1
|
Pavliuk MV, Böhm M, Wilhelmsen J, Hardt S, Land H, Tian H. Photobiocatalytic CO 2 reduction into CO by organic nanorod-carbon monoxide dehydrogenase assemblies: surfactant matters. Chem Sci 2024:d4sc03154g. [PMID: 39328197 PMCID: PMC11421036 DOI: 10.1039/d4sc03154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Photobiocatalytic CO2 reduction represents an attractive approach for conversion of solar light and abundant resources to value-added chemicals. However, the design of suitable systems requires a detailed understanding of the interaction between the artificial photosensitizer and biocatalyst interface. In this work, we investigate the effect of surfactant charge utilized in the preparation of a phenoxazine-based organic molecule nanorod photosensitizer on the interaction with the carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans within biohybrid assemblies for sacrificially driven photobiocatalytic CO2 reduction into CO. Electrophoretic mobility shift assay in conjunction with cryogenic electron microscopy (Cryo-EM) and detailed physicochemical characterization are conducted to understand the interaction at the biohybrid interface in order to suggest a strategy for future functionalization of nanoparticles that fulfills the needs of the biocatalyst for green fuel production.
Collapse
|
2
|
Wang S, Pavliuk MV, Zou X, Huang P, Cai B, Svensson OM, Tian H. Covalently linked molecular catalysts in conjugated polymer dots boost photocatalytic alcohol oxidation in neutral condition. Nat Commun 2024; 15:6765. [PMID: 39117646 PMCID: PMC11310486 DOI: 10.1038/s41467-024-51097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
As a new class of organic photocatalysts, polymer dots show a potential application in photocatalytic hydrogen peroxide production coupled with chemical oxidation such as methanol oxidation. However, the poor methanol oxidation ability by polymer dots still inhibits the overall photocatalytic reaction occurring in the neutral condition. In this work, an organic molecular catalyst 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl radical is covalently linked to a fluorene unit in a polymer skeleton, eventually enabling photocatalytic hydrogen peroxide production coupled with methanol oxidation in the neutral condition. By conducting various spectroscopic measurements, charge transfer between components in this molecular catalyst-immobilized polymer dots system is studied and found to be very efficient for hydrogen peroxide production coupled with alcohol oxidation. This work proves a strategy for designing polymer dots photocatalysts with molecular catalysts, facilitating their future development and potential applications in other fields such as water splitting, CO2 reduction, photoredox catalysis and photodynamic therapy.
Collapse
|
3
|
Cai B, Axelsson M, Zhan S, Pavliuk MV, Wang S, Li J, Tian H. Organic Polymer Dots Photocatalyze CO 2 Reduction in Aqueous Solution. Angew Chem Int Ed Engl 2023; 62:e202312276. [PMID: 37728510 DOI: 10.1002/anie.202312276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Developing low-cost and efficient photocatalysts to convert CO2 into valuable fuels is desirable to realize a carbon-neutral society. In this work, we report that polymer dots (Pdots) of poly[(9,9'-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-thiadiazole)] (PFBT), without adding any extra co-catalyst, can photocatalyze reduction of CO2 into CO in aqueous solution, rendering a CO production rate of 57 μmol g-1 h-1 with a detectable selectivity of up to 100 %. After 5 cycles of CO2 re-purging experiments, no distinct decline in CO amount and reaction rate was observed, indicating the promising photocatalytic stability of PFBT Pdots in the photocatalytic CO2 reduction reaction. A mechanistic study reveals that photoexcited PFBT Pdots are reduced by sacrificial donor first, then the reduced PFBT Pdots can bind CO2 and reduce it into CO via their intrinsic active sites. This work highlights the application of organic Pdots for CO2 reduction in aqueous solution, which therefore provides a strategy to develop highly efficient and environmentally friendly nanoparticulate photocatalysts for CO2 reduction.
