1
|
Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA, Papagno L, Ogg GS, King A, Lechner F, Spina CA, Little S, Havlir DV, Richman DD, Gruener N, Pape G, Waters A, Easterbrook P, Salio M, Cerundolo V, McMichael AJ, Rowland-Jones SL. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 2002; 8:379-85. [PMID: 11927944 DOI: 10.1038/nm0402-379] [Citation(s) in RCA: 1222] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The viruses HIV-1, Epstein-Barr virus (EBV), cytomegalovirus (CMV) and hepatitis C virus (HCV) are characterized by the establishment of lifelong infection in the human host, where their replication is thought to be tightly controlled by virus-specific CD8+ T cells. Here we present detailed studies of the differentiation phenotype of these cells, which can be separated into three distinct subsets based on expression of the costimulatory receptors CD28 and CD27. Whereas CD8+ T cells specific for HIV, EBV and HCV exhibit similar characteristics during primary infection, there are significant enrichments at different stages of cellular differentiation in the chronic phase of persistent infection according to the viral specificity, which suggests that distinct memory T-cell populations are established in different virus infections. These findings challenge the current definitions of memory and effector subsets in humans, and suggest that ascribing effector and memory functions to subsets with different differentiation phenotypes is no longer appropriate.
Collapse
|
|
23 |
1222 |
2
|
Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Dejnirattisai W, Rostron T, Supasa P, Liu C, López-Camacho C, Slon-Campos J, Zhao Y, Stuart DI, Paesen GC, Grimes JM, Antson AA, Bayfield OW, Hawkins DEDP, Ker DS, Wang B, Turtle L, Subramaniam K, Thomson P, Zhang P, Dold C, Ratcliff J, Simmonds P, de Silva T, Sopp P, Wellington D, Rajapaksa U, Chen YL, Salio M, Napolitani G, Paes W, Borrow P, Kessler BM, Fry JW, Schwabe NF, Semple MG, Baillie JK, Moore SC, Openshaw PJM, Ansari MA, Dunachie S, Barnes E, Frater J, Kerr G, Goulder P, Lockett T, Levin R, Zhang Y, Jing R, Ho LP, Cornall RJ, Conlon CP, Klenerman P, Screaton GR, Mongkolsapaya J, McMichael A, Knight JC, Ogg G, Dong T. Broad and strong memory CD4 + and CD8 + T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol 2020; 21:1336-1345. [PMID: 32887977 PMCID: PMC7611020 DOI: 10.1038/s41590-020-0782-6] [Citation(s) in RCA: 928] [Impact Index Per Article: 185.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023]
Abstract
The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
928 |
3
|
Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1261-71. [PMID: 20479117 PMCID: PMC2882845 DOI: 10.1084/jem.20092618] [Citation(s) in RCA: 558] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 04/21/2010] [Indexed: 12/30/2022] Open
Abstract
In mouse, a subset of dendritic cells (DCs) known as CD8alpha+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However, translation into clinical protocols has been hampered by the failure to identify CD8alpha+ DCs in humans. Here, we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8alpha+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8alpha+ DCs, human DNGR-1+ BDCA3hi DCs express Necl2, CD207, BATF3, IRF8, and TLR3, but not CD11b, IRF4, TLR7, or (unlike CD8alpha+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8, but not of TLR7, and produce interleukin (IL)-12 when given innate and T cell-derived signals. Notably, DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy.
Collapse
|
research-article |
15 |
558 |
4
|
Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 1999; 189:821-9. [PMID: 10049946 PMCID: PMC2192946 DOI: 10.1084/jem.189.5.821] [Citation(s) in RCA: 544] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The initiation of an immune response is critically dependent on the activation of dendritic cells (DCs). This process is triggered by surface receptors specific for inflammatory cytokines or for conserved patterns characteristic of infectious agents. Here we show that human DCs are activated by influenza virus infection and by double-stranded (ds)RNA. This activation results not only in increased antigen presentation and T cell stimulatory capacity, but also in resistance to the cytopathic effect of the virus, mediated by the production of type I interferon, and upregulation of MxA. Because dsRNA stimulates both maturation and resistance, DCs can serve as altruistic antigen-presenting cells capable of sustaining viral antigen production while acquiring the capacity to trigger naive T cells and drive polarized T helper cell type 1 responses.
