1
|
Szaflarski JP, DiFrancesco M, Hirschauer T, Banks C, Privitera MD, Gotman J, Holland SK. Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI. Epilepsy Behav 2010; 18:404-13. [PMID: 20580319 PMCID: PMC2922486 DOI: 10.1016/j.yebeh.2010.05.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 05/10/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
In patients with idiopathic generalized epilepsies (IGEs), bursts of generalized spike and wave discharges (GSWDs) lasting > or =2 seconds are considered absence seizures. The location of the absence seizures generators in IGEs is thought to involve interplay between various components of thalamocortical circuits; we have recently postulated that medication resistance may, in part, be related to the location of the GSWD generators [Szaflarski JP, Lindsell CJ, Zakaria T, Banks C, Privitera MD. Epilepsy Behav. 2010;17:525-30]. In the present study we hypothesized that patients with medication-refractory IGE (R-IGE) and continued absence seizures may have GSWD generators in locations other than the thalamus, as typically seen in patients with IGE. Hence, the objective of this study was to determine the location of the GSWD generators in patients with R-IGE using EEG/fMRI. Eighty-three patients with IGE received concurrent EEG/fMRI at 4 T. Nine of them (aged 15-55) experienced absence seizures during EEG/fMRI and were included; all were diagnosed with R-IGE. Subjects participated in up to three 20-minute EEG/fMRI sessions (400 volumes, TR=3 seconds) performed at 4 T. After removal of fMRI and ballistocardiographic artifacts, 36 absence seizures were identified. Statistical parametric maps were generated for each of these sessions correlating seizures to BOLD response. Timing differences between brain regions were tested using statistical parametric maps generated by modeling seizures with onset times shifted relative to the GSWD onsets. Although thalamic BOLD responses peaked approximately 6 seconds after the onset of absence seizures, other areas including the prefrontal and dorsolateral cortices showed brief and nonsustained peaks occurring approximately 2 seconds prior to the maximum of the thalamic peak. Temporal lobe peaks occurred at the same time as the thalamic peak, with a cerebellar peak occurring approximately 1 second later. Confirmatory analysis averaging cross-correlation between cortical and thalamic regions of interest across seizures corroborated these findings. Finally, Granger causality analysis showed effective connectivity directed from frontal lobe to thalamus, supporting the notion of earlier frontal than thalamic involvement. The results of this study support our original hypothesis and indicate that in the patients with R-IGE studied, absence seizures may be initiated by widespread cortical (frontal and parietal) areas and sustained in subcortical (thalamic) regions, suggesting that the examined patients have cortical onset epilepsy with propagation to thalamus.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
89 |
2
|
Simon SL, Field J, Miller LE, DiFrancesco M, Beebe DW. Sweet/dessert foods are more appealing to adolescents after sleep restriction. PLoS One 2015; 10:e0115434. [PMID: 25706861 PMCID: PMC4338308 DOI: 10.1371/journal.pone.0115434] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
STUDY OBJECTIVE Examine the effect of experimental sleep restriction (SR) on adolescents' subjective hunger and perceived appeal of sweet/dessert foods versus other foods. A secondary goal was to replicate previous findings on the effects of SR on dietary intake. DESIGN Randomized cross-over sleep restriction-extension paradigm. SETTING Sleep was obtained and monitored at home. Outcome measures were gathered during office visits. PARTICIPANTS 31 typically-developing adolescents aged 14-17 years. INTERVENTIONS The three-week protocol consisted of a baseline week, followed randomly by five consecutive nights of SR (6.5 hours in bed) versus healthy sleep duration (HS; 10 hours in bed), a 2-night wash-out period, and a 5-night cross-over. MEASUREMENTS Sleep was monitored via actigraphy. The morning after each experimental condition, teens rated their hunger, underwent a 24-hour diet recall interview, and rated the appeal of a series of pictures of sweet/dessert foods (e.g., ice cream, candy) and non-sweets (meat, eggs, fruits, vegetables). RESULTS Teens rated pictures of sweet/dessert foods to be more appealing after SR than after HS (Cohen's d = .41, t = 2.07, p = .045). The sleep manipulation did not affect self-reported hunger or the appeal of non-sweet foods (p >.10). Consistent with our prior work, intake of overall calories was 11% higher and consumption of sweet/dessert servings was 52% greater during SR than HS. CONCLUSIONS Adolescent SR appears to increase the subjective appeal of sweet/dessert foods, indicating a potential mechanism by which SR might contribute to weight gain and the risk for obesity and chronic illness.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
