1
|
Cressatti M, Juwara L, Galindez JM, Velly AM, Nkurunziza ES, Marier S, Canie O, Gornistky M, Schipper HM. Salivary microR‐153 and microR‐223 Levels as Potential Diagnostic Biomarkers of Idiopathic Parkinson's Disease. Mov Disord 2019; 35:468-477. [DOI: 10.1002/mds.27935] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
|
|
6 |
47 |
2
|
Song W, Kothari V, Velly AM, Cressatti M, Liberman A, Gornitsky M, Schipper HM. Evaluation of salivary heme oxygenase-1 as a potential biomarker of early Parkinson's disease. Mov Disord 2018; 33:583-591. [PMID: 29488275 DOI: 10.1002/mds.27328] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND HYPOTHESIS To date, there are no chemical analytes, including biochemical indices of oxidative stress, metabolites of α-synuclein protein, and differential protein expression patterns on proteomic profiling, for use in clinics as a diagnostic biomarker of idiopathic PD. OBJECTIVES Heme oxygenase-1 has been implicated in the pathogenesis of PD. The objective of this study is to ascertain whether salivary heme oxygenase-1 may serve as a biomarker for early idiopathic PD. METHODS Fifty-eight PD patients and 59 non-neurological disease controls were recruited. Levels of heme oxygenase-1 expression were assayed using enzyme-linked immunosorbent assay and western blot analysis of whole, unstimulated saliva. Analyses were adjusted by sex, l-dopa exposure, and relevant comorbidities. RESULTS We documented: (1) the presence of 32-kDa heme oxygenase-1 protein in human saliva; (2) significantly higher mean heme oxygenase-1 protein concentrations in saliva of PD patients relative to control values; (3) no variability in salivary heme oxygenase-1 levels with sex, age, l-dopa equivalence, or comorbidities; and (4) significantly higher mean salivary heme oxygenase-1 concentrations in patients with H & Y stage 1 PD (early) than control subjects and stage 2 and stage 3 PD patients. The area under the receiver operating characteristic curve that separated controls from PD H & Y stage 1 was 76% (95% confidence interval: 63-90). CONCLUSIONS Salivary heme oxygenase-1 concentrations may provide a useful, noninvasive, and relatively inexpensive biomarker of early idiopathic PD. © 2018 International Parkinson and Movement Disorder Society.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
40 |
3
|
Lin SH, Song W, Cressatti M, Zukor H, Wang E, Schipper HM. Heme oxygenase-1 modulates microRNA expression in cultured astroglia: implications for chronic brain disorders. Glia 2015; 63:1270-84. [PMID: 25820186 DOI: 10.1002/glia.22823] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/02/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Over-expression of the heme-degrading enzyme, heme oxygenase-1 (HO-1) promotes iron deposition, mitochondrial damage, and autophagy in astrocytes and enhances the vulnerability of nearby neuronal constituents to oxidative injury. These neuropathological features and aberrant brain microRNA (miRNA) expression patterns have been implicated in the etiopathogeneses of various neurodevelopmental and aging-related neurodegenerative disorders. OBJECTIVE To correlate glial HO-1 overexpression with altered miRNA patterns, which have been linked to the aforementioned "core" neuropathological features. METHODS miRNA microchip assays were performed on HMOX1- and sham-transfected primary rat astroglia and affected miRNAs were further validated by qPCR. The roles of the heme degradation products, carbon monoxide (CO), iron (Fe) and bilirubin on miRNA expression were assessed and salient mRNA targets of the impacted miRNAs were ascertained. RESULTS In HMOX1-transfected astrocytes, rno-miR-140*, rno-miR-17, and rno-miR-16 were significantly up-regulated, and rno-miR-297, rno-miR-206, rno-miR-187, rno-miR-181a, rno-miR-138 and rno-miR-29c were down-regulated, compared to sham-transfected controls. CO and Fe were implicated in the HMOX1 effects, whereas bilirubin was inert or counteracted the HMOX1-related changes. mRNA levels of Ngfr, Vglut1, Mapk3, Tnf-α, and Sirt1, known targets of the down-regulated miRNAs and abnormal in various human brain disorders, were significantly increased in the HMOX-1-transfected astrocytes. CONCLUSIONS In chronic CNS disorders, altered expression of salient miRNAs and their mRNA targets may contribute to the neural damage accruing from the over-expression of glial HO-1.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
36 |
4
|