Collapse
|
research-article |
26 |
544 |
5
|
Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. THE JOURNAL OF IMMUNOLOGY 2004; 171:5140-7. [PMID: 14607913 DOI: 10.4049/jimmunol.171.10.5140] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modification in the function of dendritic cells (DC), such as that achieved by microbial stimuli or T cell help, plays a critical role in determining the quality and size of adaptive responses to Ag. NKT cells bearing an invariant TCR (iNKT cells) restricted by nonpolymorphic CD1d molecules may constitute a readily available source of help for DC. We therefore examined T cell responses to i.v. injection of soluble Ag in the presence or the absence of iNKT cell stimulation with the CD1d-binding glycolipid alpha-galactosylceramide (alpha-GalCer). Considerably enhanced CD4(+) and CD8(+) T cell responses were observed when alpha-GalCer was administered at the same time as or close to OVA injection. This enhancement was dependent on the involvement of iNKT cells and CD1d molecules and required CD40 signaling. Studies in IFN-gammaR(-/-) mice indicated that IFN-gamma was not required for the adjuvant effect of alpha-GalCer. Consistent with this result, enhanced T cell responses were observed using OCH, an analog of alpha-GalCer with a truncated sphingosine chain and a reduced capacity to induce IFN-gamma. Splenic DC from alpha-GalCer-treated animals expressed high levels of costimulatory molecules, suggesting maturation in response to iNKT cell activation. Furthermore, studies with cultured DC indicated that potentiation of T cell responses required presentation of specific peptide and alpha-GalCer by the same DC, implying conditioning of DC by iNKT cells. The iNKT-enhanced T cell responses resisted challenge with OVA-expressing tumors, whereas responses induced in the absence of iNKT stimulation did not. Thus, iNKT cells exert a significant influence on the efficacy of immune responses to soluble Ag by modulating DC function.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
373 |
6
|
Papagno L, Spina CA, Marchant A, Salio M, Rufer N, Little S, Dong T, Chesney G, Waters A, Easterbrook P, Dunbar PR, Shepherd D, Cerundolo V, Emery V, Griffiths P, Conlon C, McMichael AJ, Richman DD, Rowland-Jones SL, Appay V. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2004; 2:E20. [PMID: 14966528 PMCID: PMC340937 DOI: 10.1371/journal.pbio.0020020] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2003] [Accepted: 11/20/2003] [Indexed: 02/07/2023] Open
Abstract
Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8(+) T-cells and the use of an in vitro model of naïve CD8(+) T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8(+) T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8(+) T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8(+) and CD4(+) T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system.
Collapse
|
Research Support, N.I.H., Extramural |
21 |
338 |
7
|
Albini A, Soldi R, Giunciuglio D, Giraudo E, Benelli R, Primo L, Noonan D, Salio M, Camussi G, Rockl W, Bussolino F. The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 1996; 2:1371-5. [PMID: 8946838 DOI: 10.1038/nm1296-1371] [Citation(s) in RCA: 286] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The HIV-1 Tat protein transactivates HIV, viral and some host cell genes. Tat can be released by infected cells and acts extracellularly in the microenvironment, regulating functions of immunocompetent and mesenchymal cells. One of the most striking effects of Tat is the induction of a functional program in vascular cells related to angiogenesis and inflammation (migration, proliferation and expression of plasminogen activator inhibitor-1 and E selectin). Tat induces growth of Kaposi's sarcoma (KS) spindle cells and is angiogenic in vivo and in transgenic mice10-12. We previously reported that Tat is a direct angiogenic factor and noted the Tat arginine- and lysine-rich sequence is similar to that of other potent angiogenic growth factors, such as vascular endothelial growth factor-A (VEGF-A). It is possible that Tat mimics one of these factors by interacting with its growth factor tyrosine kinase receptor. Here we demonstrate that Tat specifically binds and activates the Flk-1/kinase insert domain receptor (Flk-1/KDR), a VEGF-A tyrosine kinase receptor (for review see ref. 13), and that Tat-induced angiogenesis is blocked by agents blocking the Flk-1/KDR receptor. Endothelial cell stimulation by Tat occurs in the absence of activation of FLT-1, another VEGF-A tyrosine kinase receptor.
