1
|
Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 2011; 6:e21550. [PMID: 21738706 PMCID: PMC3125288 DOI: 10.1371/journal.pone.0021550] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
Background The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. Methodology/Finding Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. Conclusions/Significance After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
251 |
2
|
Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, Viscogliosi E, Brochier-Armanet C, Couloux A, Poulain J, Segurens B, Anthouard V, Texier C, Blot N, Poirier P, Ng GC, Tan KSW, Artiguenave F, Jaillon O, Aury JM, Delbac F, Wincker P, Vivarès CP, El Alaoui H. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol 2011; 12:R29. [PMID: 21439036 PMCID: PMC3129679 DOI: 10.1186/gb-2011-12-3-r29] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/04/2011] [Accepted: 03/25/2011] [Indexed: 01/28/2023] Open
Abstract
Background Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. Results Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. Conclusions This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions.
Collapse
|
Journal Article |
14 |
126 |
3
|
Paris L, Peghaire E, Moné A, Diogon M, Debroas D, Delbac F, El Alaoui H. Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae. J Invertebr Pathol 2020; 172:107348. [PMID: 32119953 DOI: 10.1016/j.jip.2020.107348] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
Honeybees ensure a key ecosystem service by pollinating many agricultural crops and wild plants. However, in the past few decades, managed bee colonies have been declining in Europe and North America. Researchers have emphasized both parasites and pesticides as the most important factors. Infection by the parasite Nosema ceranae and exposure to pesticides can contribute to gut dysbiosis, impacting the honeybee physiology. Here, we examined and quantified the effects of N. ceranae, the neonicotinoid thiamethoxam, the phenylpyrazole fipronil and the carboxamide boscalid, alone and in combination, on the honeybee gut microbiota. Chronic exposures to fipronil and thiamethoxam alone or combined with N. ceranae infection significantly decreased honeybee survival whereas the fungicide boscalid had no effect on uninfected bees. Interestingly, increased mortality was observed in N. ceranae-infected bees after exposure to boscalid, with synergistic negative effects. Regarding gut microbiota composition, co-exposure to the parasite and each pesticide led to decreased abundance of Alphaproteobacteria, and increased abundance of Gammaproteobacteria. The parasite also induced an increase of bacterial alpha-diversity (species richness). Our findings demonstrated that exposure of honeybees to N. ceranae and/or pesticides play a significant role in colony health and is associated with the establishment of a dysbiotic gut microbiota.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
76 |
4
|
Diogon M, Wissler F, Quintin S, Nagamatsu Y, Sookhareea S, Landmann F, Hutter H, Vitale N, Labouesse M. The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces inC. elegansepidermis to control morphogenesis. Development 2007; 134:2469-79. [PMID: 17537791 DOI: 10.1242/dev.005074] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Embryonic morphogenesis involves the coordinate behaviour of multiple cells and requires the accurate balance of forces acting within different cells through the application of appropriate brakes and throttles. In C. elegans, embryonic elongation is driven by Rho-binding kinase (ROCK) and actomyosin contraction in the epidermis. We identify an evolutionary conserved, actin microfilament-associated RhoGAP (RGA-2) that behaves as a negative regulator of LET-502/ROCK. The small GTPase RHO-1 is the preferred target of RGA-2 in vitro, and acts between RGA-2 and LET-502 in vivo. Two observations show that RGA-2 acts in dorsal and ventral epidermal cells to moderate actomyosin tension during the first half of elongation. First,time-lapse microscopy shows that loss of RGA-2 induces localised circumferentially oriented pulling on junctional complexes in dorsal and ventral epidermal cells. Second, specific expression of RGA-2 in dorsal/ventral, but not lateral, cells rescues the embryonic lethality of rga-2 mutants. We propose that actomyosin-generated tension must be moderated in two out of the three sets of epidermal cells surrounding the C. elegans embryo to achieve morphogenesis.
Collapse
|
|
18 |
69 |
5
|
Paris L, El Alaoui H, Delbac F, Diogon M. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. CURRENT OPINION IN INSECT SCIENCE 2018; 26:149-154. [PMID: 29764655 DOI: 10.1016/j.cois.2018.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 05/27/2023]
Abstract
The common and widespread parasite Nosema ceranae is considered a major threat to the Western honey bee at both the individual and colony levels. Several studies demonstrated that infection by this parasite may affect physiology, behavior, and survival of honey bees. N. ceranae infection impairs midgut integrity and alters the energy demand in honey bees. The infection can also significantly suppress the bee immune response and modify pheromone production in worker and queen honey bees leading to precocious foraging. However, the presence of N. ceranae is not systematically associated with colony weakening and honey bee mortality. This variability depends upon parasite or host genetics, nutrition, climate or interactions with other stressors such as environmental contaminants or other parasites.
