammatory cytokine response.
Collapse
|
|
24 |
143 |
22
|
Ahmad M, Ahmed E, Hong ZL, Ahmed W, Elhissi A, Khalid NR. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. ULTRASONICS SONOCHEMISTRY 2014; 21:761-773. [PMID: 24055646 DOI: 10.1016/j.ultsonch.2013.08.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023]
Abstract
A series of ZnO nanoparticles decorated on multi-walled carbon nanotubes (ZnO/CNTs composites) was synthesized using a facile sol method. The intrinsic characteristics of as-prepared nanocomposites were studied using a variety of techniques including powder X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), transmission electron microscope (TEM), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET) surface area analyzer and X-ray photoelectron spectroscopy (XPS). Optical properties studied using UV-Vis diffuse reflectance spectroscopy confirmed that the absorbance of ZnO increased in the visible-light region with the incorporation of CNTs. In this study, degradation of Rhodamine B (RhB) as a dye pollutant was investigated in the presence of pristine ZnO nanoparticles and ZnO/CNTs composites using photocatalysis and sonocatalysis systems separately and simultaneously. The adsorption was found to be an essential factor in the degradation of the dye. The linear transform of the Langmuir isotherm curve was further used to determine the characteristic parameters for ZnO and ZCC-5 samples which were: maximum absorbable dye quantity and adsorption equilibrium constant. The natural sunlight and low power ultrasound were used as an irradiation source. The experimental kinetic data followed the pseudo-first order model in photocatalytic, sonocatalytic and sonophotocatalytic processes but the rate constant of sonophotocatalysis is higher than the sum of it at photocatalysis and sonocatalysis process. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of ZnO/CNTs photocatalyst. Chemical oxygen demand (COD) of textile wastewater was measured at regular intervals to evaluate the mineralization of wastewater.
Collapse
|
|
11 |
141 |
23
|
Rajesparan K, Biant LC, Ahmad M, Field RE. The effect of an intravenous bolus of tranexamic acid on blood loss in total hip replacement. ACTA ACUST UNITED AC 2009; 91:776-83. [DOI: 10.1302/0301-620x.91b6.22393] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tranexamic acid is a fibrinolytic inhibitor which reduces blood loss in total knee replacement. We examined the effect on blood loss of a standardised intravenous bolus dose of 1 g of tranexamic acid, given at the induction of anaesthesia in patients undergoing total hip replacement and tested the potential prothrombotic effect by undertaking routine venography. In all, 36 patients received 1 g of tranexamic acid, and 37 no tranexamic acid. Blood loss was measured directly per-operatively and indirectly post-operatively. Tranexamic acid reduced the early post-operative blood loss and total blood loss (p = 0.03 and p = 0.008, respectively) but not the intraoperative blood loss. The tranexamic acid group required fewer transfusions (p = 0.03) and had no increased incidence of deep-vein thrombosis. The reduction in early post-operative blood loss was more marked in women (p = 0.05), in whom this effect was dose-related (r = −0.793). Our study showed that the administration of a standardised pre-operative bolus of 1 g of tranexamic acid was cost-effective in reducing the blood loss and transfusion requirements after total hip replacement, especially in women.
Collapse
|
|
16 |
139 |
24
|
Faiyaz ul Haque M, King LM, Krakow D, Cantor RM, Rusiniak ME, Swank RT, Superti-Furga A, Haque S, Abbas H, Ahmad W, Ahmad M, Cohn DH. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet 1998; 20:157-62. [PMID: 9771708 DOI: 10.1038/2458] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The osteochondrodysplasias are a genetically heterogeneous group of disorders affecting skeletal development, linear growth and the maintenance of cartilage and bone. We have studied a large inbred Pakistani family with a distinct form of recessively inherited spondyloepimetaphyseal dysplasia (SEMD) and mapped a gene associated with this dwarfing condition to chromosome 10q23-24, a region syntenic with the locus for the brachymorphic mutation on mouse chromosome 19. We identified two orthologous genes, ATPSK2 and Atpsk2, encoding novel ATP sulfurylase/APS kinase orthologues in the respective regions of the human and mouse genomes. We characterized a nonsense mutation in ATPSK2 in the SEMD family and a missense mutation in the region of Atpsk2 encoding the APS kinase activity in the brachymorphic mouse. ATP sulfurylase/APS kinase catalyses the metabolic activation of inorganic sulfate to PAPS, the universal donor for post-translational protein sulfation in all cell types. The cartilage-specificity of the human and mouse phenotypes provides further evidence of the critical role of sulfate activation in the maturation of cartilage extracellular matrix molecules and the effect of defects in this process on the architecture of cartilage and skeletogenesis.
Collapse
|
|
27 |
135 |
25
|
Ahmad M, Jarillo JA, Smirnova O, Cashmore AR. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 1998; 392:720-3. [PMID: 9565033 DOI: 10.1038/33701] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phototropism-bending towards the light-is one of the best known plant tropic responses. Despite being reported by Darwin and others over a century ago to be specifically under the control of blue light, the photoreceptors mediating phototropism have remained unknown. We have characterized a blue-light photoreceptor from Arabidopsis, named CRY1 for cryptochrome 1; this photoreceptor is a flavoprotein that mediates numerous blue-light-dependent responses. In Arabidopsis, HY4 (the gene encoding CRY1) is a member of a small gene family that also encodes a related photoreceptor, CRY2, which shares considerable functional overlap with CRY1. Here we report that mutant plants lacking both the CRY1 and the CRY2 blue-light photoreceptors are deficient in the phototropic response. Transgenic Arabidopsis plants overexpressing CRY1 or CRY2 show enhanced phototropic curvature. We conclude that cryptochrome is one of the photoreceptors mediating phototropism in plants.
Collapse
|
|
27 |
134 |