1
|
Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 2014; 42:e168. [PMID: 25300484 PMCID: PMC4267669 DOI: 10.1093/nar/gku936] [Citation(s) in RCA: 1654] [Impact Index Per Article: 150.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The efficacy and the mutation spectrum of genome editing methods can vary substantially depending on the targeted sequence. A simple, quick assay to accurately characterize and quantify the induced mutations is therefore needed. Here we present TIDE, a method for this purpose that requires only a pair of PCR reactions and two standard capillary sequencing runs. The sequence traces are then analyzed by a specially developed decomposition algorithm that identifies the major induced mutations in the projected editing site and accurately determines their frequency in a cell population. This method is cost-effective and quick, and it provides much more detailed information than current enzyme-based assays. An interactive web tool for automated decomposition of the sequence traces is available. TIDE greatly facilitates the testing and rational design of genome editing strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
1654 |
2
|
Haarhuis JHI, van der Weide RH, Blomen VA, Yáñez-Cuna JO, Amendola M, van Ruiten MS, Krijger PHL, Teunissen H, Medema RH, van Steensel B, Brummelkamp TR, de Wit E, Rowland BD. The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. Cell 2017; 169:693-707.e14. [PMID: 28475897 PMCID: PMC5422210 DOI: 10.1016/j.cell.2017.04.013] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/21/2017] [Accepted: 04/10/2017] [Indexed: 12/30/2022]
Abstract
The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.
Collapse
|
research-article |
8 |
513 |
3
|
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B. Single-cell dynamics of genome-nuclear lamina interactions. Cell 2013; 153:178-92. [PMID: 23523135 DOI: 10.1016/j.cell.2013.02.028] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/17/2012] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The nuclear lamina (NL) interacts with hundreds of large genomic regions termed lamina associated domains (LADs). The dynamics of these interactions and the relation to epigenetic modifications are poorly understood. We visualized the fate of LADs in single cells using a "molecular contact memory" approach. In each nucleus, only ~30% of LADs are positioned at the periphery; these LADs are in intermittent molecular contact with the NL but remain constrained to the periphery. Upon mitosis, LAD positioning is not detectably inherited but instead is stochastically reshuffled. Contact of individual LADs with the NL is linked to transcriptional repression and H3K9 dimethylation in single cells. Furthermore, we identify the H3K9 methyltransferase G9a as a regulator of NL contacts. Collectively, these results highlight principles of the dynamic spatial architecture of chromosomes in relation to gene regulation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
502 |
4
|
Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A, Baccarini A, Lazzari G, Galli C, Naldini L. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25:1457-67. [PMID: 18026085 DOI: 10.1038/nbt1372] [Citation(s) in RCA: 434] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 11/04/2007] [Indexed: 12/19/2022]
Abstract
We have shown previously that transgene expression can be suppressed in hematopoietic cells using vectors that are responsive to microRNA (miRNA) regulation. Here we investigate the potential of this approach for more sophisticated control of transgene expression. Analysis of the relationship between miRNA expression levels and target mRNA suppression suggested that suppression depends on a threshold miRNA concentration. Using this information, we generated vectors that rapidly adjust transgene expression in response to changes in miRNA expression. These vectors sharply segregated transgene expression between closely related states of therapeutically relevant cells, including dendritic cells, hematopoietic and embryonic stem cells, and their progeny, allowing positive/negative selection according to the cells' differentiation state. Moreover, two miRNA target sites were combined to restrict transgene expression to a specific cell type in the liver. Notably, the vectors did not detectably perturb endogenous miRNA expression or regulation of natural targets. The properties of miRNA-regulated vectors should allow for safer and more effective therapeutic applications.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