Collapse
|
|
29 |
286 |
8
|
De Santo C, Salio M, Masri SH, Lee LYH, Dong T, Speak AO, Porubsky S, Booth S, Veerapen N, Besra GS, Gröne HJ, Platt FM, Zambon M, Cerundolo V. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 2008; 118:4036-48. [PMID: 19033672 PMCID: PMC2582442 DOI: 10.1172/jci36264] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 10/15/2008] [Indexed: 11/17/2022] Open
Abstract
Infection with influenza A virus (IAV) presents a substantial threat to public health worldwide, with young, elderly, and immunodeficient individuals being particularly susceptible. Inflammatory responses play an important role in the fatal outcome of IAV infection, but the mechanism remains unclear. We demonstrate here that the absence of invariant NKT (iNKT) cells in mice during IAV infection resulted in the expansion of myeloid-derived suppressor cells (MDSCs), which suppressed IAV-specific immune responses through the expression of both arginase and NOS, resulting in high IAV titer and increased mortality. Adoptive transfer of iNKT cells abolished the suppressive activity of MDSCs, restored IAV-specific immune responses, reduced IAV titer, and increased survival rate. The crosstalk between iNKT and MDSCs was CD1d- and CD40-dependent. Furthermore, IAV infection and exposure to TLR agonists relieved the suppressive activity of MDSCs. Finally, we extended these results to humans by demonstrating the presence of myeloid cells with suppressive activity in the PBLs of individuals infected with IAV and showed that their suppressive activity is substantially reduced by iNKT cell activation. These findings identify what we believe to be a novel immunomodulatory role of iNKT cells, which we suggest could be harnessed to abolish the immunosuppressive activity of MDSCs during IAV infection.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Arginase/genetics
- Arginase/immunology
- Arginase/metabolism
- CD40 Antigens/genetics
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- Cells, Cultured
- Humans
- Immune Tolerance/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza, Human/enzymology
- Influenza, Human/epidemiology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/pathology
- Mice
- Mice, Knockout
- Myeloid Cells/enzymology
- Myeloid Cells/immunology
- Myeloid Cells/pathology
- Natural Killer T-Cells/enzymology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/pathology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/immunology
- Nitric Oxide Synthase/metabolism
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
Collapse
|
research-article |
17 |
280 |
9
|
Cerundolo V, Silk JD, Masri SH, Salio M. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 2009; 9:28-38. [PMID: 19079136 DOI: 10.1038/nri2451] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To optimize vaccination strategies, it is important to use protocols that can 'jump-start' immune responses by harnessing cells of the innate immune system to assist the expansion of antigen-specific B and T cells. In this Review, we discuss the evidence indicating that invariant natural killer T (iNKT) cells can positively modulate dendritic cells and B cells, and that their pharmacological activation in the presence of antigenic proteins can enhance antigen-specific B- and T-cell responses. In addition, we describe structural and kinetic analyses that assist in the design of optimal iNKT-cell agonists that could be used in the clinical setting as vaccine adjuvants.
Collapse
|
Review |
16 |
275 |
10
|
Abstract
Maturation of dendritic cells (DC), leading to migration and increased T cell stimulatory capacity, is essential for the initiation of immune responses. This process is triggered by a variety of stimuli, such as inflammatory cytokines, bacterial and viral products. Using a recombinant disabled infectious single cycle herpes simplex virus 1 (HSV-1) encoding green fluorescent protein, we show that the infected DC are defective in up-regulating co-stimulatory molecules, do not produce cytokines, and do not acquire responsiveness to chemokines required for migration to secondary lymphoid organs. These results reveal yet another strategy used by HSV-1 to evade the immune response, namely the inhibition of signaling pathways involved in DC maturation.
Collapse
|
|
26 |
268 |
11
|
Valitutti S, Müller S, Salio M, Lanzavecchia A. Degradation of T cell receptor (TCR)-CD3-zeta complexes after antigenic stimulation. J Exp Med 1997; 185:1859-64. [PMID: 9151711 PMCID: PMC2196323 DOI: 10.1084/jem.185.10.1859] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
T cell activation by specific antigen results in a rapid and long-lasting downregulation of triggered T cell receptors (TCRs). In this work, we investigated the fate of downregulated TCR- CD3-zeta complexes. T cells stimulated by peptide-pulsed antigen-presenting cells (APCs) undergo an antigen dose-dependent decrease of the total cellular content of TCR-beta, CD3-epsilon, and zeta chains, as detected by FACS(R) analysis on fixed and permeabilized T-APC conjugates and by Western blot analysis on cell lysates. The time course of CD3-zeta chain consumption overlaps with that of TCR downregulation, indicating that internalized TCR-CD3 complexes are promptly degraded. Inhibitors of lysosomal function (bafilomycin A1, folimycin) markedly reduced zeta chain degradation, leading to the accumulation of zeta chain in large Lamp1(+) vesicles. These results indicate that in T cell-APC conjugates, triggered TCRs are rapidly removed from the cell surface and are degraded in the lysosomal compartment.