Lang S, Cressatti M, Mendoza KE, Coumoundouros CN, Plater SM, Culham DE, Kimber MS, Wood JM. YehZYXW of Escherichia coli Is a Low-Affinity, Non-Osmoregulatory Betaine-Specific ABC Transporter. Biochemistry 2015; 54:5735-47. [DOI: 10.1021/acs.biochem.5b00274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
10 |
18 |
5
|
Cressatti M, Song W, Turk AZ, Garabed LR, Benchaya JA, Galindez C, Liberman A, Schipper HM. Glial HMOX1 expression promotes central and peripheral α-synuclein dysregulation and pathogenicity in parkinsonian mice. Glia 2019; 67:1730-1744. [PMID: 31180611 DOI: 10.1002/glia.23645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/04/2023]
Abstract
α-Synuclein is a key player in the pathogenesis of Parkinson disease (PD). Expression of human heme oxygenase-1 (HO-1) in astrocytes of GFAP.HMOX1 transgenic (TG) mice between 8.5 and 19 months of age results in a parkinsonian phenotype characterized by neural oxidative stress, nigrostriatal hypodopaminergia associated with locomotor incoordination, and overproduction of α-synuclein. We identified two microRNAs (miR-), miR-153 and miR-223, that negatively regulate α-synuclein in the basal ganglia of male and female GFAP.HMOX1 mice. Serum concentrations of both miRNAs progressively declined in the wild-type (WT) and GFAP.HMOX1 mice between 11 and 19 months of age. Moreover, at each time point surveyed, circulating levels of miR-153 were significantly lower in the TG animals compared to WT controls, while α-synuclein protein concentrations were elevated in erythrocytes of the GFAP.HMOX1 mice at 19 months of age relative to WT values. Primary WT neurons co-cultured with GFAP.HMOX1 astrocytes exhibited enhanced protein oxidation, mitophagy and apoptosis, aberrant expression of genes regulating the dopaminergic phenotype, and an imbalance in gene expression profiles governing mitochondrial fission and fusion. Many, but not all, of these neuronal abnormalities were abrogated by small interfering RNA (siRNA) knockdown of α-synuclein, implicating α-synuclein as a potent, albeit partial, mediator of HO-1's neurodystrophic effects in these parkinsonian mice. Overexpression of HO-1 in stressed astroglia has previously been documented in the substantia nigra of idiopathic PD and may promote α-synuclein production and toxicity by downmodulating miR-153 and/or miR-223 both within the CNS and in peripheral tissues.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
14 |
6
|
Tavitian A, Cressatti M, Song W, Turk AZ, Galindez C, Smart A, Liberman A, Schipper HM. Strategic Timing of Glial HMOX1 Expression Results in Either Schizophrenia-Like or Parkinsonian Behavior in Mice. Antioxid Redox Signal 2020; 32:1259-1272. [PMID: 31847534 DOI: 10.1089/ars.2019.7937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims: In this original research communication, we assess the impact of shifting the window of glial HMOX1 overexpression in mice from early-to-midlife to mid-to-late life, resulting in two disparate conditions modeling schizophrenia (SCZ) and Parkinson's disease (PD). Mesolimbic hyperdopaminergia is a widely accepted feature of SCZ, while nigrostriatal hypodopaminergia is the sine qua non of idiopathic PD. Although the advent of parkinsonian features in SCZ patients after treatment with antidopaminergic agents is intuitive, subtle features of parkinsonism commonly observed in young, drug-naïve schizophrenics are not. Similarly, emergent psychosis in PD subjects receiving levodopa replacement is not unusual, whereas spontaneous hallucinosis in nonmedicated persons with idiopathic PD is enigmatic. Investigations using GFAP.HMOX1 mice may shed light on these clinical paradoxes. Results: Astroglial heme oxygenase-1 (HO-1) overexpression in mice throughout embryogenesis until 6 or 12 months of age resulted in hyperdopaminergia, hyperkinesia/stereotypy ameliorated with clozapine, deficient prepulse inhibition of the acoustic startle response, reduced preference for social novelty, impaired nest building, and cognitive dysfunction reminiscent of SCZ. On the contrary, astroglial HO-1 overexpression between 8.5 and 19 months of age yielded a PD-like behavioral phenotype with hypodopaminergia, altered gait, locomotor incoordination, and reduced olfaction. Innovation: We conjecture that region-specific disparities in the susceptibility of dopaminergic and other circuitry to the trophic and degenerative influences of glial HMOX1 induction may permit the concomitant expression of mixed SCZ and PD traits within affected individuals. Conclusion: Elucidation of these converging mechanisms may (i) help better understand disease pathogenesis and (ii) identify HO-1 as a potential therapeutic target in neurodevelopmental and neurodegenerative disorders.