85 |
3
|
Horowitz-Kraus T, Toro-Serey C, DiFrancesco M. Increased Resting-State Functional Connectivity in the Cingulo-Opercular Cognitive-Control Network after Intervention in Children with Reading Difficulties. PLoS One 2015. [PMID: 26197049 PMCID: PMC4511005 DOI: 10.1371/journal.pone.0133762] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dyslexia, or reading difficulty, is characterized by slow, inaccurate reading accompanied by executive dysfunction. Reading training using the Reading Acceleration Program improves reading and executive functions in both children with dyslexia and typical readers. This improvement is associated with increased activation in and functional connectivity between the anterior cingulate cortex, part of the cingulo-opercular cognitive-control network, and the fusiform gyrus during a reading task after training. The objective of the current study was to determine whether the training also has an effect on functional connectivity of the cingulo-opercular and fronto-parietal cognitive-control networks during rest in children with dyslexia and typical readers. Fifteen children with reading difficulty and 17 typical readers (8-12 years old) were included in the study. Reading and executive functions behavioral measures and resting-state functional magnetic resonance imaging data were collected before and after reading training. Imaging data were analyzed using a graphical network-modeling tool. Both reading groups had increased reading and executive-functions scores after training, with greater gains among the dyslexia group. Training may have less effect on cognitive control in typical readers and a more direct effect on the visual area, as previously reported. Statistical analysis revealed that compared to typical readers, children with reading difficulty had significantly greater functional connectivity in the cingulo-opercular network after training, which may demonstrate the importance of cognitive control during reading in this population. These results support previous findings of increased error-monitoring activation after reading training in children with dyslexia and confirm greater gains with training in this group.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
69 |
4
|
Horowitz-Kraus T, DiFrancesco M, Kay B, Wang Y, Holland SK. Increased resting-state functional connectivity of visual- and cognitive-control brain networks after training in children with reading difficulties. NEUROIMAGE-CLINICAL 2015. [PMID: 26199874 PMCID: PMC4506990 DOI: 10.1016/j.nicl.2015.06.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8-12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
54 |
5
|
Taran N, Farah R, DiFrancesco M, Altaye M, Vannest J, Holland S, Rosch K, Schlaggar BL, Horowitz-Kraus T. The role of visual attention in dyslexia: Behavioral and neurobiological evidence. Hum Brain Mapp 2022; 43:1720-1737. [PMID: 34981603 PMCID: PMC8886655 DOI: 10.1002/hbm.25753] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Poor phonological processing has typically been considered the main cause of dyslexia. However, visuo‐attentional processing abnormalities have been described as well. The goal of the present study was to determine the involvement of visual attention during fluent reading in children with dyslexia and typical readers. Here, 75 children (8–12 years old; 36 typical readers, 39 children with dyslexia) completed cognitive and reading assessments. Neuroimaging data were acquired while children performed a fluent reading task with (a) a condition where the text remained on the screen (Still) versus (b) a condition in which the letters were being deleted (Deleted). Cognitive assessment data analysis revealed that visual attention, executive functions, and phonological awareness significantly contributed to reading comprehension in both groups. A seed‐to‐voxel functional connectivity analysis was performed on the fluency functional magnetic resonance imaging task. Typical readers showed greater functional connectivity between the dorsal attention network and the left angular gyrus while performing the Still and Deleted reading tasks versus children with dyslexia. Higher connectivity values were associated with higher reading comprehension. The control group showed increased functional connectivity between the ventral attention network and the fronto‐parietal network during the Deleted text condition (compared with the Still condition). Children with dyslexia did not display this pattern. The results suggest that the synchronized activity of executive, visual attention, and reading‐related networks is a pattern of functional integration which children with dyslexia fail to achieve. The present evidence points toward a critical role of visual attention in dyslexia.