Collapse
|
research-article |
28 |
254 |
12
|
De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R, Salio M, Middleton M, Cerundolo V. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 2010; 11:1039-46. [PMID: 20890286 PMCID: PMC3001335 DOI: 10.1038/ni.1942] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/08/2010] [Indexed: 12/15/2022]
Abstract
Neutrophils are the main effector cells during inflammation, but they can also control excessive inflammatory responses by secreting anti-inflammatory cytokines. However, the mechanisms that modulate their plasticity remain unclear. We now show that systemic serum amyloid A 1 (SAA-1) controls the plasticity of neutrophil differentiation. SAA-1 not only induced anti-inflammatory interleukin 10 (IL-10)-secreting neutrophils but also promoted the interaction of invariant natural killer T cells (iNKT cells) with those neutrophils, a process that limited their suppressive activity by diminishing the production of IL-10 and enhancing the production of IL-12. Because SAA-1-producing melanomas promoted differentiation of IL-10-secreting neutrophils, harnessing iNKT cells could be useful therapeutically by decreasing the frequency of immunosuppressive neutrophils and restoring tumor-specific immune responses.
Collapse
|
research-article |
15 |
240 |
13
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
|
Review |
11 |
222 |
14
|
Molinari M, Salio M, Galli C, Norais N, Rappuoli R, Lanzavecchia A, Montecucco C. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J Exp Med 1998; 187:135-40. [PMID: 9419220 PMCID: PMC2199184 DOI: 10.1084/jem.187.1.135] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A major virulence factor in the stomach chronic infection by Helicobacter pylori is a protein toxin (VacA), which alters cell membrane trafficking of late endosomal/prelysosomal compartments. Its role in the chronic infection established by H. pylori is unknown. To test the possibility that VacA alters antigen processing taking place in prelysosomal compartments, we have used the well-established model of antigen processing and presentation consisting of tetanus toxoid-specific human (CD4(+)) T cells stimulated by autologous antigen-pulsed Epstein-Barr virus-transformed B cells. We found that VacA interferes with proteolytic processing of tetanus toxin and toxoid and specifically inhibits the Ii-dependent pathway of antigen presentation mediated by newly synthesized major histocompatibility complex (MHC) class II, while leaving unaffected the presentation pathway dependent on recycling MHC class II. The results presented here suggest that VacA may contribute to the persistence of H. pylori by interfering with protective immunity and that this toxin is a new useful tool in the study of the different pathways of antigen presentation.
Collapse
|
research-article |
27 |
208 |
15
|
Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski MJ, Cerundolo V, Crocker PR. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 2006; 107:3600-8. [PMID: 16397130 DOI: 10.1182/blood-2005-09-3842] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We describe the cloning and characterization of Siglec-H, a novel murine CD33-related siglec-like molecule with 2 immunoglobulin domains. Unlike other CD33-related siglecs, Siglec-H lacks tyrosine-based signaling motifs in its cytoplasmic tail. Although Siglec-H has the typical structural features required for sialic acid binding, no evidence for carbohydrate recognition was obtained. Specific monoclonal and polyclonal antibodies (Abs) were raised to Siglec-H and used to define its cellular expression pattern and functional properties. By flow cytometry, Siglec-H was expressed specifically on plasmacytoid dendritic cell (pDC) precursors in bone marrow, spleen, blood, and lymph nodes. Staining of tissue sections showed that Siglec-H was also expressed in a subset of marginal zone macrophages in the spleen and in medullary macrophages in lymph nodes. Using bone marrow-derived pDC precursors that express Siglec-H, addition of Abs did not influence cytokine production, either in the presence or absence of synthetic oligodeoxynucleotides containing unmethylated cytosine-guanine motifs (CpG). In comparison, Siglec-H functioned as an endocytic receptor and mediated efficient internalization of anti-Siglec-H Abs. By immunizing mice with ovalbumin-conjugated anti-Siglec-H Ab in the presence of CpG, we demonstrate generation of antigen-specific CD8 T cells in vivo. Targeting Siglec-H may therefore be a useful way of delivering antigens to pDC precursors for cross-presentation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cloning, Molecular