Collapse
|
4
|
Cai B, Song H, Brnovic A, Pavliuk MV, Hammarström L, Tian H. Promoted Charge Separation and Long-Lived Charge-Separated State in Porphyrin-Viologen Dyad Nanoparticles. J Am Chem Soc 2023; 145:18687-18692. [PMID: 37582183 PMCID: PMC10472426 DOI: 10.1021/jacs.3c04372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Developing light-harvesting systems with efficient photoinduced charge separation and long-lived charge-separated (CS) state is desirable but still challenging. In this study, we designed a zinc porphyrin photosensitizer covalently linked with viologen (ZnP-V) that can be prepared into nanoparticles in aqueous solution. In DMF solution, the monomeric ZnP-V dyads show no electron transfer between the ZnP and viologen units. In contrast, the ZnP-V nanoparticles in aqueous solution show fast charge separation with a CS state lifetime of up to 4.3 ms. This can be attributed to charge hopping induced by aggregation or distance modification between the donor and acceptor induced by electronic interaction. Nevertheless, the lifetime of the CS state is orders of magnitude longer than for molecular aggregates reported previously. The ZnP-V nanoparticles show enhanced photocatalytic hydrogen production as compared to the ZnP nanoparticles and still hold promise for other applications such as photovoltaic devices and photoredox catalysis.
Collapse
|
5
|
Pavliuk MV, Wrede S, Tian H. Phenoxazine-based small molecule heterojunction nanoparticles for photocatalytic hydrogen production. Chem Commun (Camb) 2023; 59:5611-5614. [PMID: 37078914 DOI: 10.1039/d3cc01013a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
A phenoxazine-based small organic molecular donor POZ-M is designed and synthesized to prepare organic heterojunction nanoparticles (NPs) with a small molecular acceptor ITIC for photocatalytic hydrogen production, giving a reaction rate of up to 63 mmol g-1 h-1. A beneficial molecular design strategy highlights the role of miscibility between POZ-M and ITIC, which is necessary to achieve satisfactory charge separation at the donor/acceptor interface.
Collapse
|
6
|
Yu W, Pavliuk MV, Liu A, Zeng Y, Xia S, Huang Y, Bai H, Lv F, Tian H, Wang S. Photosynthetic Polymer Dots-Bacteria Biohybrid System Based on Transmembrane Electron Transport for Fixing CO 2 into Poly-3-hydroxybutyrate. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2183-2191. [PMID: 36563111 DOI: 10.1021/acsami.2c18831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic semiconductor-microbial photosynthetic biohybrid systems show great potential in light-driven biosynthesis. In such a system, an organic semiconductor is used to harvest solar energy and generate electrons, which can be further transported to microorganisms with a wide range of metabolic pathways for final biosynthesis. However, the lack of direct electron transport proteins in existing microorganisms hinders the hybrid system of photosynthesis. In this work, we have designed a photosynthetic biohybrid system based on transmembrane electron transport that can effectively deliver the electrons from organic semiconductor across the cell wall to the microbe. Biocompatible organic semiconductor polymer dots (Pdots) are used as photosensitizers to construct a ternary synergistic biochemical factory in collaboration with Ralstonia eutropha H16 (RH16) and electron shuttle neutral red (NR). Photogenerated electrons from Pdots promote the proportion of nicotinamide adenine dinucleotide phosphate (NADPH) through NR, driving the Calvin cycle of RH16 to convert CO2 into poly-3-hydroxybutyrate (PHB), with a yield of 21.3 ± 3.78 mg/L, almost 3 times higher than that of original RH16. This work provides a concept of an integrated photoactive biological factory based on organic semiconductor polymer dots/bacteria for valuable chemical production only using solar energy as the energy input.