Collapse
|
|
3 |
23 |
6
|
Armoni Domany K, Hossain MM, Nava-Guerra L, Khoo MC, McConnell K, Carroll JL, Xu Y, DiFrancesco M, Amin RS. Cardioventilatory Control in Preterm-born Children and the Risk of Obstructive Sleep Apnea. Am J Respir Crit Care Med 2018; 197:1596-1603. [PMID: 29323933 PMCID: PMC6006399 DOI: 10.1164/rccm.201708-1700oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
RATIONALE The contribution of ventilatory control to the pathogenesis of obstructive sleep apnea (OSA) in preterm-born children is unknown. OBJECTIVES To characterize phenotypes of ventilatory control that are associated with the presence of OSA in preterm-born children during early childhood. METHODS Preterm- and term-born children without comorbid conditions were enrolled. They were categorized into an OSA group and a non-OSA group on the basis of polysomnography. MEASUREMENTS AND MAIN RESULTS Loop gain, controller gain, and plant gain, reflecting ventilatory instability, chemoreceptor sensitivity, and blood gas response to a change in ventilation, respectively, were estimated from spontaneous sighs identified during polysomnography. Cardiorespiratory coupling, a measure of brainstem maturation, was estimated by measuring the interval between inspiration and the preceding electrocardiogram R-wave. Cluster analysis was performed to develop phenotypes based on controller gain, plant gain, cardiorespiratory coupling, and gestational age. The study included 92 children, 63 of whom were born preterm (41% OSA) and 29 of whom were born at term (48% OSA). Three phenotypes of ventilatory control were derived with risks for OSA being 8%, 47%, and 77% in clusters 1, 2, and 3, respectively. There was a stepwise decrease in controller gain and an increase in plant gain from clusters 1 to 3. Children in cluster 1 had significantly higher cardiorespiratory coupling and gestational age than clusters 2 and 3. No difference in loop gain was found between clusters. CONCLUSIONS The risk for OSA could be stratified according to controller gain, plant gain, cardiorespiratory coupling, and gestational age. These findings could guide personalized care for children at risk for OSA.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
23 |
7
|
Pilotto A, Romagnolo A, Scalvini A, Masellis M, Shimo Y, Bonanni L, Camicioli R, Wang LL, Dwivedi AK, Longardner K, Rodriguez-Porcel F, DiFrancesco M, Vizcarra JA, Montanaro E, Maule S, Lupini A, Ojeda-López C, Black SE, Delli Pizzi S, Gee M, Tanaka R, Yamashiro K, Hatano T, Borroni B, Gasparotti R, Rizzetti MC, Hattori N, Lopiano L, Litvan I, Espay AJ, Padovani A, Merola A. Association of Orthostatic Hypotension With Cerebral Atrophy in Patients With Lewy Body Disorders. Neurology 2021; 97:e814-e824. [PMID: 34099524 DOI: 10.1212/wnl.0000000000012342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/19/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate whether orthostatic hypotension (OH) or supine hypertension (SH) is associated with brain atrophy and white matter hyperintensities (WMH), we analyzed clinical and radiologic data from a large multicenter consortium of patients with Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS Supine and orthostatic blood pressure (BP) and structural MRI data were extracted from patients with PD and DLB evaluated at 8 tertiary-referral centers in the United States, Canada, Italy, and Japan. OH was defined as a systolic/diastolic BP fall ≥20/10 mm Hg within 3 minutes of standing from the supine position (severe ≥30/15 mm Hg) and SH as a BP ≥140/90 mm Hg with normal sitting BP. Diagnosis-, age-, sex-, and disease duration-adjusted differences in global and regional cerebral atrophy and WMH were appraised with validated semiquantitative rating scales. RESULTS A total of 384 patients (310 with PD, 74 with DLB) met eligibility criteria, of whom 44.3% (n = 170) had OH, including 24.7% (n = 42) with severe OH and 41.7% (n = 71) with SH. OH was associated with global brain atrophy (p = 0.004) and regional atrophy involving the anterior-temporal (p = 0.001) and mediotemporal (p = 0.001) regions, greater in severe vs nonsevere OH (p = 0.001). The WMH burden was similar in those with and without OH (p = 0.49). SH was not associated with brain atrophy (p = 0.59) or WMH (p = 0.72). CONCLUSIONS OH, but not SH, was associated with cerebral atrophy in Lewy body disorders, with prominent temporal region involvement. Neither OH nor SH was associated with WMH.