- DNA, Complementary/genetics
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Endocytosis/immunology
- Gene Expression
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Molecular Sequence Data
- N-Acetylneuraminic Acid/metabolism
- Plasma Cells/cytology
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Sialic Acid Binding Ig-like Lectin 3
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
197 |
16
|
McCarthy C, Shepherd D, Fleire S, Stronge VS, Koch M, Illarionov PA, Bossi G, Salio M, Denkberg G, Reddington F, Tarlton A, Reddy BG, Schmidt RR, Reiter Y, Griffiths GM, van der Merwe PA, Besra GS, Jones EY, Batista FD, Cerundolo V. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J Exp Med 2007; 204:1131-44. [PMID: 17485514 PMCID: PMC2118584 DOI: 10.1084/jem.20062342] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 03/28/2007] [Indexed: 11/04/2022] Open
Abstract
CD1d-restricted lymphocytes recognize a broad lipid range. However, how CD1d-restricted lymphocytes translate T cell receptor (TCR) recognition of lipids with similar group heads into distinct biological responses remains unclear. Using a soluble invariant NKT (iNKT) TCR and a newly engineered antibody specific for alpha-galactosylceramide (alpha-GalCer)-human CD1d (hCD1d) complexes, we measured the affinity of binding of iNKT TCR to hCD1d molecules loaded with a panel of alpha-GalCer analogues and assessed the rate of dissociation of alpha-GalCer and alpha-GalCer analogues from hCD1d molecules. We extended this analysis by studying iNKT cell synapse formation and iNKT cell activation by the same panel of alpha-GalCer analogues. Our results indicate the unique role of the lipid chain occupying the hCD1d F' channel in modulating TCR binding affinity to hCD1d-lipid complexes, the formation of stable immunological synapse, and cell activation. These data are consistent with previously described conformational changes between empty and loaded hCD1d molecules (Koch, M., V.S. Stronge, D. Shepherd, S.D. Gadola, B. Mathew, G. Ritter, A.R. Fersht, G.S. Besra, R.R. Schmidt, E.Y. Jones, and V. Cerundolo. 2005. Nat. Immunol 6:819-826), suggesting that incomplete occupation of the hCD1d F' channel results in conformational differences at the TCR recognition surface. This indirect effect provides a general mechanism by which lipid-specific lymphocytes are capable of recognizing both the group head and the length of lipid antigens, ensuring greater specificity of antigen recognition.
Collapse
|
Comparative Study |
18 |
188 |
17
|
Ahern DJ, Ai Z, Ainsworth M, Allan C, Allcock A, Angus B, Ansari MA, Arancibia-Cárcamo CV, Aschenbrenner D, Attar M, Baillie JK, Barnes E, Bashford-Rogers R, Bashyal A, Beer S, Berridge G, Beveridge A, Bibi S, Bicanic T, Blackwell L, Bowness P, Brent A, Brown A, Broxholme J, Buck D, Burnham KL, Byrne H, Camara S, Candido Ferreira I, Charles P, Chen W, Chen YL, Chong A, Clutterbuck EA, Coles M, Conlon CP, Cornall R, Cribbs AP, Curion F, Davenport EE, Davidson N, Davis S, Dendrou CA, Dequaire J, Dib L, Docker J, Dold C, Dong T, Downes D, Drakesmith H, Dunachie SJ, Duncan DA, Eijsbouts C, Esnouf R, Espinosa A, Etherington R, Fairfax B, Fairhead R, Fang H, Fassih S, Felle S, Fernandez Mendoza M, Ferreira R, Fischer R, Foord T, Forrow A, Frater J, Fries A, Gallardo Sanchez V, Garner LC, Geeves C, Georgiou D, Godfrey L, Golubchik T, Gomez Vazquez M, Green A, Harper H, Harrington HA, Heilig R, Hester S, Hill J, Hinds C, Hird C, Ho LP, Hoekzema R, Hollis B, Hughes J, Hutton P, Jackson-Wood MA, Jainarayanan A, James-Bott A, Jansen