Collapse
|
Review |
7 |
54 |
6
|
Roussel M, Villay A, Delbac F, Michaud P, Laroche C, Roriz D, El Alaoui H, Diogon M. Antimicrosporidian activity of sulphated polysaccharides from algae and their potential to control honeybee nosemosis. Carbohydr Polym 2015; 133:213-20. [DOI: 10.1016/j.carbpol.2015.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022]
|
|
10 |
46 |
7
|
Peyretaillade E, El Alaoui H, Diogon M, Polonais V, Parisot N, Biron DG, Peyret P, Delbac F. Extreme reduction and compaction of microsporidian genomes. Res Microbiol 2011; 162:598-606. [PMID: 21426934 DOI: 10.1016/j.resmic.2011.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/21/2011] [Indexed: 12/19/2022]
Abstract
Microsporidia are fungi-related obligate intracellular parasites with a highly reduced and compact genome, as for Encephalitozoon species which harbor a genome smaller than 3 Mbp. Genome compaction is reflected by high gene density and, for larger microsporidian genomes, size variation is due to repeat elements that do not drastically affect gene density. Furthermore, these pathogens present strong host dependency illustrated by extensive gene loss. Such adaptations associated with genome compaction induced gene size reduction but also simplification of cellular processes such as transcription. Thus, microsporidia are excellent models for eukaryotic genome evolution and gene expression in the context of host-pathogen relationships.
Collapse
|
Journal Article |
14 |
42 |
8
|
Zahreddine H, Zhang H, Diogon M, Nagamatsu Y, Labouesse M. CRT-1/Calreticulin and the E3 Ligase EEL-1/HUWE1 Control Hemidesmosome Maturation in C. elegans Development. Curr Biol 2010; 20:322-7. [DOI: 10.1016/j.cub.2009.12.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 12/08/2009] [Accepted: 12/08/2009] [Indexed: 11/30/2022]
|
|
15 |
40 |
9
|
Floss DM, Mockey M, Zanello G, Brosson D, Diogon M, Frutos R, Bruel T, Rodrigues V, Garzon E, Chevaleyre C, Berri M, Salmon H, Conrad U, Dedieu L. Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by elastin-like peptide fusion strategy. J Biomed Biotechnol 2010; 2010:274346. [PMID: 20414351 PMCID: PMC2855997 DOI: 10.1155/2010/274346] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/15/2010] [Indexed: 12/02/2022] Open
Abstract
This study explored a novel system combining plant-based production and the elastin-like peptide (ELP) fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP) were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT) method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Blotting, Western
- Cattle
- Cell Growth Processes/genetics
- Cell Survival/genetics
- Elastin/genetics
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Hypersensitivity, Delayed
- Mice
- Mice, Inbred BALB C
- Mycobacterium tuberculosis/genetics
- Peptides/genetics
- Plant Leaves/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Spleen/cytology
- Swine
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
|
research-article |
15 |
38 |
10
|
Paris L, Roussel M, Pereira B, Delbac F, Diogon M. Disruption of oxidative balance in the gut of the western honeybee Apis mellifera exposed to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microb Biotechnol 2017; 10:1702-1717. [PMID: 28736933 PMCID: PMC5658624 DOI: 10.1111/1751-7915.12772] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 02/05/2023] Open
Abstract
The causes underlying the increased mortality of honeybee colonies remain unclear and may involve multiple stressors acting together, including both pathogens and pesticides. Previous studies suggested that infection by the gut parasite Nosema ceranae combined with chronic exposure to sublethal doses of the insecticide fipronil generated an increase in oxidative stress in the midgut of honeybees. To explore the impact of these two stressors on oxidative balance, we experimentally infected bees with N. ceranae and/or chronically exposed to fipronil at low doses for 22 days, and we measured soluble reactive oxygen species (ROS) and ROS damage by quantifying both protein and lipid oxidation in the midgut. Our results revealed a disruption of the oxidative balance, with a decrease in both the amount of ROS and ROS damage in the presence of the parasite alone. However, protein oxidation was significantly increased in the N. ceranae/fipronil combination, revealing an increase in oxidative damage and suggesting higher fipronil toxicity in infected bees. Furthermore, our results highlighted a temporal order in the appearance of oxidation events in the intestinal cells and revealed that all samples tended to undergo protein oxidation during ageing, regardless of treatment.