Collapse
|
Multicenter Study |
4 |
21 |
8
|
Laming AC, Currie BJ, DiFrancesco M, Taylor HR, Mathews JD. A targeted, single-dose azithromycin strategy for trachoma. Med J Aust 2000; 172:163-6. [PMID: 10772587 DOI: 10.5694/j.1326-5377.2000.tb125541.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the impact of treating children with acute trachoma and their contacts with oral azithromycin. DESIGN Open, uncontrolled, prospective evaluation of a community-based treatment strategy. SETTING Central Australian semi-desert Aboriginal community (1995-1996). PARTICIPANTS 216 school- and pre-schoolchildren aged 6 months and up to 15 years. INTERVENTION All children with acute trachoma and their contacts (co-resident siblings aged between 6 months and 15 years) received single-dose oral azithromycin suspension (20 mg/kg, to a maximum of 1000 mg). MAIN OUTCOME MEASURE Prevalence of acute trachoma (World Health Organization trachoma diagnostic criteria). RESULTS Trachoma prevalence at baseline was 42% (71/169) and 55% (18/33) for schoolchildren and pre-schoolchildren, respectively: 103 schoolchildren and 21 pre-schoolchildren, comprising 77 with follicular trachoma and their 47 contacts, were treated with azithromycin over an 8-week period. Acute trachoma prevalence in schoolchildren fell to 22% at 6-8 months (P < 0.0001) and was 31% at 12 months (P < 0.05 compared with baseline). Pre-schoolchildren were followed up for 6 months after treatment, and their trachoma prevalence fell from 55% to 25% (P < 0.05). Further treatment was given to children with trachoma at 12 months, and the point prevalence of trachoma for schoolchildren at 24 months was 34%. CONCLUSIONS In contrast to mass-treatment strategies, significant reductions in trachoma prevalence at 6 months were achieved by screening 35% of community members (216) and treating 20% (124). The subsequent prevalence increases support the need for more comprehensive treatment programs, including health promotion and efforts to improve living conditions.
Collapse
|
|
25 |
20 |
9
|
Boyne P, Maloney T, DiFrancesco M, Fox MD, Awosika O, Aggarwal P, Woeste J, Jaroch L, Braswell D, Vannest J. Resting-state functional connectivity of subcortical locomotor centers explains variance in walking capacity. Hum Brain Mapp 2018; 39:4831-4843. [PMID: 30052301 DOI: 10.1002/hbm.24326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Walking capacity influences the quality of life and disability in normal aging and neurological disease, but the neural correlates remain unclear and subcortical locomotor regions identified in animals have been more challenging to assess in humans. Here we test whether resting-state functional MRI connectivity (rsFC) of midbrain and cerebellar locomotor regions (MLR and CLR) is associated with walking capacity among healthy adults. Using phenotypic and MRI data from the Nathan Kline Institute Rockland Sample (n =119, age 18-85), the association between walking capacity (6-min walk test distance) and rsFC was calculated from subcortical locomotor regions to 81 other gait-related regions of interest across the brain. Additional analyses assessed the independence and specificity of the results. Walking capacity was associated with higher rsFC between the MLR and superior frontal gyrus adjacent to the anterior cingulate cortex, higher rsFC between the MLR and paravermal cerebellum, and lower rsFC between the CLR and primary motor cortex foot area. These rsFC correlates were more strongly associated with walking capacity than phenotypic variables such as age, and together explained 25% of the variance in walking capacity. Results were specific to locomotor regions compared with the other brain regions. The rsFC of locomotor centers correlates with walking capacity among healthy adults. These locomotion-related biomarkers may prove useful in future work aimed at helping patients with reduced walking capacity.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
19 |
10
|
Jones JT, DiFrancesco M, Zaal AI, Klein-Gitelman MS, Gitelman D, Ying J, Brunner HI. Childhood-onset lupus with clinical neurocognitive dysfunction shows lower streamline density and pairwise connectivity on diffusion tensor imaging. Lupus 2015; 24:1081-6. [PMID: 25701565 DOI: 10.1177/0961203315572718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The objective of this report is to use diffusion-tensor imaging (DTI) for investigating white-matter connectivity changes associated with neurocognitive dysfunction in childhood-onset lupus (cSLE-NCD) as measured by formal neuropsychological testing. METHODS DTI was performed in six individuals with (cSLE-NCD) and nine without neurocognitive dysfunction (cSLE-noNCD) as well as 14 healthy controls. Presence