K, Jeffery K, Jones E, Jostins L, Kerr G, Kim D, Klenerman P, Knight JC, Kumar V, et alAhern DJ, Ai Z, Ainsworth M, Allan C, Allcock A, Angus B, Ansari MA, Arancibia-Cárcamo CV, Aschenbrenner D, Attar M, Baillie JK, Barnes E, Bashford-Rogers R, Bashyal A, Beer S, Berridge G, Beveridge A, Bibi S, Bicanic T, Blackwell L, Bowness P, Brent A, Brown A, Broxholme J, Buck D, Burnham KL, Byrne H, Camara S, Candido Ferreira I, Charles P, Chen W, Chen YL, Chong A, Clutterbuck EA, Coles M, Conlon CP, Cornall R, Cribbs AP, Curion F, Davenport EE, Davidson N, Davis S, Dendrou CA, Dequaire J, Dib L, Docker J, Dold C, Dong T, Downes D, Drakesmith H, Dunachie SJ, Duncan DA, Eijsbouts C, Esnouf R, Espinosa A, Etherington R, Fairfax B, Fairhead R, Fang H, Fassih S, Felle S, Fernandez Mendoza M, Ferreira R, Fischer R, Foord T, Forrow A, Frater J, Fries A, Gallardo Sanchez V, Garner LC, Geeves C, Georgiou D, Godfrey L, Golubchik T, Gomez Vazquez M, Green A, Harper H, Harrington HA, Heilig R, Hester S, Hill J, Hinds C, Hird C, Ho LP, Hoekzema R, Hollis B, Hughes J, Hutton P, Jackson-Wood MA, Jainarayanan A, James-Bott A, Jansen K, Jeffery K, Jones E, Jostins L, Kerr G, Kim D, Klenerman P, Knight JC, Kumar V, Kumar Sharma P, Kurupati P, Kwok A, Lee A, Linder A, Lockett T, Lonie L, Lopopolo M, Lukoseviciute M, Luo J, Marinou S, Marsden B, Martinez J, Matthews PC, Mazurczyk M, McGowan S, McKechnie S, Mead A, Mentzer AJ, Mi Y, Monaco C, Montadon R, Napolitani G, Nassiri I, Novak A, O'Brien DP, O'Connor D, O'Donnell D, Ogg G, Overend L, Park I, Pavord I, Peng Y, Penkava F, Pereira Pinho M, Perez E, Pollard AJ, Powrie F, Psaila B, Quan TP, Repapi E, Revale S, Silva-Reyes L, Richard JB, Rich-Griffin C, Ritter T, Rollier CS, Rowland M, Ruehle F, Salio M, Sansom SN, Sanches Peres R, Santos Delgado A, Sauka-Spengler T, Schwessinger R, Scozzafava G, Screaton G, Seigal A, Semple MG, Sergeant M, Simoglou Karali C, Sims D, Skelly D, Slawinski H, Sobrinodiaz A, Sousos N, Stafford L, Stockdale L, Strickland M, Sumray O, Sun B, Taylor C, Taylor S, Taylor A, Thongjuea S, Thraves H, Todd JA, Tomic A, Tong O, Trebes A, Trzupek D, Tucci FA, Turtle L, Udalova I, Uhlig H, van Grinsven E, Vendrell I, Verheul M, Voda A, Wang G, Wang L, Wang D, Watkinson P, Watson R, Weinberger M, Whalley J, Witty L, Wray K, Xue L, Yeung HY, Yin Z, Young RK, Youngs J, Zhang P, Zurke YX. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 2022; 185:916-938.e58. [PMID: 35216673 PMCID: PMC8776501 DOI: 10.1016/j.cell.2022.01.012] [Show More Authors] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
179 |
18
|
Faroudi M, Utzny C, Salio M, Cerundolo V, Guiraud M, Müller S, Valitutti S. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc Natl Acad Sci U S A 2003; 100:14145-50. [PMID: 14610278 PMCID: PMC283560 DOI: 10.1073/pnas.2334336100] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Activation of biological functions in T lymphocytes is determined by the molecular dynamics occurring at the T cell/opposing cell interface. In the present study, a central question of cytotoxic T lymphocyte (CTL) biology was studied at the single-cell level: can two distinct activation thresholds for cytotoxicity and cytokine production be explained by intercellular molecular dynamics between CTLs and targets? In this study, we combine morphological approaches with numerical analysis, which allows us to associate specific patterns of calcium mobilization with different biological responses. We show that CTLs selectively activated to cytotoxicity lack a mature immunological synapse while exhibiting a low threshold polarized secretion of lytic granules and spike-like patterns of calcium mobilization. This finding is contrasted by fully activated CTLs, which exhibit a mature immunological synapse and smooth and sustained calcium mobilization. Our results indicate that intercellular molecular dynamics and signaling characteristics allow the definition of two activation thresholds in individual CTLs: one for polarized granule secretion (lytic synapse formation) and the other for cytokine production (stimulatory synapse formation).