Collapse
|
Journal Article |
8 |
35 |
11
|
Zhang Z, Roe SM, Diogon M, Kong E, El Alaoui H, Barford D. Molecular structure of the N-terminal domain of the APC/C subunit Cdc27 reveals a homo-dimeric tetratricopeptide repeat architecture. J Mol Biol 2010; 397:1316-28. [PMID: 20206185 DOI: 10.1016/j.jmb.2010.02.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 01/20/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that targets specific cell cycle regulatory proteins for ubiquitin-dependent degradation, thereby controlling cell cycle events such as the metaphase to anaphase transition and the exit from mitosis. Biochemical and genetic studies are consistent with the notion that subunits of APC/C are organised into two distinct sub-complexes; a catalytic sub-complex including the cullin domain and RING finger subunits Apc2 and Apc11, respectively, and a tetratricopeptide repeat (TPR) sub-complex composed of the TPR subunits Cdc16, Cdc23 and Cdc27 (Apc3). Here, we describe the crystal structure of the N-terminal domain of Encephalitozoon cuniculi Cdc27 (Cdc27(Nterm)), revealing a homo-dimeric structure, composed predominantly of successive TPR motifs. Mutation of the Cdc27(Nterm) dimer interface destabilises the protein, disrupts dimerisation in solution, and abolishes the capacity of E. cuniculi Cdc27 to complement Saccharomyces cerevisiae Cdc27 in vivo. These results establish the existence of functional APC/C genes in E. cuniculi, the evolutionarily conserved dimeric properties of Cdc27, and provide a framework for understanding the architecture of full-length Cdc27.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
30 |
12
|
Pal E, Almasri H, Paris L, Diogon M, Pioz M, Cousin M, Sené D, Tchamitchian S, Tavares DA, Delbac F, Blot N, Brunet JL, Belzunces LP. Toxicity of the Pesticides Imidacloprid, Difenoconazole and Glyphosate Alone and in Binary and Ternary Mixtures to Winter Honey Bees: Effects on Survival and Antioxidative Defenses. TOXICS 2022; 10:toxics10030104. [PMID: 35324729 PMCID: PMC8954695 DOI: 10.3390/toxics10030104] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023]
Abstract
To explain losses of bees that could occur after the winter season, we studied the effects of the insecticide imidacloprid, the herbicide glyphosate and the fungicide difenoconazole, alone and in binary and ternary mixtures, on winter honey bees orally exposed to food containing these pesticides at concentrations of 0, 0.01, 0.1, 1 and 10 µg/L. Attention was focused on bee survival, food consumption and oxidative stress. The effects on oxidative stress were assessed by determining the activity of enzymes involved in antioxidant defenses (superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase and glucose-6-phosphate dehydrogenase) in the head, abdomen and midgut; oxidative damage reflected by both lipid peroxidation and protein carbonylation was also evaluated. In general, no significant effect on food consumption was observed. Pesticide mixtures were more toxic than individual substances, and the highest mortalities were induced at intermediate doses of 0.1 and 1 µg/L. The toxicity was not always linked to the exposure level and the number of substances in the mixtures. Mixtures did not systematically induce synergistic effects, as antagonism, subadditivity and additivity were also observed. The tested pesticides, alone and in mixtures, triggered important, systemic oxidative stress that could largely explain pesticide toxicity to honey bees.
Collapse
|
|
3 |
29 |
13
|
Almasri H, Tavares DA, Diogon M, Pioz M, Alamil M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces LP. Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112258. [PMID: 33915451 DOI: 10.1016/j.ecoenv.2021.112258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and pollutants, such as pesticides, are potential stressors to all living organisms, including honey bees. Herbicides and fungicides are among the most prevalent pesticides in beehive matrices, and their interaction with Nosema ceranae is not well understood. In this study, the interactions between N. ceranae, the herbicide glyphosate and the fungicide difenoconazole were studied under combined sequential and overlapping exposure to the pesticides at a concentration of 0.1 µg/L in food. In the sequential exposure experiment, newly emerged bees were exposed to the herbicide from day 3 to day 13 after emerging and to the fungicide from day 13 to day 23. In the overlapping exposure experiment, bees were exposed to the herbicide from day 3 to day 13 and to the fungicide from day 7 to day 17. Infection by Nosema in early adult life stages (a few hours post emergence) greatly affected the survival of honey bees and elicited much higher mortality than was induced by pesticides either alone or in combination. Overlapping exposure to both pesticides induced higher mortality than was caused by sequential or individual exposure. Overlapping, but not sequential, exposure to pesticides synergistically increased the adverse effect of N. ceranae on honey bee longevity. The combination of Nosema and pesticides had a strong impact on physiological markers of the nervous system, detoxification, antioxidant defenses and social immunity of honey bees.