Collapse
|
7
|
Pavliuk MV, Lorenzi M, Morado DR, Gedda L, Wrede S, Mejias SH, Liu A, Senger M, Glover S, Edwards K, Berggren G, Tian H. Polymer Dots as Photoactive Membrane Vesicles for [FeFe]-Hydrogenase Self-Assembly and Solar-Driven Hydrogen Evolution. J Am Chem Soc 2022; 144:13600-13611. [PMID: 35863067 PMCID: PMC9354254 DOI: 10.1021/jacs.2c03882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A semiartificial photosynthesis approach that utilizes enzymes for solar fuel production relies on efficient photosensitizers that should match the enzyme activity and enable long-term stability. Polymer dots (Pdots) are biocompatible photosensitizers that are stable at pH 7 and have a readily modifiable surface morphology. Therefore, Pdots can be considered potential photosensitizers to drive such enzyme-based systems for solar fuel formation. This work introduces and unveils in detail the interaction within the biohybrid assembly composed of binary Pdots and the HydA1 [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The direct attachment of hydrogenase on the surface of toroid-shaped Pdots was confirmed by agarose gel electrophoresis, cryogenic transmission electron microscopy (Cryo-TEM), and cryogenic electron tomography (Cryo-ET). Ultrafast transient spectroscopic techniques were used to characterize photoinduced excitation and dissociation into charges within Pdots. The study reveals that implementation of a donor-acceptor architecture for heterojunction Pdots leads to efficient subpicosecond charge separation and thus enhances hydrogen evolution (88 460 μmolH2·gH2ase-1·h-1). Adsorption of [FeFe]-hydrogenase onto Pdots resulted in a stable biohybrid assembly, where hydrogen production persisted for days, reaching a TON of 37 500 ± 1290 in the presence of a redox mediator. This work represents an example of a homogeneous biohybrid system combining polymer nanoparticles and an enzyme. Detailed spectroscopic studies provide a mechanistic understanding of light harvesting, charge separation, and transport studied, which is essential for building semiartificial photosynthetic systems with efficiencies beyond natural and artificial systems.
Collapse
|
8
|
Senger M, Duan J, Pavliuk MV, Apfel UP, Haumann M, Stripp ST. Trapping an Oxidized and Protonated Intermediate of the [FeFe]-Hydrogenase Cofactor under Mildly Reducing Conditions. Inorg Chem 2022; 61:10036-10042. [PMID: 35729755 DOI: 10.1021/acs.inorgchem.2c00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The H-cluster is the catalytic cofactor of [FeFe]-hydrogenase, a metalloenzyme that catalyzes the formation of dihydrogen (H2). The catalytic diiron site of the H-cluster carries two cyanide and three carbon monoxide ligands, making it an excellent target for IR spectroscopy. In previous work, we identified an oxidized and protonated H-cluster species, whose IR signature differs from that of the oxidized resting state (Hox) by a small but distinct shift to higher frequencies. This "blue shift" was explained by a protonation at the [4Fe-4S] subcomplex of the H-cluster. The novel species, denoted HoxH, was preferentially accumulated at low pH and in the presence of the exogenous reductant sodium dithionite (NaDT). When HoxH was reacted with H2, the hydride state (Hhyd) was formed, a key intermediate of [FeFe]-hydrogenase turnover. A recent publication revisited our protocol for the accumulation of HoxH in wild-type [FeFe]-hydrogenase, concluding that inhibition by NaDT decay products rather than cofactor protonation causes the spectroscopic "blue shift". Here, we demonstrate that HoxH formation does not require the presence of NaDT (or its decay products), but accumulates also with the milder reductants tris(2-carboxyethyl)phosphine, dithiothreitol, or ascorbic acid, in particular at low pH. Our data consistently suggest that HoxH is accumulated when deprotonation of the H-cluster is impaired, thereby preventing the regain of the oxidized resting state Hox in the catalytic cycle.
Collapse
|
9
|
Pavliuk MV, Wrede S, Liu A, Brnovic A, Wang S, Axelsson M, Tian H. Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production. Chem Soc Rev 2022; 51:6909-6935. [DOI: 10.1039/d2cs00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides the guidelines and knowledge gained so far on current strategies used to prepare, optimize and investigate polymer nanoparticles for fuel production, highlighting the future directions of polymer nano-photocatalyst development.