Collapse
|
|
5 |
13 |
7
|
Galindez JM, Juwara L, Cressatti M, Gornitsky M, Velly AM, Schipper HM. Salivary Heme Oxygenase-1: A Potential Biomarker for Central Neurodegeneration. J Cent Nerv Syst Dis 2021; 13:11795735211029114. [PMID: 34290541 PMCID: PMC8273869 DOI: 10.1177/11795735211029114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Parkinson disease (PD) is the second most common neurodegenerative disease, affecting 2% of the population over 65 years of age. PD diagnosis is based on clinical examination and can only be confirmed during autopsy. In 2018, we reported that heme oxygenase-1 (HO-1), an inducible stress response protein important for heme catabolism and implicated in PD pathology, was higher in PD saliva relative to healthy controls, suggesting that salivary HO-1 may serve as a potential biomarker of PD. OBJECTIVES To ascertain whether HO-1 protein levels are elevated in PD saliva relative to degenerative neurological, non-degenerative neurological and healthy controls. METHODOLOGY The study included 307 participants comprising 75 participants with idiopathic PD and 3 control groups: 162 non-neurological, 37 non-PD degenerative neurological, and 33 non-degenerative neurological participants. Salivary HO-1 and total protein concentrations were measured using ELISA and BCA assay, respectively. Receiver operating characteristic (ROC) curves were used to estimate model discrimination. Analyses were adjusted by age, sex, total protein, and relevant comorbidities. RESULTS Elevated HO-1 concentrations were observed in the PD group and other neurodegenerative conditions compared to subjects with no neurological or non-degenerative neurological conditions. ROC curves using HO-1 levels and covariates yielded areas under the curve above 85% in models for PD or neurodegenerative conditions versus controls. CONCLUSIONS Salivary HO-1 concentrations in combination with covariates may provide a biomarker signature that distinguishes patients with neurodegenerative conditions from persons without. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that salivary HO-1 multivariable models can distinguish neurodegenerative conditions.
Collapse
|
research-article |
4 |
12 |
8
|
Cressatti M, Galindez JM, Juwara L, Orlovetskie N, Velly AM, Eintracht S, Liberman A, Gornitsky M, Schipper HM. Characterization and heme oxygenase-1 content of extracellular vesicles in human biofluids. J Neurochem 2020; 157:2195-2209. [PMID: 32880973 DOI: 10.1111/jnc.15167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Heme oxygenase-1 (HO-1), a highly inducible stress protein that degrades heme to biliverdin, carbon monoxide, and free ferrous iron, is increased in blood and other biofluids of subjects with various systemic and neurological disorders. HO-1 does not contain an N-terminal signal peptide and the mechanism responsible for its secretion remains unknown. Extracellular vesicles (EVs) are membrane-bound inclusions that transport microRNAs, messenger RNAs, lipids, and proteins among diverse cellular and extracellular compartments. The objective of the current study was to determine whether EVs in human biofluids contain HO-1, and whether the latter may be transported in EVs from brain to periphery. Total, L1 cell adhesion molecule protein (L1CAM)-enriched (neuron-derived), and glutamate aspartate transporter 1 (GLAST)-enriched (astrocyte-derived) EVs were purified from five different human biofluids (saliva [n = 40], plasma [n = 14], serum [n = 10], urine [n = 10], and cerebrospinal fluid [n = 11]) using polymer precipitation and immuno-affinity-based capture methods. L1CAM-enriched, GLAST-enriched, and L1CAM/GLAST-depleted (LGD) EV, along with EV-depleted (EVD), fractions were validated by nanoparticle tracking analysis, enzyme-linked immunosorbent assay (ELISA), and western blot. HO-1 was assayed in all fractions using ELISA and western blot. The majority of HO-1 protein was localized to LGD, L1CAM-enriched, and GLAST-enriched EVs of all human biofluids surveyed after adjusting for age and sex, with little HO-1 protein detected in EVD fractions. HO-1 protein in human biofluids is predominantly localized to EV compartments. A substantial proportion of EV HO-1 in peripheral human biofluids is derived from the central nervous system and may contribute to the systemic manifestations of various neurological conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