Collapse
|
|
4 |
18 |
14
|
Mazet M, Diogon M, Alderete JF, Vivarès CP, Delbac F. First molecular characterisation of hydrogenosomes in the protozoan parasite Histomonas meleagridis. Int J Parasitol 2008; 38:177-90. [PMID: 17697679 DOI: 10.1016/j.ijpara.2007.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/11/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
Histomonas meleagridis is a trichomonad species that undergoes a flagellate-to-amoeba transformation during tissue invasion and causes a serious disease in gallinaceous birds (blackhead disease or histomoniasis). Living in the avian cecum, the flagellated form can be grown in vitro in the presence of an ill-defined bacterial flora. Its cytoplasm harbours numerous spherical bodies which structurally resemble hydrogenosomes. To test whether these organelles may be involved in anaerobic metabolism, we undertook the identification of H. meleagridis genes encoding some potentially conserved hydrogenosomal enzymes. The strategy was based on several PCR amplification steps using primers designed from available sequences of the phylogenetically-related human parasite Trichomonas vaginalis. We first obtained a C-terminal sequence of an iron-hydrogenase homologue (Hm_HYD) with typical active site signatures (H-cluster domain). Immunoelectron microscopy with anti-Hm_HYD polyclonal antibodies showed specific gold labelling of electron-dense organelles, thus confirming their hydrogenosomal nature. The whole genes encoding a malic enzyme (Hm_ME) and the alpha-subunit of a succinyl coenzyme A synthetase (Hm_alpha-SCS) were then identified. Short N-terminal presequences for hydrogenosomal targeting were predicted in both proteins. Anti-Hm_ME and anti-Hm_alpha-SCS antisera provided immunofluorescence staining patterns of H. meleagridis cytoplasmic granules similar to those observed with anti-Hm_HYD antiserum or mAb F5.2 known to react with T. vaginalis hydrogenosomes. Hm_ME, Hm_alpha-SCS and Hm_HYD were also detected as reactive bands on immunoblots of proteins from purified hydrogenosomes. Interestingly, anti-Hm_alpha-SCS staining of the cell surface in non-permeabilised parasites suggests a supplementary role for SCS in cytoadherence, as previously demonstrated in T. vaginalis.
Collapse
|
|
17 |
16 |
15
|
Polonais V, Belkorchia A, Roussel M, Peyretaillade E, Peyret P, Diogon M, Delbac F. Identification of two new polar tube proteins related to polar tube protein 2 in the microsporidian Antonospora locustae. FEMS Microbiol Lett 2013; 346:36-44. [PMID: 23763358 DOI: 10.1111/1574-6968.12198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 01/25/2023] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites with a broad host spectrum characterized by a unique and highly sophisticated invasion apparatus, the polar tube (PT). In a previous study, two PT proteins, named AlPTP1 (50 kDa) and AlPTP2 (35 kDa), were identified in Antonospora locustae, an orthoptera parasite that is used as a biological control agent against locusts. Antibodies raised against AlPTP2 cross-reacted with a band migrating at ~70 kDa, suggesting that this 70-kDa antigen is closely related to AlPTP2. A blastp search against the A. locustae genome database allowed the identification of two further PTP2-like proteins named AlPTP2b (568 aa) and AlPTP2c (599 aa). Both proteins are characterized by a specific serine- and glycine-rich N-terminal extension with elastomeric structural features and share a common C-terminal end conserved with AlPTP2 (~88% identity for the last 250 aa). MS analysis of the 70-kDa band revealed the presence of AlPTP2b. Specific anti-AlPTP2b antibodies labelled the extruded PTs of the A. locustae spores, confirming that this antigen is a PT component. Finally, we showed that several PTP2-like proteins are also present in other phylogenetically related insect microsporidia, including Anncaliia algerae and Paranosema grylli.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
13 |
16
|
Pomel S, Diogon M, Bouchard P, Pradel L, Ravet V, Coffe G, Viguès B. The Membrane Skeleton in Paramecium: Molecular Characterization of a Novel Epiplasmin Family and Preliminary GFP Expression Results. Protist 2006; 157:61-75. [PMID: 16427359 DOI: 10.1016/j.protis.2005.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 10/23/2005] [Accepted: 10/23/2005] [Indexed: 11/30/2022]
Abstract