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
178 |
19
|
Barral P, Eckl-Dorna J, Harwood NE, De Santo C, Salio M, Illarionov P, Besra GS, Cerundolo V, Batista FD. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc Natl Acad Sci U S A 2008; 105:8345-50. [PMID: 18550831 PMCID: PMC2448839 DOI: 10.1073/pnas.0802968105] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Indexed: 12/15/2022] Open
Abstract
Highly regulated activation of B cells is required for the production of specific antibodies necessary to provide protection from pathogen infection. This process is initiated by specific recognition of antigen through the B cell receptor (BCR), leading to early intracellular signaling followed by the late recruitment of T cell help. In this study we demonstrate that specific BCR uptake of CD1d-restricted antigens represents an effective means of enhancing invariant natural killer T (iNKT)-dependent B cell responses in vivo. This mechanism is effective over a wide range of antigen affinities but depends on exceeding a tightly regulated avidity threshold necessary for BCR-mediated internalization and CD1d-dependent presentation of particulate antigenic lipid. Subsequently, iNKT cells provide the help required for stimulating B cell proliferation and differentiation. iNKT-stimulated B cells develop within extrafollicular foci and mediate the production of high titers of specific IgM and early class-switched antibodies. Thus, we have demonstrated that in response to particulate antigenic lipids iNKT cells are recruited for the assistance of B cell activation, resulting in the enhancement of specific antibody responses. We propose that such a mechanism may operate to potentiate adaptive immune responses against pathogens in vivo.
Collapse
|
research-article |
17 |
162 |
20
|
Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, Veerapen N, Besra GS, Platt FM, Cerundolo V. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci U S A 2007; 104:20490-5. [PMID: 18077358 PMCID: PMC2154458 DOI: 10.1073/pnas.0710145104] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of nonconventional T cells recognizing endogenous and/or exogenous glycolipid antigens in the context of CD1d molecules. It remains unclear whether innate stimuli can modify the profile of endogenous lipids recognized by iNKT cells on the surface of antigen-presenting cells (APCs). We report that activation of human APCs by Toll-like receptor ligands (TLR-L) modulates the lipid biosynthetic pathway, resulting in enhanced recognition of CD1d-associated lipids by iNKT cells, as defined by IFN-gamma secretion. APC-derived soluble factors further increase CD1d-restricted iNKT cell activation. Finally, using soluble tetrameric iNKT T cell receptors (TCR) as a staining reagent, we demonstrate specific up-regulation of CD1d-bound ligand(s) on TLR-mediated APC maturation. The ability of innate stimuli to modulate the lipid profile of APCs resulting in iNKT cell activation and APC maturation underscores the role of iNKT cells in assisting priming of antigen-specific immune responses.
Collapse
|
research-article |
18 |
157 |
21
|
Salio M, Palmowski MJ, Atzberger A, Hermans IF, Cerundolo V. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. ACTA ACUST UNITED AC 2004; 199:567-79. [PMID: 14970182 PMCID: PMC2211835 DOI: 10.1084/jem.20031059] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasmacytoid dendritic cells (PDCs) are a unique leukocyte population capable of secreting high levels of type I interferon (IFN) in response to viruses and bacterial stimuli. In vitro experiments have shown that upon maturation, human and murine PDCs develop into potent immunostimulatory cells; however, their ability to prime an immune response in vivo remains to be addressed. We report that CpG-matured murine PDCs are capable of eliciting in naive mice antigen-specific CTLs against endogenous antigens as well as exogenous peptides, but not against an exogenous antigen. Type I IFN is not required for priming, as injection of CpG-matured PDCs into type I IFN receptor-deficient mice elicits functional CTL responses. Mature PDCs prime CTLs that secrete IFN-gamma and protect mice from a tumor challenge. In contrast, immature PDCs are unable to prime antigen-specific CTLs. However, mice injected with immature PDCs are fully responsive to secondary antigenic challenges, suggesting that PDCs have not induced long-lasting tolerance via anergic or regulatory T cells. Our results underline the heterogeneity and plasticity of different antigen-presenting cells, and reveal an important role of mature PDCs in priming CD8 responses to endogenous antigens, in addition to their previously reported ability to modulate antiviral responses via type I IFN.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
155 |
22
|