434 |
5
|
Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabé-Heider F, Yeung MSY, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisén J. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 2009; 12:259-67. [PMID: 19234458 DOI: 10.1038/nn.2268] [Citation(s) in RCA: 395] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/07/2009] [Indexed: 02/06/2023]
Abstract
Neurons are continuously generated from stem cells in discrete regions in the adult mammalian brain. We found that ependymal cells lining the lateral ventricles were quiescent and did not contribute to adult neurogenesis under normal conditions in mice but instead gave rise to neuroblasts and astrocytes in response to stroke. Ependymal cell quiescence was actively maintained by canonical Notch signaling. Inhibition of this pathway in uninjured animals allowed ependymal cells to enter the cell cycle and produce olfactory bulb neurons, whereas forced Notch signaling was sufficient to block the ependymal cell response to stroke. Ependymal cells were depleted by stroke and failed to self-renew sufficiently to maintain their own population. Thus, although ependymal cells act as primary cells in the neural lineage to produce neurons and glial cells after stroke, they do not fulfill defining criteria for stem cells under these conditions and instead serve as a reservoir that is recruited by injury.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
395 |
6
|
Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS, Bienko M, Zhan Y, Lajoie B, de Graaf CA, Amendola M, Fudenberg G, Imakaev M, Mirny LA, Jalink K, Dekker J, van Oudenaarden A, van Steensel B. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 2015; 163:134-47. [PMID: 26365489 PMCID: PMC4583798 DOI: 10.1016/j.cell.2015.08.040] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/27/2015] [Accepted: 08/12/2015] [Indexed: 12/16/2022]
Abstract
Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
332 |
7
|
Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2004; 23:108-16. [PMID: 15619618 DOI: 10.1038/nbt1049] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 10/22/2004] [Indexed: 01/10/2023]
Abstract
Transferring multiple genes into the same cell allows for the combination of genetic correction, marking, selection and conditional elimination of transduced cells or the reconstitution of multisubunit components and synergistic pathways. However, this cannot be reliably accomplished by current gene transfer technologies. Based on the finding that some cellular promoters intrinsically promote divergent transcription, we have developed synthetic bidirectional promoters that mediate coordinate transcription of two mRNAs in a ubiquitous or a tissue-specific manner. Lentiviral vectors incorporating the new promoters enabled efficient dual gene transfer in several tissues in vivo after direct delivery or transgenesis, and in a human gene therapy model. Because divergent gene pairs, likely transcribed from shared promoters, are common in the genome, the synthetic promoters that we developed may mimic a well-represented feature of transcription. Vectors incorporating these promoters should increase the power of gene function studies and expand the reach and safety of gene therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
267 |
8
|
Gentner B, Visigalli I, Hiramatsu H, Lechman E, Ungari S, Giustacchini A, Schira G, Amendola M, Quattrini A, Martino S, Orlacchio A, Dick JE, Biffi A, Naldini L. Identification of hematopoietic stem cell-specific miRNAs enables gene therapy of globoid cell leukodystrophy. Sci Transl Med 2011; 2:58ra84. [PMID: 21084719 DOI: 10.1126/scitranslmed.3001522] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Globoid cell leukodystrophy (GLD; also known as Krabbe disease) is an invariably fatal lysosomal storage disorder caused by mutations in the galactocerebrosidase (GALC) gene. Hematopoietic stem cell (HSC)-based gene therapy is being explored for GLD; however, we found that forced GALC expression was toxic to HSCs and early progenitors, highlighting the need for improved regulation of vector expression. We used a