Previous attempts to identify the membrane skeleton of Paramecium cells have revealed a protein pattern that is both complex and specific. The most prominent structural elements, epiplasmic scales, are centered around ciliary units and are closely apposed to the cytoplasmic side of the inner alveolar membrane. We sought to characterize epiplasmic scale proteins (epiplasmins) at the molecular level. PCR approaches enabled the cloning and sequencing of two closely related genes by amplifications of sequences from a macronuclear genomic library. Using these two genes (EPI-1 and EPI-2), we have contributed to the annotation of the Paramecium tetraurelia macronuclear genome and identified 39 additional (paralogous) sequences. Two orthologous sequences were found in the Tetrahymena thermophila genome. Structural analysis of the 43 sequences indicates that the hallmark of this new multigenic family is a 79 aa domain flanked by two Q-, P- and V-rich stretches of sequence that are much more variable in amino-acid composition. Such features clearly distinguish members of the multigenic family from epiplasmic proteins previously sequenced in other ciliates. The expression of Green Fluorescent Protein (GFP)-tagged epiplasmin showed significant labeling of epiplasmic scales as well as oral structures. We expect that the GFP construct described herein will prove to be a useful tool for comparative subcellular localization of different putative epiplasmins in Paramecium.
Collapse
|
|
19 |
12 |
17
|
Jousse C, Dalle C, Abila A, Traikia M, Diogon M, Lyan B, El Alaoui H, Vidau C, Delbac F. A combined LC-MS and NMR approach to reveal metabolic changes in the hemolymph of honeybees infected by the gut parasite Nosema ceranae. J Invertebr Pathol 2020; 176:107478. [PMID: 33027624 DOI: 10.1016/j.jip.2020.107478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Nosema ceranae is an emerging and invasive gut pathogen in Apis mellifera and is considered as a factor contributing to the decline of honeybee populations. Here, we used a combined LC-MS and NMR approach to reveal the metabolomics changes in the hemolymph of honeybees infected by this obligate intracellular parasite. For metabolic profiling, hemolymph samples were collected from both uninfected and N. ceranae-infected bees at two time points, 2 days and 10 days after the experimental infection of emergent bees. Hemolymph samples were individually analyzed by LC-MS, whereas each NMR spectrum was obtained from a pool of three hemolymphs. Multivariate statistical PLS-DA models clearly showed that the age of bees was the parameter with the strongest effect on the metabolite profiles. Interestingly, a total of 15 biomarkers were accurately identified and were assigned as candidate biomarkers representative of infection alone or combined effect of age and infection. These biomarkers included carbohydrates (α/β glucose, α/β fructose and hexosamine), amino acids (histidine and proline), dipeptides (Glu-Thr, Cys-Cys and γ-Glu-Leu/Ile), metabolites involved in lipid metabolism (choline, glycerophosphocholine and O-phosphorylethanolamine) and a polyamine compound (spermidine). Our study demonstrated that this untargeted metabolomics-based approach may be useful for a better understanding of pathophysiological mechanisms of the honeybee infection by N. ceranae.
Collapse
|
|
5 |
11 |
18
|
Fayet M, Prybylski N, Collin ML, Peyretaillade E, Wawrzyniak I, Belkorchia A, Akossi RF, Diogon M, El Alaoui H, Polonais V, Delbac F. Identification and localization of polar tube proteins in the extruded polar tube of the microsporidian Anncaliia algerae. Sci Rep 2023; 13:8773. [PMID: 37253964 DOI: 10.1038/s41598-023-35511-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
Microsporidia are obligate intracellular parasites able to infect a wide range of hosts from invertebrates to vertebrates. The success of their invasion process is based on an original organelle, the polar tube, which is suddenly extruded from the spore to inoculate the sporoplasm into the host cytoplasm. The polar tube is mainly composed of proteins named polar tube proteins (PTPs). A comparative analysis allowed us to identify genes coding for 5 PTPs (PTP1 to PTP5) in the genome of the microsporidian Anncaliia algerae. While PTP1 and PTP2 are found on the whole polar tube, PTP3 is present in a large part of the extruded polar tube except at its end-terminal part. On the contrary, PTP4 is specifically detected at the end-terminal part of the polar tube. To complete PTPs repertoire, sequential sporal protein extractions were done with high concentration of reducing agents. In addition, a method to purify polar tubes was developed. Mass spectrometry analysis conducted on both samples led to the identification of a PTP3-like protein (PTP3b), and a new PTP (PTP7) only found at the extremity of the polar tube. The specific localization of PTPs asks the question of their roles in cell invasion processes used by A. algerae.