Collapse
|
10
|
Buvailo HI, Makhankova VG, Kokozay VN, Omelchenko IV, Shishkina SV, Bieńko A, Pavliuk MV, Shylin SI. Hybrid compound based on diethylenetriaminecopper( ii) cations and scarce V-monosubstituted β-octamolybdate as water oxidation catalyst. RSC Adv 2021; 11:32119-32125. [PMID: 35495520 PMCID: PMC9041742 DOI: 10.1039/d1ra05030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report on a new hybrid compound (NH4){[Cu(dien)(H2O)2]2[β-VMo7O26]}·1.5H2O (1), where dien = diethylenetriamine, containing an extremely rare mixed-metal pseudo-octamolybdate cluster. An ex situ EPR spectroscopy provided insights into the formation of paramagnetic species in reaction mixture and in solution of 1. The magneto-structural correlations revealed weak antiferromagnetic exchange interactions between the [Cu(dien)]2+ cations transmitted by intermolecular pathways. The cyclic voltammetry showed the one-electron process associated with the Cu3+/Cu2+ oxidation followed by the multi-electron catalytic wave due to water oxidation with a faradaic yield of 86%. The title compound was thus employed in homogeneous water oxidation catalysis using tris(bipyridine)ruthenium photosensitizer. At pH 8.0, efficiency of the catalytic system attained 0.19 turnovers per second supported by the relatively mild water oxidation overpotential of 0.54 V. A new hybrid compound (NH4){[Cu(dien)(H2O)2]2[β-VMo7O26]}·1.5H2O was employed in homogeneous water oxidation catalysis. At pH 8.0, its efficiency attains 0.19 turnovers per second, supported by the relatively mild water oxidation overpotential of 0.54 V.![]()
Collapse
|
11
|
Buvailo HI, Pavliuk MV, Makhankova VG, Kokozay VN, Bon V, Mijangos E, Shylin SI, Jezierska J. Facile one-pot synthesis of hybrid compounds based on decavanadate showing water oxidation activity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Holá K, Pavliuk MV, Németh B, Huang P, Zdražil L, Land H, Berggren G, Tian H. Carbon Dots and [FeFe] Hydrogenase Biohybrid Assemblies for Efficient Light-Driven Hydrogen Evolution. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02474] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Shylin SI, Pavliuk MV, D'Amario L, Fritsky IO, Berggren G. Photoinduced hole transfer from tris(bipyridine)ruthenium dye to a high-valent iron-based water oxidation catalyst. Faraday Discuss 2019; 215:162-174. [PMID: 30951052 PMCID: PMC6677028 DOI: 10.1039/c8fd00167g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient water oxidation system is a prerequisite for developing solar energy conversion devices. Using advanced time-resolved spectroscopy, we study the initial catalytic relevant electron transfer events in the light-driven water oxidation system utilizing [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as a light harvester, persulfate as a sacrificial electron acceptor, and a high-valent iron clathrochelate complex as a catalyst. Upon irradiation by visible light, the excited state of the ruthenium dye is quenched by persulfate to afford a [Ru(bpy)3]3+/SO4˙- pair, showing a cage escape yield up to 75%. This is followed by the subsequent fast hole transfer from [Ru(bpy)3]3+ to the FeIV catalyst to give the long-lived FeV intermediate in aqueous solution. In the presence of excess photosensitizer, this process exhibits pseudo-first order kinetics with respect to the catalyst with a rate constant of 3.2(1) × 1010 s-1. Consequently, efficient hole scavenging activity of the high-valent iron complex is proposed to explain its high catalytic performance for water oxidation.