genetic reporter strategy based on lentiviral vectors to detect microRNA activity in hematopoietic cells at single-cell resolution. We report that miR-126 and miR-130a were expressed in HSCs and early progenitors from both mice and humans, but not in differentiated progeny. Moreover, repopulating HSCs could be purified solely on the basis of miRNA expression, providing a new method relevant for human HSC isolation. By incorporating miR-126 target sequences into a GALC-expressing vector, we suppressed GALC expression in HSCs while maintaining robust expression in mature hematopoietic cells. This approach protected HSCs from GALC toxicity and allowed successful treatment of a mouse GLD model, providing a rationale to explore HSC-based gene therapy for GLD.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
166 |
9
|
Lattanzi A, Meneghini V, Pavani G, Amor F, Ramadier S, Felix T, Antoniani C, Masson C, Alibeu O, Lee C, Porteus MH, Bao G, Amendola M, Mavilio F, Miccio A. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements. Mol Ther 2019; 27:137-150. [PMID: 30424953 PMCID: PMC6318785 DOI: 10.1016/j.ymthe.2018.10.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
Editing the β-globin locus in hematopoietic stem cells is an alternative therapeutic approach for gene therapy of β-thalassemia and sickle cell disease. Using the CRISPR/Cas9 system, we genetically modified human hematopoietic stem and progenitor cells (HSPCs) to mimic the large rearrangements in the β-globin locus associated with hereditary persistence of fetal hemoglobin (HPFH), a condition that mitigates the clinical phenotype of patients with β-hemoglobinopathies. We optimized and compared the efficiency of plasmid-, lentiviral vector (LV)-, RNA-, and ribonucleoprotein complex (RNP)-based methods to deliver the CRISPR/Cas9 system into HSPCs. Plasmid delivery of Cas9 and gRNA pairs targeting two HPFH-like regions led to high frequency of genomic rearrangements and HbF reactivation in erythroblasts derived from sorted, Cas9+ HSPCs but was associated with significant cell toxicity. RNA-mediated delivery of CRISPR/Cas9 was similarly toxic but much less efficient in editing the β-globin locus. Transduction of HSPCs by LVs expressing Cas9 and gRNA pairs was robust and minimally toxic but resulted in poor genome-editing efficiency. Ribonucleoprotein (RNP)-based delivery of CRISPR/Cas9 exhibited a good balance between cytotoxicity and efficiency of genomic rearrangements as compared to the other delivery systems and resulted in HbF upregulation in erythroblasts derived from unselected edited HSPCs.
Collapse
|
research-article |
6 |
93 |
10
|
Amendola M, van Steensel B. Mechanisms and dynamics of nuclear lamina–genome interactions. Curr Opin Cell Biol 2014; 28:61-8. [DOI: 10.1016/j.ceb.2014.03.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 12/21/2022]
|
|
11 |
93 |
11
|
Weber L, Frati G, Felix T, Hardouin G, Casini A, Wollenschlaeger C, Meneghini V, Masson C, De Cian A, Chalumeau A, Mavilio F, Amendola M, Andre-Schmutz I, Cereseto A, El Nemer W, Concordet JP, Giovannangeli C, Cavazzana M, Miccio A. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. SCIENCE ADVANCES 2020; 6:6/7/eaay9392. [PMID: 32917636 PMCID: PMC7015694 DOI: 10.1126/sciadv.aay9392] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 05/02/2023]
Abstract
Sickle cell disease (SCD) is caused by a single amino acid change in the adult hemoglobin (Hb) β chain that causes Hb polymerization and red blood cell (RBC) sickling. The co-inheritance of mutations causing fetal γ-globin production in adult life hereditary persistence of fetal Hb (HPFH) reduces the clinical severity of SCD. HPFH mutations in the HBG γ-globin promoters disrupt binding sites for the repressors BCL11A and LRF. We used CRISPR-Cas9 to mimic HPFH mutations in the HBG promoters by generating insertions and deletions, leading to disruption of known and putative repressor binding sites. Editing of the LRF-binding site in patient-derived hematopoietic stem/progenitor cells (HSPCs) resulted in γ-globin derepression and correction of the sickling phenotype. Xenotransplantation of HSPCs treated with gRNAs targeting the LRF-binding site showed a high editing efficiency in repopulating HSPCs. This study identifies the LRF-binding site as a potent target for genome-editing treatment of SCD.