Collapse
|
|
2 |
7 |
19
|
Diogon M, Henou C, Ravet V, Bouchard P, Viguès B. Evidence for regional differences in the dynamicsof centrin cytoskeletal structures in the polymorphichymenostome ciliate Tetrahymena paravorax. Eur J Protistol 2001. [DOI: 10.1078/0932-4739-00824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
|
24 |
3 |
20
|
Gilbert J, Paris L, Dubuffet A, Texier C, Delbac F, Diogon M. Nosema ceranae infection reduces the fat body lipid reserves in the honeybee Apis mellifera. J Invertebr Pathol 2024; 207:108218. [PMID: 39393624 DOI: 10.1016/j.jip.2024.108218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Nosema ceranae is an intestinal parasite frequently found in Apis mellifera colonies. This parasite belongs to Microsporidia, a group of obligate intracellular parasites known to be strongly dependent on their host for energy and resources. Previous studies have shown that N. ceranae could alter several metabolic pathways, including those involved in the nutrient storage. To explore the impact of N. ceranae on the fat body reserves, newly emerged summer bees were experimentally infected, and we measured (1) the lipid percentage of the abdominal fat body at 2-, 7- and 14-days post-inoculation (p.i.) using diethyl ether lipid extraction, (2) the triglyceride and protein concentrations by spectrophotometric assay methods, and (3) the amount of intracellular lipid droplets in trophocytes at 14- and 21-days p.i. using Nile Red staining. Comparing the three methods used to evaluate lipid stores, our data revealed that Nile Red staining seemed to be the simplest, fastest and reliable method. Our results first revealed that the percentage of fat body lipids significantly decreased in infected bees at D14 p.i. The protein stores did not seem to be affected by the infection, while triglyceride concentration was reduced by 30% and lipid droplet amount by 50% at D14 p.i. Finally, a similar decrease in lipid droplet reserves in response to N. ceranae infection was observed in bees collected in fall.
Collapse
|
|
1 |
2 |
21
|
Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 2011. [PMID: 21738706 DOI: 10.1371/journal.pone.00215504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation.
Collapse
|
|
14 |
1 |
22
|
Gilbert J, Mathien C, El Alaoui H, Portelli C, Delbac F, Diogon M. Assessing the impact of co-exposure to succinate dehydrogenase inhibitor (SDHI) fungicides and the intestinal parasite Nosema ceranae in the honey bee Apis mellifera. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138175. [PMID: 40188553 DOI: 10.1016/j.jhazmat.2025.138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Over the past few decades, significant mortality rates have been reported in honey bee populations. The decline of these pollinators is thought to be linked to a combination of stressors, including both pathogens and pesticides. Here, we investigated the impact of chronic exposure of honey bees to a class of fungicides that inhibit succinate dehydrogenase (SDHI), in combination with the parasite Nosema ceranae. Bees were exposed under controlled laboratory conditions to N. ceranae and/or fed with two environmental concentrations of four different SDHIs (boscalid, bixafen, fluopyram, and fluxapyroxad). The bees were monitored for 21 days, during which several health parameters were evaluated, including survival, food consumption, parasitic load and lipid reserves. Additionally, a global RNA-Seq approach was used to analyze midgut transcriptional changes in non-infected and N. ceranae-infected bees treated with fluopyram. The results indicate complex and deleterious interactions of SDHI active substances, characterized by dose-response effects and non-monotonic reactions in uninfected bees. However, co-exposure to N. ceranae significantly modified these responses, with an antagonistic effect on survival and lipid reserves, which could be linked to mitochondrial disruption and activation of detoxification mechanisms. These results highlight the importance of considering bee co-exposure to multiple stressors over their lifespan.
Collapse
|
|
1 |
|