of neurocognitive deficits was identified by formal neuropsychological testing. The brain was divided into 116 regions, and pairwise connectivity (defined as the number of streamlines with an endpoint in each of those regions) and streamline density (defined as the number of streamlines passing through a region regardless of endpoints) were evaluated. Group comparisons were made for regional and global measures of streamline density and pairwise connectivity. RESULTS A significant decrease in global streamline density was observed in the cSLE-NCD vs. control group (1189 vs. 1305 p = 0.002) and vs. cSLE-noNCD (1189 vs 1320 p = 0.001). The cSLE-noNCD and control groups had similar streamline density. A similar pattern for pairwise connectivity was observed with a significant decrease in the cSLE-NCD group (217) versus the cSLE-noNCD (236; p = 0.013) and control group (238; p = 0.004). Regional measures of pairwise connectivity displayed mixed results. CONCLUSIONS The analysis of DTI in this pilot study shows cSLE-NCD is associated with global loss of streamline density and pairwise connectivity, suggesting breakdown of the structural network. These results complement previously reported functional and volumetric findings that suggest cSLE-NCD is associated with measurable changes in gray and white matter. If confirmed in larger cohorts, DTI abnormalities could be used as imaging biomarkers of cSLE-NCD.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
14 |
11
|
Horowitz-Kraus T, Hershey A, Kay B, DiFrancesco M. Differential effect of reading training on functional connectivity in children with reading difficulties with and without ADHD comorbidity. JOURNAL OF NEUROLINGUISTICS 2019; 49:93-108. [PMID: 31530970 PMCID: PMC6748395 DOI: 10.1016/j.jneuroling.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A comorbidity of attention deficit hyperactivity disorder (ADHD) with reading difficulties (RD) is common in children. However, children with ADHD+RD have a different reading and executive functions (EF) profile than children with RD alone. We compared the effect of an EF-based intervention on neural circuits related to EF in children with RD and those with ADHD+RD. Functional connectivity MRI data from a lexical decision task suggest that the RD-alone group showed greater improvement in EF and reading tests and greater functional connectivity between networks related to both higher-and lower-level visual processing and those related to ventral attention and dorsal attention, as well as semantic processing. Children with ADHD+RD showed greater connectivity between networks related to attention and dorsal attention and those related to visual processing and EF. Results are consistent with the Cognitive Subtype hypothesis and suggest that RD and ADHD+RD, although related behaviourally, are distinct disorders with regard to network response and connectivity during reading and after an EF-based intervention.
Collapse
|
research-article |
6 |
13 |
12
|
Redel JM, DiFrancesco M, Vannest J, Altaye M, Beebe D, Khoury J, Dolan LM, Lee G, Brunner H, Holland S, Brady C, Shah AS. Brain gray matter volume differences in obese youth with type 2 diabetes: a pilot study. J Pediatr Endocrinol Metab 2018; 31:261-268. [PMID: 29373319 DOI: 10.1515/jpem-2017-0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/22/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adults with type 2 diabetes (T2D) have significantly lower gray matter volume (GMV) compared to healthy peers. Whether GMV differences exist in youth with T2D remains unclear. Thus, we compared global and regional GMV between obese youth with T2D with age, race and sex similar healthy controls. METHODS In a cross-sectional study, 20 obese youth with T2D underwent T1-weighted brain magnetic resonance imaging (MRI). Comparisons were made to 20 age, race and sex similar controls. Differences in global and regional GMV between groups were identified using voxel-based morphometry (VBM). RESULTS Youth with T2D had a significantly lower global GMV-to-intracranial volume ratio (0.51±0.02 in T2D vs. 0.53±0.02 in controls, p=0.02, Cohen's d=0.85). There were 14 regions where GMV was significantly lower in the T2D group, and nine of these were found in either the temporal or occipital lobes. There were six regions with increased GMV in T2D. All regional differences were significant at p<0.05 after adjusting for multiple comparisons. CONCLUSIONS Results from this pilot study show obese youth with T2D have significantly lower global GMV and regional GMV differences, when compared to their age, race and sex similar peers. Future work is needed to determine whether these brain findings are a direct result of adolescent-onset T2D.