10 |
9
|
Song W, Tavitian A, Cressatti M, Galindez C, Liberman A, Schipper HM. Cysteine-rich whey protein isolate (Immunocal®) ameliorates deficits in the GFAP.HMOX1 mouse model of schizophrenia. Free Radic Biol Med 2017; 110:162-175. [PMID: 28603087 DOI: 10.1016/j.freeradbiomed.2017.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a neuropsychiatric disorder that features neural oxidative stress and glutathione (GSH) deficits. Oxidative stress is augmented in brain tissue of GFAP.HMOX1 transgenic mice which exhibit schizophrenia-relevant characteristics. The whey protein isolate, Immunocal® serves as a GSH precursor upon oral administration. In this study, we treated GFAP.HMOX1 transgenic mice daily with either Immunocal (33mg/ml drinking water) or equivalent concentrations of casein (control) between the ages of 5 and 6.5 months. Immunocal attenuated many of the behavioral, neurochemical and redox abnormalities observed in GFAP.HMOX1 mice. In addition to restoring GSH homeostasis in the CNS of the transgenic mice, the whey protein isolate augmented GSH reserves in the brains of wild-type animals. These results demonstrate that consumption of whey protein isolate augments GSH stores and antioxidant defenses in the healthy and diseased mammalian brain. Whey protein isolate supplementation (Immunocal) may constitute a safe and effective modality for the management of schizophrenia, an unmet clinical imperative.
Collapse
|
|
8 |
10 |
10
|
Cressatti M, Schipper HM. Dysregulation of a Heme Oxygenase-Synuclein Axis in Parkinson Disease. NEUROSCI 2022; 3:284-299. [PMID: 39483365 PMCID: PMC11523740 DOI: 10.3390/neurosci3020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2024] Open
Abstract
α-Synuclein is a key driver of the pathogenesis of Parkinson disease (PD). Heme oxygenase-1 (HO-1), a stress protein that catalyzes the conversion of heme to biliverdin, carbon monoxide and free ferrous iron, is elevated in PD-affected neural tissues and promotes iron deposition and mitochondrial dysfunction in models of the disease, pathways also impacted by α-synuclein. Elevated expression of human HO-1 in astrocytes of GFAP.HMOX1 transgenic mice between 8.5 and 19 months of age elicits a parkinsonian phenotype characterized by nigrostriatal hypodopaminergia, locomotor incoordination and overproduction of neurotoxic native S129-phospho-α-synuclein. Two microRNAs (miRNA) known to regulate α-synuclein, miR-153 and miR-223, are significantly decreased in the basal ganglia of GFAP.HMOX1 mice. Serum concentrations of both miRNAs progressively decline in wild-type (WT) and GFAP.HMOX1 mice between 11 and 18 months of age. Moreover, circulating levels of miR-153 and miR-223 are significantly lower, and erythrocyte α-synuclein concentrations are increased, in GFAP.HMOX1 mice relative to WT values. MiR-153 and miR-223 are similarly decreased in the saliva of PD patients compared to healthy controls. Upregulation of glial HO-1 may promote parkinsonism by suppressing miR-153 and miR-223, which, in turn, enhance production of neurotoxic α-synuclein. The aim of the current review is to explore the link between HO-1, α-synuclein and PD, evaluating evidence derived from our laboratory and others. HO-1, miR-153 and miR-223 and α-synuclein may serve as potential biomarkers and targets for disease-modifying therapy in idiopathic PD.