Collapse
|
research-article |
5 |
92 |
12
|
Amendola M, van Steensel B. Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells. EMBO Rep 2015; 16:610-7. [PMID: 25784758 DOI: 10.15252/embr.201439789] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/16/2015] [Indexed: 11/09/2022] Open
Abstract
In mammals, the nuclear lamina interacts with hundreds of large genomic regions, termed lamina-associated domains (LADs) that are generally in a transcriptionally repressed state. Lamins form the major structural component of the lamina and have been reported to bind DNA and chromatin. Here, we systematically evaluate whether lamins are necessary for the LAD organization in murine embryonic stem cells. Surprisingly, removal of essentially all lamins does not have any detectable effect on the genome-wide interaction pattern of chromatin with emerin, a marker of the inner nuclear membrane. This suggests that other components of the lamina mediate these interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
84 |
13
|
Ronchi MC, Piragino C, Rosi E, Amendola M, Duranti R, Scano G. Role of sputum differential cell count in detecting airway inflammation in patients with chronic bronchial asthma or COPD. Thorax 1996; 51:1000-4. [PMID: 8977600 PMCID: PMC472648 DOI: 10.1136/thx.51.10.1000] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Sputum may provide an alternative source of bronchial cells to investigate characteristics of airway inflammation and its functional correlates in patients with asthma or chronic obstructive pulmonary disease (COPD). METHODS Two groups of clinically stable patients were studied: a group of 43 patients with mild or moderate asthma and a group of 18 patients with COPD. Twenty normal subjects formed a control group. Sputum production was either spontaneous or induced with inhaled hypertonic saline for five minute periods for up to 20 minutes. The concentration of saline was increased at intervals of 10 minutes from 3% to 4%. Plugs from the lower respiratory tract were selected for differential counting in cytocentrifugation preparations. Bronchial provocation tests were performed by inhaling progressive concentrations of histamine from a DeVilbiss 646 nebuliser and the concentration of histamine which caused a 20% fall in the forced expiratory volume in one second (FEV1) was calculated (PC20FEV1). RESULTS Neutrophils predominated in the sputum of subjects with COPD while eosinophils predominated in the sputum of those with chronic asthma. However, in 28% of asthmatic subjects an increased percentage of neutrophils was found. In asthmatic patients the differential count of eosinophils was inversely related to the FEV1, FEV1/VC, and bronchial hyperresponsiveness, and directly related to clinical scores. CONCLUSIONS The cellular profile of sputum in normal subjects and in patients with asthma and COPD is different. The concentration of eosinophils in the sputum correlates with the severity of asthma.
Collapse
|
research-article |
29 |
71 |
14
|
Amendola M, Passerini L, Pucci F, Gentner B, Bacchetta R, Naldini L. Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform. Mol Ther 2009; 17:1039-52. [PMID: 19293777 PMCID: PMC2835189 DOI: 10.1038/mt.2009.48] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 02/18/2009] [Indexed: 01/21/2023] Open
Abstract
RNA interference (RNAi) has tremendous potential for investigating gene function and developing new therapies. However, the design and validation of proficient vehicles for stable and safe microRNA (miR) and small interfering RNA (siRNA) delivery into relevant target cells remains an active area of investigation. Here, we developed a lentiviral platform to efficiently coexpress one or more natural/artificial miR together with a gene of interest from constitutive or regulated polymerase-II (Pol-II) promoters. By swapping the stem-loop (sl) sequence of a selected primary transcript (pri-miR) with that of other miR or replacing the stem with an siRNA of choice, we consistently obtained robust expression of the chimeric/artificial miR in several cell types. We validated our platform transducing a panel of engineered cells stably expressing sensitive reporters for miR activity and on a natural target. This approach allowed us to quantitatively assess at steady state the target suppression activity and expression level of each delivered miR and to compare it to those of endogenous miR. Exogenous/artificial miR reached the concentration and activity typical of highly expressed natural miR without perturbing endogenous miR maturation or regulation. Finally, we demonstrate the robust performance of the platform reversing the anergic/suppressive phenotype of human primary regulatory T cells (Treg) by knocking-down their master gene Forkhead Transcription Factor P3 (FOXP3).