Collapse
|
14
|
Pavliuk MV, Gutiérrez Álvarez S, Hattori Y, Messing ME, Czapla-Masztafiak J, Szlachetko J, Silva JL, Araujo CM, A Fernandes DL, Lu L, Kiely CJ, Abdellah M, Nordlander P, Sá J. Hydrated Electron Generation by Excitation of Copper Localized Surface Plasmon Resonance. J Phys Chem Lett 2019; 10:1743-1749. [PMID: 30920838 DOI: 10.1021/acs.jpclett.9b00792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydrated electrons are important in radiation chemistry and charge-transfer reactions, with applications that include chemical damage of DNA, catalysis, and signaling. Conventionally, hydrated electrons are produced by pulsed radiolysis, sonolysis, two-ultraviolet-photon laser excitation of liquid water, or photodetachment of suitable electron donors. Here we report a method for the generation of hydrated electrons via single-visible-photon excitation of localized surface plasmon resonances (LSPRs) of supported sub-3 nm copper nanoparticles in contact with water. Only excitations at the LSPR maximum resulted in the formation of hydrated electrons, suggesting that plasmon excitation plays a crucial role in promoting electron transfer from the nanoparticle into the solution. The reactivity of the hydrated electrons was confirmed via proton reduction and concomitant H2 evolution in the presence of a Ru/TiO2 catalyst.
Collapse
|
15
|
Shylin SI, Pavliuk MV, D'Amario L, Mamedov F, Sá J, Berggren G, Fritsky IO. Efficient visible light-driven water oxidation catalysed by an iron(iv) clathrochelate complex. Chem Commun (Camb) 2019; 55:3335-3338. [PMID: 30801592 DOI: 10.1039/c9cc00229d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A water-stable FeIV clathrochelate complex catalyses fast and homogeneous photochemical oxidation of water to dioxygen with a turnover frequency of 2.27 s-1 and a maximum turnover number of 365. An FeV intermediate generated under catalytic conditions is trapped and characterised using EPR and Mössbauer spectroscopy.
Collapse
|
16
|
Buvailo HI, Makhankova VG, Kokozay VN, Omelchenko IV, Shishkina SV, Jezierska J, Pavliuk MV, Shylin SI. Copper-containing hybrid compounds based on extremely rare [V2Mo6O26]6– POM as water oxidation catalysts. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00040b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid Cu/V/Mo compounds with rare [α-V2Mo6O26]6– and oxides prepared by their thermal degradation were used as catalysts for water oxidation.
Collapse
|
17
|
Sá J, Fernandes DLA, Pavliuk MV, Szlachetko J. Correction: Controlling dark catalysis with quasi half-cycle terahertz pulses. Catal Sci Technol 2019. [DOI: 10.1039/c8cy90096e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for ‘Controlling dark catalysis with quasi half-cycle terahertz pulses’ by Jacinto Sá et al., Catal. Sci. Technol., 2017, 7, 1050–1054.
Collapse
|
18
|
Czapla-Masztafiak J, Nogueira JJ, Lipiec E, Kwiatek WM, Wood BR, Deacon GB, Kayser Y, Fernandes DLA, Pavliuk MV, Szlachetko J, González L, Sá J. Direct Determination of Metal Complexes' Interaction with DNA by Atomic Telemetry and Multiscale Molecular Dynamics. J Phys Chem Lett 2017; 8:805-811. [PMID: 28151686 DOI: 10.1021/acs.jpclett.7b00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lack of molecular mechanistic understanding of the interaction between metal complexes and biomolecules hampers their potential medical use. Herein we present a robust procedure combining resonant X-ray emission spectroscopy and multiscale molecular dynamics simulations, which allows for straightforward elucidation of the precise interaction mechanism at the atomic level. The report unveils an unforeseen hydrolysis process and DNA binding of [Pt{N(p-HC6F4)CH2}2py2] (Pt103), which showed potential cytotoxic activity in the past. Pt103 preferentially coordinates to adjacent adenine sites, instead of guanine sites as in cisplatin, because of its hydrogen bond ability. Comparison with previous research on cisplatin suggests that selective binding to guanine or adenine may be achieved by controlling the acidity of the compound.