Collapse
|
|
7 |
9 |
13
|
Pedapati E, DiFrancesco M, Wu S, Giovanetti C, Nash T, Mantovani A, Ammerman R, Harris E. Neural correlates associated with symptom provocation in pediatric obsessive compulsive disorder after a single session of sham-controlled repetitive transcranial magnetic stimulation. Psychiatry Res 2015; 233:466-73. [PMID: 26228567 DOI: 10.1016/j.pscychresns.2015.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 06/21/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023]
Abstract
Treatments for pediatric obsessive-compulsive disorder (OCD) could be enhanced if the physiological changes engendered by treatment were known. This study examined neural correlates of a provocation task in youth with OCD, before and after sham-controlled repetitive transcranial magnetic stimulation (rTMS). We hypothesized that rTMS to the right dorsolateral prefrontal cortex would inhibit activity in cortico-striato-thalamic (CST) circuits associated with OCD to a greater extent than sham rTMS. After baseline (Time 1) functional magnetic resonance imaging (fMRI) during a provocation task, subjects received one session of either fMRI-guided sham (SG; n=8) or active (AG; n=10) 1-Hz rTMS over the rDLPFC for 30min. During rTMS, subjects were presented with personalized images that evoked OCD-related anxiety. Following stimulation, fMRI and the provocation task were repeated (Time 2). Contrary to our prediction for the provocation task, the AG was associated with no changes in BOLD response from Times 1 to 2. In contrast, the SG had a significant increase at Time 2 in BOLD response in the right inferior frontal gyrus and right putamen, which persisted after adjusting for age, gender, and time to scanner as covariates. This study provides an initial framework for TMS interrogation of the CST circuit in pediatric OCD.
Collapse
|
Randomized Controlled Trial |
10 |
8 |
14
|
Boyne P, DiFrancesco M, Awosika OO, Williamson B, Vannest J. Mapping the human corticoreticular pathway with multimodal delineation of the gigantocellular reticular nucleus and high-resolution diffusion tractography. J Neurol Sci 2022; 434:120091. [PMID: 34979371 PMCID: PMC8957549 DOI: 10.1016/j.jns.2021.120091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
The corticoreticular pathway (CRP) is a major motor tract that transmits cortical input to the reticular formation motor nuclei and may be an important mediator of motor recovery after central nervous system damage. However, its cortical origins, trajectory and laterality are incompletely understood in humans. This study aimed to map the human CRP and generate an average CRP template in standard MRI space. Following recently established guidelines, we manually delineated the primary reticular formation motor nucleus (gigantocellular reticular nucleus [GRN]) using several group-mean MRI contrasts from the Human Connectome Project (HCP). CRP tractography was then performed with HCP diffusion-weighted MRI data (N = 1065) by selecting diffusion streamlines that reached both the cortex and GRN. Corticospinal tract (CST) tractography was also performed for comparison. Results suggest that the human CRP has widespread origins, which overlap with the CST across most of the motor cortex and include additional exclusive inputs from the medial and anterior prefrontal cortices. The estimated CRP projected through the anterior and posterior limbs of the internal capsule before partially decussating in the midbrain tegmentum and converging bilaterally on the pontomedullary reticular formation. Thus, the CRP trajectory appears to partially overlap the CST, while being more distributed and anteromedial to the CST in the cerebrum before moving posterior to the CST in the brainstem. These findings have important implications for neurophysiologic testing, cortical stimulation and movement recovery after brain lesions. We expect that our GRN and tract maps will also facilitate future CRP research.
Collapse
|
research-article |
3 |
8 |
15
|
Meri R, Hutton J, Farah R, DiFrancesco M, Gozman L, Horowitz-Kraus T. Higher access to screens is related to decreased functional connectivity between neural networks associated with basic attention skills and cognitive control in children. Child Neuropsychol 2023; 29:666-685. [PMID: 35957604 PMCID: PMC10619703 DOI: 10.1080/09297049.2022.2110577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
Screen-based media has become a prevailing part of children's lives. Different technologies provide limitless access to a wide range of content. This accessibility has immensely increased screen exposure among children, showing that this exposure is associated with decreased cognitive abilities. This study was designed to evaluate how the neurobiological correlates for different sub-components of screen exposure, such as level of access, content, and frequency, are related to different cognitive abilities. Resting-state functional MRI data were collected in 29 native English-speaking children (8-12 years old), in addition to cognitive-behavioral measures. Functional connectivity measures within and between several networks related to cognitive control and attention were calculated [fronto-parietal (FP), cingulo-opercular (CO), dorsal attention (DAN), ventral attention (VAN), salience, default mode (DMN), cerebellar networks]. Sub-components of screen exposure were measured using the Screen-Q questionnaire. Higher access to screens was related to lower functional connectivity between neural networks associated with basic attention skills and cognitive control (i.e., DAN and salience). In addition, higher levels of parent-child interaction during screen exposure were related to increased functional connectivity between networks related to cognitive control and learning (i.e., CO and cerebellar). These findings suggest that screen exposure may reduce the engagement of basic attention and modulation of cognitive control networks and that higher levels of parent-child interaction engage cognitive control networks. An enhanced understanding of these processes can provide an important scientific basis for future educational and medical approaches regarding screen exposure.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
7 |
16
|
Armoni Domany K, He Z, Nava-Guerra L, Khoo MCK, Xu Y, Hossain MM, DiFrancesco M, McConnell K, Amin RS. The effect of adenotonsillectomy on ventilatory control in children with obstructive sleep apnea. Sleep 2019; 42:5364874. [DOI: 10.1093/sleep/zsz045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/02/2018] [Accepted: 02/15/2019] [Indexed: 11/12/2022] Open
|
|
6 |
6 |
17
|
Pusterla N, Sanchez-Migallon Guzman D, Vannucci F, Mapes S, White A, DiFrancesco M, Gebhart C. Transmission of Lawsonia intracellularis to weanling foals using feces from experimentally infected rabbits. Vet J 2013; 195:241-3. [DOI: 10.1016/j.tvjl.2012.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
|
12 |
5 |
18
|
Horowitz-Kraus T, Farah R, DiFrancesco M, Vannest J. The Involvement of Speed-of-Processing in Story Listening in Preschool Children: A Functional and Structural Connectivity Study. Neuropediatrics 2017; 48:19-29. [PMID: 27769087 DOI: 10.1055/s-0036-1593531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Story listening in children relies on brain regions supporting speech perception, auditory word recognition, syntax, semantics, and discourse abilities, along with the ability to attend and process information (part of executive functions). Speed-of-processing is an early-developed executive function. We used functional and structural magnetic resonance imaging (MRI) to demonstrate the relationship between story listening and speed-of-processing in preschool-age children. Eighteen participants performed story-listening tasks during MRI scans. Functional and structural connectivity analysis was performed using the speed-of-processing scores as regressors. Activation in the superior frontal gyrus during story listening positively correlated with speed-of-processing scores. This region was functionally connected with the superior temporal gyrus, insula, and hippocampus. Fractional anisotropy in the inferior frontooccipital fasciculus, which connects the superior frontal and temporal gyri, was positively correlated with speed-of-processing scores. Our results suggest that speed-of-processing skills in preschool-age children are reflected in functional activation and connectivity during story listening and may act as a biomarker for future academic abilities.
Collapse
|
|
8 |
4 |
19
|
Greenwood P, Dudley J, Hutton J, DiFrancesco M, Farah R, Horowitz-Kraus T. Higher maternal education is related to negative functional connectivity between attention system networks and reading-related regions in children with reading difficulties compared to typical readers. Brain Res 2021; 1766:147532. [PMID: 34033755 PMCID: PMC8214310 DOI: 10.1016/j.brainres.2021.147532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Ten to 15% of school-age children have reading difficulties (RD, or dyslexia), defined by deficits in phonological processing, fluency, and executive functions (EFs). Although RD is referred to as a genetic disorder, reading ability may also be affected by environmental factors such as inadequate exposure to literacy and a lack of parental involvement. These environmental components are a part of the socioeconomic status (SES) measure, which is defined by parental occupation, educational attainment, and household income and are positively correlated to reading ability. The goal of the current study was to relate maternal education, a construct of SES to executive functions (EFs) that relate to reading in children with RD compared to typical readers (TRs) using behavioral and neurobiological resting-state fMRI data. The results show that higher maternal education is negatively correlated to inhibitory control for TRs and not for children with RD. Higher maternal education was also associated with negative functional connectivity of the frontal-parietal network to the left central opercular cortex and left occipital gyrus for children with RD compared to TRs. These results suggest that higher maternal education has contrasting roles on the behavioral and neurobiological correlates of EFs for children with RD compared to TRs. We conclude that higher education levels for mothers may provide their children with a structured environment and educational resources that may assist their children with RD and TRs with cognitive development based on their reading profile.