Collapse
|
research-article |
16 |
69 |
15
|
Lattanzi A, Neri M, Maderna C, di Girolamo I, Martino S, Orlacchio A, Amendola M, Naldini L, Gritti A. Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models. Hum Mol Genet 2010; 19:2208-27. [PMID: 20203170 DOI: 10.1093/hmg/ddq099] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Leukodystrophies are rare diseases caused by defects in the genes coding for lysosomal enzymes that degrade several glycosphingolipids. Gene therapy for leukodystrophies requires efficient distribution of the missing enzymes in CNS tissues to prevent demyelination and neurodegeneration. In this work, we targeted the external capsule (EC), a white matter region enriched in neuronal projections, with the aim of obtaining maximal protein distribution from a single injection site. We used bidirectional (bd) lentiviral vectors (LV) (bdLV) to ensure coordinate expression of a therapeutic gene (beta-galactocerebrosidase, GALC; arylsulfatase A, ARSA) and of a reporter gene, thus monitoring simultaneously transgene distribution and enzyme reconstitution. A single EC injection of bdLV.GALC in early symptomatic twitcher mice (a murine model of globoid cell leukodystrophy) resulted in rapid and robust expression of a functional GALC protein in the telencephalon, cerebellum, brainstem and spinal cord. This led to global rescue of enzymatic activity, significant reduction of tissue storage and decrease of activated astroglia and microglia. Widespread protein distribution and complete metabolic correction were also observed after EC injection of bdLV.ARSA in a mouse model of metachromatic leukodystrophy. Our data indicated axonal transport, distribution through cerebrospinal fluid flow and cross-correction as the mechanisms contributing to widespread bioavailability of GALC and ARSA proteins in CNS tissues. LV-mediated gene delivery of lysosomal enzymes by targeting highly interconnected CNS regions is a potentially effective strategy that, combined with a treatment able to target the PNS and peripheral organs, may provide significant therapeutic benefit to patients affected by leukodystrophies.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
66 |
16
|
Cozzi A, Rovelli E, Frizzale G, Campanella A, Amendola M, Arosio P, Levi S. Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiol Dis 2009; 37:77-85. [PMID: 19781644 DOI: 10.1016/j.nbd.2009.09.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 12/22/2022] Open
Abstract
Neuroferritinopathies are dominantly inherited movement disorders associated with nucleotide insertions in the L-ferritin gene that modify the protein's C-terminus. The insertions alter physical and functional properties of the ferritins, causing an imbalance in brain iron homeostasis. We describe the effects produced by the over-expression in HeLa and neuroblastoma SH-SY5Y cells of two pathogenic L-ferritin variants, 460InsA and 498InsTC. Both peptides co-assembled with endogenous ferritins, producing molecules with reduced iron incorporation capacity, acting in a dominant negative manner. The cells showed an increase in cell death and a decrease in proteasomal activity. The formation of iron-ferritin aggregates became evident after 10 days of variant expression and was not associated with increased cell death. The addition of iron chelators or antioxidants restored proteasomal activity and reduced aggregate formation. The data indicate that cellular iron imbalance and oxidative damage are primary causes of cell death, while aggregate formation is a secondary effect.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
63 |
17
|
Bobisse S, Rondina M, Merlo A, Tisato V, Mandruzzato S, Amendola M, Naldini L, Willemsen RA, Debets R, Zanovello P, Rosato A. Reprogramming T lymphocytes for melanoma adoptive immunotherapy by T-cell receptor gene transfer with lentiviral vectors. Cancer Res 2010; 69:9385-94. [PMID: 19996290 DOI: 10.1158/0008-5472.can-09-0494] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell receptor (TCR) gene transfer for cancer immunotherapy is limited by the availability of large numbers of tumor-specific T cells. TCR alpha and beta chains were isolated from a highly lytic HLA-A2-restricted cytotoxic T lymphocyte (CTL) clone recognizing the melanoma-associated Melan-A/MART-1 antigen and inserted into a lentiviral vector carrying a bidirectional promoter capable of robust and coordinated expression of the two transgenes. Lentiviral vector-based gene delivery systems have shown increased transfer efficiency and transgene expression compared with the widely used gamma-retroviral vectors. This vector performed more efficiently than a gamma-retrovirus-based vector containing the same expression cassette, resulting in a T-cell population with 60% to 80% of transgenic TCR expression with mainly CD8(+) intermediate effector phenotype. Transgenic T cells specifically produced cytokine in response to and killed antigen-expressing melanoma cells, retained an overlapping functional avidity in comparison with the TCR donor CTL clone, and exerted significant therapeutic effects in vivo upon adoptive transfer in melanoma-bearing severe combined immunodeficient mice. Optical imaging showed their accumulation in the tumor site. Overall, our results indicate that lentiviral vectors represent a valid tool for stable and high-intensity expression of transgenic TCR and support clinical exploitation of this approach for therapeutic application.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