Cerundolo V, Hermans IF, Salio M. Dendritic cells: a journey from laboratory to clinic. Nat Immunol 2004; 5:7-10. [PMID: 14699398 DOI: 10.1038/ni0104-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
Review |
21 |
148 |
23
|
Salio M, Cella M, Vermi W, Facchetti F, Palmowski MJ, Smith CL, Shepherd D, Colonna M, Cerundolo V. Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur J Immunol 2003; 33:1052-62. [PMID: 12672071 DOI: 10.1002/eji.200323676] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Plasmacytoid dendritic cells (PDC) are a small population of leukocytes specialized in the production of type I IFN. It has been shown that PDC have a potent T cell stimulatory capacity in allogeneic mixed lymphocyte reaction, However, their role in initiating primary immune responses remains elusive. We report that blood PDC efficiently prime naive CD8(+) lymphocytes specific for the melan-A(26-35) epitope to become IFN-gamma producing cells in vitro. In addition, we found that CD40L-stimulated PDC induce expression on primed melan-A-specific T cells of cutaneous lymphocyte antigen and L-selectin (CD62L), homing receptors that allow the migration of effector cells to the inflamed skin. Finally, we show that PDC can be found in the peri-tumoral area of most primary cutaneous melanomas in vivo and that type I IFN-containing supernatants derived from PDC increase melanoma cell surface expression of CD95 and MHC class I and class II molecules in vitro. Our results suggest a new immunomodulatory role for tissue infiltrating PDC, which may prime tumor-specific T cell responses and affect tumor growth via soluble factors.
Collapse
|
|
22 |
147 |
24
|
Thomas M, Boname JM, Field S, Nejentsev S, Salio M, Cerundolo V, Wills M, Lehner PJ. Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl Acad Sci U S A 2008; 105:1656-61. [PMID: 18230726 PMCID: PMC2234200 DOI: 10.1073/pnas.0707883105] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Indexed: 01/19/2023] Open
Abstract
Natural killer (NK) cells are important early mediators of host immunity to viral infections. The NK activatory receptors NKG2D and NKp80, both C-type lectin-like homodimeric receptors, stimulate NK cell cytotoxicity toward target cells. Like other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) down-regulates MHC class I molecules to avoid detection by cytotoxic T lymphocytes but renders cells susceptible to NK cell cytotoxicity. We now show that the KSHV immune evasion gene, K5, reduces cell surface expression of the NKG2D ligands MHC class I-related chain A (MICA), MICB, and the newly defined ligand for NKp80, activation-induced C-type lectin (AICL). Down-regulation of both MICA and AICL requires the ubiquitin E3 ligase activity of K5 to target substrate cytoplasmic tail lysine residues. The common MICA *008 allele has a frameshift mutation leading to a premature stop codon and is resistant to down-regulation because of the loss of lysine residues. K5-mediated ubiquitylation signals internalization but not degradation of MICA and causes a potent reduction in NK cell-mediated cytotoxicity. The down-regulation of ligands for both the NKG2D and NKp80 activation pathways provides KSHV with a powerful mechanism for evasion of NK cell antiviral functions.
Collapse
|
research-article |
17 |
146 |
25
|
Hermans IF, Silk JD, Yang J, Palmowski MJ, Gileadi U, McCarthy C, Salio M, Ronchese F, Cerundolo V. The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J Immunol Methods 2004; 285:25-40. [PMID: 14871532 DOI: 10.1016/j.jim.2003.10.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 10/10/2003] [Accepted: 10/27/2003] [Indexed: 01/08/2023]
Abstract
Assessment of cell-mediated toxicity has traditionally been achieved by measuring the specific activity of enriched effector cell populations against antigen-loaded target cells labeled with radioactive isotopes in vitro. Fluorometric techniques are viewed as a promising alternative to the use of radioactive isotopes for these analyses. Direct assessment of cytotoxicity in vivo can be achieved by monitoring survival of injected fluorescent targets relative to a differentially labeled internal control population without specific antigen. We have developed this approach, incorporating the use of multiple target cell populations labeled with different dyes so that cytotoxicity can be assessed against titrated doses of a given antigen, or against a range of different antigens, simultaneously. We show that this assay, referred to as the VITAL assay, can be used to assess cytotoxic activity of CTL and iNKT cells in vivo and in vitro. CTL responses measured in vivo could be correlated with antigen doses used in immunization strategies, and also with the size of specific CTL populations enumerated in the blood with fluorescent MHC/peptide tetramers. The VITAL assay is, therefore, a sensitive technique allowing analysis of complex multi-epitope responses.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
141 |