Collapse
|
Comparative Study |
4 |
2 |
20
|
Abstract
PURPOSE OF REVIEW This review describes the literature evaluating the potential adverse effects of youth-onset type 2 diabetes on the developing brain. A summary of recently published articles and the current state of knowledge are covered succinctly in this manuscript. RECENT FINDINGS Current literature suggests both cognitive and brain structural differences are found in youth with type 2 diabetes. Studies have shown poorer scores in a number of neurocognitive domains, particularly in areas of executive functioning and memory. Additionally, imaging studies have found differences in brain gray matter volume, white matter volume, and microstructural integrity. These findings are largely consistent with the adult literature. Youth with type 2 diabetes demonstrate lower cognitive scores and structural brain differences. Although causality has not yet been established, these findings are important because these individuals are still undergoing neurodevelopmental maturation.
Collapse
|
Review |
6 |
2 |
21
|
DiFrancesco M, Park C, Martin KE, Glithero J, Privitera S, Cassidy BP. Technological Advances in Minimally Invasive Radiofrequency Ablation of Cardiac Tissues. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2010. [DOI: 10.1177/155698451000500216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
15 |
1 |
22
|
Pusterla N, Sanchez-Migallon Guzman D, Vannucci F, Mapes S, White A, DiFrancesco M, Gebhart C. Transmission of Lawsonia intracellularis to weanling foals using feces from experimentally infected rabbits. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.08.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
13 |
1 |
23
|
Redel JM, DiFrancesco M, Lee GR, Ziv A, Dolan LM, Brady CC, Shah AS. Cerebral blood flow is lower in youth with type 2 diabetes compared to obese controls: A pilot study. Pediatr Diabetes 2022; 23:291-300. [PMID: 35001473 DOI: 10.1111/pedi.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
AIM The cerebral vasculature may be susceptible to the adverse effects of type 2 diabetes. In this pilot study, we compared cerebral blood flow (CBF) in youth with type 2 diabetes to obese, euglycemic controls, and explored the association between CBF and a non-invasive measure of atherosclerosis, carotid intima-medial thickness (IMT). METHODS Global and regional CBF were compared between youth with type 2 diabetes (mean age 16.7 ± 2.0 years, n = 20) and age, race, and sex similar obese youth without diabetes (17.4 ± 1.9 years, n = 19) using arterial spin labeling magnetic resonance imaging. Mean CBF values were compared between groups. Voxel-wise results were evaluated for statistical significance (p < 0.05) after adjustment for multiple comparisons. Carotid IMT in the type 2 diabetes group was correlated with CBF. RESULTS Compared to obese controls, the type 2 diabetes group had significantly lower global CBF (49.7 ± 7.2 vs. 63.8 ± 11.5 ml/gm/min, p < 0.001). Significantly lower CBF was observed in multiple brain regions for the type 2 diabetes group, while no regions with higher CBF were identified. In the type 2 diabetes group, carotid IMT was inversely correlated with CBF, both globally (r = -0.70, p = 0.002) and in regional clusters. CONCLUSIONS In this pilot study, lower CBF was seen in youth with type 2 diabetes compared to youth with obesity and IMT was inversely correlated with CBF. Cerebrovascular impairment may be present in youth with type 2 diabetes. These findings could represent a mechanistic link to explain previously reported brain volume and neurocognitive differences.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
1 |
24
|
Felici G, DiFrancesco M, De Stefano S, Grasso L. 349. IORT dedicated linac radiation protection: A novel approach. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.04.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
|
7 |
|
25
|
Farah R, Shchupak G, Holland S, Hutton J, Dudley J, DiFrancesco M, Altaye M, Horowitz-Kraus T. A greater modulation of the visual and fronto-parietal networks for children in a post-media versus pre-media exposure group. Acta Paediatr 2024; 113:1876-1883. [PMID: 38773283 DOI: 10.1111/apa.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
AIM Media use in children has exploded in the past several decades, most recently fuelled by portable electronic devices. This study aims to explore differences in functional brain connectivity in children during a story-listening functional MRI (fMRI) task using data collected before (1998) and after (2013) the widespread adoption of media. METHODS Cross-sectional data were collected from English-speaking 5- to 7-year-old children at Cincinnati Children's Hospital Medical Center, USA, of a functional MRI narrative comprehension task completed in 1998 (n = 22) or 2013 (n = 25). Imaging data were processed using a graph theory approach, focusing on executive functions, language and visual processing networks supporting reading. RESULTS Group differences suggest more efficient processing in the fronto-parietal network in the pre-media group while listening to stories. A modulation of the visual and fronto-parietal networks for the post-media exposure group was found. CONCLUSION Further studies are needed to assess effects over time in the more exposed group to discern a causal effect of portable devices on cognitive networks.
Collapse
|
|
1 |
|