51 |
18
|
Nye JS, Hayes EA, Amendola M, Vaughn D, Charrow J, McLone DG, Speer MC, Nance WE, Pandya A. Myelocystocele-cloacal exstrophy in a pedigree with a mitochondrial 12S rRNA mutation, aminoglycoside-induced deafness, pigmentary disturbances, and spinal anomalies. TERATOLOGY 2000; 61:165-71. [PMID: 10661905 DOI: 10.1002/(sici)1096-9926(200003)61:3<165::aid-tera3>3.0.co;2-e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A large Filipino-American family with progressive matrilineal hearing loss, premature graying, depigmented patches, and digital anomalies was ascertained through a survey of a spina bifida clinic for neural crest disorders. Deafness followed a matrilineal pattern of inheritance and was associated with the A1555G mutation in the 12S rRNA gene (MTRNR1) in affected individuals as well as unaffected maternal relatives. Several other malformations were found in carriers of the mutation. The proband had a myelocystocele, Arnold-Chiari type I malformation, cloacal exstrophy, and severe early-onset hearing loss. Several family members had premature graying, white forelock, congenital leukoderma with or without telecanthus, somewhat suggestive of a Waardenburg syndrome variant. In addition to the patient with myelocystocele, two individuals had scoliosis and one had segmentation defects of spinal vertebrae. The syndromic characteristics reported here are novel for the mitochondrial A1555G substitution, and may result from dysfunction of mitochondrial genes during early development. However, the mitochondrial A1555G mutation is only rarely associated with neural tube defects as it was not found in a screen of 218 additional individuals with spina bifida, four of whom had congenital hearing loss.
Collapse
|
Case Reports |
25 |
49 |
19
|
Vigna E, Amendola M, Benedicenti F, Simmons AD, Follenzi A, Naldini L. Efficient Tet-Dependent Expression of Human Factor IX in Vivo by a New Self-Regulating Lentiviral Vector. Mol Ther 2005; 11:763-75. [PMID: 15851015 DOI: 10.1016/j.ymthe.2004.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 11/24/2004] [Indexed: 11/30/2022] Open
Abstract
Regulation of gene expression represents a long-sought goal of gene therapy. However, most viral vectors pose constraints on the incorporation of drug-dependent transcriptional regulatory systems. Here, by optimizing the design of self-regulating lentiviral vectors based on the tetracycline system, we have been able to overcome the limitations of previously reported constructs and to reach both robust expression and efficient regulation from a single vector. The improved performance allows us to report for the first time effective long-term in vivo regulation of a human clotting Factor IX (hF.IX) transgene upon systemic administration of a single vector to SCID mice. We showed that hF.IX expression in the plasma could be expressed to therapeutically significant concentrations, adjusted to different set levels by varying the tetracycline dose, rapidly turned off and on, and completely recovered after each treatment cycle. The new vector design was versatile, as it successfully incorporated a tissue-specific promoter that selectively targeted regulated expression to hepatocytes. Robust transgene expression in the systemic circulation coupled to the ability to switch off and even adjust the expression level may open the way to safer gene-based delivery of therapeutics.
Collapse
|
|
20 |
49 |
20
|
|
|
35 |
45 |
21
|
Passerini L, Olek S, Di Nunzio S, Barzaghi F, Hambleton S, Abinun M, Tommasini A, Vignola S, Cipolli M, Amendola M, Naldini L, Guidi L, Cecconi M, Roncarolo MG, Bacchetta R. Forkhead box protein 3 (FOXP3) mutations lead to increased TH17 cell numbers and regulatory T-cell instability. J Allergy Clin Immunol 2011; 128:1376-1379.e1. [PMID: 22000569 DOI: 10.1016/j.jaci.2011.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/30/2011] [Accepted: 09/02/2011] [Indexed: 10/16/2022]
|
Comment |
14 |
41 |
22
|
Antoniou P, Hardouin G, Martinucci P, Frati G, Felix T, Chalumeau A, Fontana L, Martin J, Masson C, Brusson M, Maule G, Rosello M, Giovannangeli C, Abramowski V, de Villartay JP, Concordet JP, Del Bene F, El Nemer W, Amendola M, Cavazzana M, Cereseto A, Romano O, Miccio A. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nat Commun 2022; 13:6618. [PMID: 36333351 PMCID: PMC9636226 DOI: 10.1038/s41467-022-34493-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sickle cell disease and β-thalassemia affect the production of the adult β-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e., the hereditary persistence of fetal hemoglobin). Mutations clustering ~200 nucleotides upstream of the HBG transcriptional start sites either reduce binding of the LRF repressor or recruit the KLF1 activator. Here, we use base editing to generate a variety of mutations in the -200 region of the HBG promoters, including potent combinations of four to eight γ-globin-inducing mutations. Editing of patient hematopoietic stem/progenitor cells is safe, leads to fetal hemoglobin reactivation and rescues the pathological phenotype. Creation of a KLF1 activator binding site is the most potent strategy - even in long-term repopulating hematopoietic stem/progenitor cells. Compared with a Cas9-nuclease approach, base editing avoids the generation of insertions, deletions and large genomic rearrangements and results in higher γ-globin levels. Our results demonstrate that base editing of HBG promoters is a safe, universal strategy for treating β-hemoglobinopathies.