Collapse
|
19
|
Fernandes DL, Budinská A, Pavliuk MV, Sá J. Novel photo-reactor for fast screening of photo-catalytic systems. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Sá J, Fernandes DLA, Pavliuk MV, Szlachetko J. Controlling dark catalysis with quasi half-cycle terahertz pulses. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02651f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports the changes in the platinum electronic structure induced by a strong electric field originated from quasi half-cycle THz pulses, which forces the C–O molecule to dissociate.
Collapse
|
21
|
Pavliuk MV, Mijangos E, Makhankova VG, Kokozay VN, Pullen S, Liu J, Zhu J, Styring S, Thapper A. Homogeneous Cobalt/Vanadium Complexes as Precursors for Functionalized Mixed Oxides in Visible-Light-Driven Water Oxidation. CHEMSUSCHEM 2016; 9:2957-2966. [PMID: 27689346 DOI: 10.1002/cssc.201600769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/03/2016] [Indexed: 06/06/2023]
Abstract
The heterometallic complexes (NH4 )2 [Co(H2 O)6 ]2 [V10 O28 ]⋅4 H2 O (1) and (NH4 )2 [Co(H2 O)5 (β-HAla)]2 [V10 O28 ]⋅4 H2 O (2) have been synthesized and used for the preparation of mixed oxides as catalysts for water oxidation. Thermal decomposition of 1 and 2 at relatively low temperatures (<500 °C) leads to the formation of the solid mixed oxides CoV2 O6 /V2 O5 (3) and Co2 V2 O7 /V2 O5 (4). The complexes (1, 2) and heterogeneous materials (3, 4) act as catalysts for photoinduced water oxidation. A modification of the thermal decomposition procedure allowed the deposition of mixed metal oxides (MMO) on a mesoporous TiO2 film. The electrodes containing Co/V MMOs in TiO2 films were used for electrocatalytic water oxidation and showed good stability and sustained anodic currents of about 5 mA cm-2 at 1.72 V versus relative hydrogen electrode (RHE). This method of functionalizing TiO2 films with MMOs at relatively low temperatures (<500 °C) can be used to produce other oxides with different functionality for applications in, for example, artificial photosynthesis.
Collapse
|
22
|
Terebilenko KV, Bychkov KL, Baumer VN, Slobodyanik NS, Pavliuk MV, Thapper A, Tokmenko II, Nasieka IM, Strelchuk VV. Structural transformation of Bi1−x/3V1−xMoxO4 solid solutions for light-driven water oxidation. Dalton Trans 2016; 45:3895-904. [DOI: 10.1039/c5dt04829j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of Mo content in the solid solutions of Bi1−x/3V1−xMoxO4 (x = 0.05–0.20) on the morphology, band gap, structure and light-driven water oxidation properties has been studied by SEM, powder XRD and vibrational spectroscopy.
Collapse
|
23
|
Fernandes DLA, Paun C, Pavliuk MV, Fernandes AB, Bastos EL, Sá J. Green microfluidic synthesis of monodisperse silver nanoparticles via genetic algorithm optimization. RSC Adv 2016. [DOI: 10.1039/c6ra20877k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A scalable and green procedure for the microfluidic flow synthesis of monodisperse silver nanoparticles is reported.
Collapse
|
24
|
Pavliuk MV, Makhankova VG, Kokozay VN, Omelchenko IV, Jezierska J, Thapper A, Styring S. Structural, magnetic, thermal and visible light-driven water oxidation studies of heterometallic Mn/V complexes. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Pavliuk MV, Fitts-Vil'iams MP. [Speculum-retractor for an improved extrapleural approach to the heart]. KLINICHESKAIA KHIRURGIIA 1980:65-6. [PMID: 7431769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|