Collapse
|
Review |
3 |
3 |
11
|
Cressatti M, Pinilla-Monsalve GD, Blais M, Normandeau CP, Degroot C, Kathol I, Bogard S, Bendas A, Camicioli R, Dupré N, Gan-Or Z, Grimes DA, Kalia LV, MacDonald PA, McKeown MJ, Martino D, Miyasaki JM, Schlossmacher MG, Stoessl AJ, Strafella AP, Fon EA, Monchi O. Advancing Parkinson's Disease Research in Canada: The Canadian Open Parkinson Network (C-OPN) Cohort. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1481-1494. [PMID: 39302382 PMCID: PMC11492019 DOI: 10.3233/jpd-240213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 09/22/2024]
Abstract
Background Enhancing the interactions between study participants, clinicians, and investigators is imperative for advancing Parkinson's disease (PD) research. The Canadian Open Parkinson Network (C-OPN) stands as a nationwide endeavor, connecting the PD community with ten accredited universities and movement disorders research centers spanning, at the time of this analysis, British Columbia, Alberta, Ontario, and Quebec. Objective Our aim is to showcase C-OPN as a paradigm for bolstering national collaboration to accelerate PD research and to provide an initial overview of already collected data sets. Methods The C-OPN database comprises de-identified data concerning demographics, symptoms and signs, treatment approaches, and standardized assessments. Additionally, it collects venous blood-derived biomaterials, such as for analyses of DNA, peripheral blood mononuclear cells (PBMC), and serum. Accessible to researchers, C-OPN resources are available through web-based data management systems for multi-center studies, including REDCap. Results As of November 2023, the C-OPN had enrolled 1,505 PD participants. The male-to-female ratio was 1.77:1, with 83% (n = 1098) residing in urban areas and 82% (n = 1084) having pursued post-secondary education. The average age at diagnosis was 60.2±10.3 years. Herein, our analysis of the C-OPN PD cohort encompasses environmental factors, motor and non-motor symptoms, disease management, and regional differences among provinces. As of April 2024, 32 research projects have utilized C-OPN resources. Conclusions C-OPN represents a national platform promoting multidisciplinary and multisite research that focuses on PD to promote innovation, exploration of care models, and collaboration among Canadian scientists.
Collapse
|
research-article |
1 |
|
12
|
Juwara L, Cressatti M, Galindez JM, Drammeh PS, Velly AM, Schipper HM. Development and internal validation of a prognostic model for loss of balance and falls in mid- to late-stage Parkinson's disease. Neurol Sci 2024; 45:2027-2033. [PMID: 38060035 DOI: 10.1007/s10072-023-07220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Mid- to late-stage Parkinson's disease (PD) is often linked with worsened and significant impairment of motor activities, but existing prognostic markers do not adequately capture the risk of loss of balance in PD patients. This study aims to develop a risk prognostic model for mid- to late-stage PD and identify prognostic factors that are indicative of impending loss of balance and falls. METHODS The study included 307 participants of which 75 were diagnosed with idiopathic PD and 232 were neurological or non-neurological controls. Among the PD group, 46 were early-stage (Hoehn and Yahr [H&Y] = 1,2) with no significant loss of balance while 29 were mid- to late-stage (H&Y = 3,4,5) which is characterized by loss of balance and falls. Multivariable logistic regression (MLR) was used to develop a prognostic model for mid- to late-stage PD. Model discrimination was assessed by ROC curves. The model was internally validated through bootstrapping and calibration plots. RESULTS The relevant factors identified and included in the final MLR model were shortness of breath, age, swollen joints, heme oxygenase-1 (HO-1) protein, and total salivary protein. The model had an AUC of 0.82 (95% CI = 0.71-0.92) and was well calibrated (calibration slope = 0.77, intercept = 0.03). The likelihood of shortness of breath (OR = 7.91, 95% CI = 1.63-45.12) was significantly higher among mid- to late-stage PD than early-stage. Age and total salivary protein were also significantly higher among mid- to late-stage PD. CONCLUSION The MLR prognostic model for mid- to late-stage PD may assist physicians in identifying patients at high risk for loss of balance and falls.
Collapse
|
|
1 |
|