Collapse
|
research-article |
3 |
31 |
23
|
Tisnado J, Beachley MC, Cho SR, Amendola M. Peripheral embolization of a stainless steel coil. AJR Am J Roentgenol 1979; 133:324-6. [PMID: 110105 DOI: 10.2214/ajr.133.2.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
Case Reports |
46 |
28 |
24
|
Perlini LE, Botti F, Fornasiero EF, Giannandrea M, Bonanomi D, Amendola M, Naldini L, Benfenati F, Valtorta F. Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. J Cell Sci 2011; 124:3643-53. [DOI: 10.1242/jcs.086223] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synapsins are synaptic vesicle (SV)-associated proteins that regulate synaptic transmission and neuronal differentiation. At early stages, Syn I and II phosphorylation at Ser9 by cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I/IV modulates axon elongation and SV-precursor dynamics. We evaluated the requirement of Syn I for synapse formation by siRNA-mediated knockdown as well as by overexpression of either its wild-type (WT) form or its phosphorylation mutants. Syn1 knockdown at 14 days in vitro caused a decrease in the number of synapses, accompanied by a reduction of SV recycling. Although overexpression of WT Syn I was ineffective, overexpression of its phosphorylation mutants resulted in a complex temporal regulation of synapse density. At early stages of synaptogenesis, phosphomimetic Syn I S9E significantly increased the number of synapses. Conversely, dephosphomimetic Syn I S9A decreased synapse number at more advanced stages. Overexpression of either WT Syn I or its phosphomimetic S9E mutant rescued the decrease in synapse number caused by chronic treatment with tetrodotoxin at early stages, suggesting that Syn I participates in an alternative PKA-dependent mechanism that can compensate for the impairment of the activity-dependent synaptogenic pathway. Altogether these results indicate that Syn I is an important regulator of synapse formation, which adjusts synapse number in response to extracellular signals.
Collapse
|
|
14 |
26 |
25
|
Amendola M, Giustacchini A, Gentner B, Naldini L. A double-switch vector system positively regulates transgene expression by endogenous microRNA expression (miR-ON vector). Mol Ther 2013; 21:934-46. [PMID: 23439497 DOI: 10.1038/mt.2013.12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To better understand and exploit microRNA (miR) regulation, a more precise characterization of miR expression patterns within a tissue or a lineage during development, differentiation, and homeostasis is needed. We previously showed that lentiviral vectors (LV) can be made responsive to miR to stringently control transgene expression as well as to report miR activity "live" and at the single-cell level. Although very useful, this approach reports miR activity by transgene suppression, hampering the direct identification and selection of miR-expressing cells. Here, we describe a strategy to couple transgene expression to the activity of the miR of interest. To this aim, we generated LV encoding two in-series OFF switches: a transcriptional repressor tagged with miR target sequences and a reporter cassette under the control of the repressor. Reporter expression is ON only when the miR is active and represses translation of the transcriptional repressor. We successfully applied this design to different types of repressors, multiple gene encoding vectors and delivered the system either by two separate or a self-contained vector. We demonstrated its performance by live monitoring of two miRs in different stages of human primary hematopoietic stem/progenitor cell differentiation in vivo. Further applications of this approach include imaging of rare miR-expressing cells and positive regulation of a therapeutic or selector gene in target cells identified by the expression of selected miRs.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
26 |