1
|
Sanghavi BJ, Sitaula S, Griep MH, Karna SP, Ali MF, Swami NS. Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal Chem 2013; 85:8158-65. [PMID: 23875581 PMCID: PMC3839532 DOI: 10.1021/ac4011205] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report on a competitive electrochemical detection system that is free of wash steps and enables the real-time monitoring of adenosine triphosphate (ATP) in a quantitative manner over a five-log concentration range. The system utilizes a recognition surface based on ATP aptamer (ATPA) capture probes prebound to electroactive flavin adenine dinucleotide (FAD) molecules, and a signaling surface utilizing graphene (Gr) and gold nanoparticle (AuNP) modified carbon paste electrode (Gr-AuNP-CPE) that is optimized to enhance electron-transfer kinetics and signal sensitivity. Binding of ATP to ATPA at the recognition surface causes the release of an equivalent concentration of FAD that can be quantitatively monitored in real time at the signaling surface, thereby enabling a wide linear working range (1.14 × 10(-10) to 3.0 × 10(-5) M), a low detection limit (2.01 × 10(-11) M using graphene and AuNP modified glassy carbon), and fast target binding kinetics (steady-state signal within 12 min at detection limit). Unlike assays based on capture probe-immobilized electrodes, this double-surface competitive assay offers the ability to speed up target binding kinetics by increasing the capture probe concentration, with no limitations due to intermolecular Coulombic interactions and nonspecific binding. We utilize the real-time monitoring capability to compute kinetic parameters for target binding and to make quantitative distinctions on degree of base-pair mismatch through monitoring target binding kinetics over a wide concentration range. On the basis of the simplicity of the assay chemistry and the quantitative detection of ATP within fruit and serum media, as demonstrated by comparison of ATP levels against those determined using a standard high-performance liquid chromatography (HPLC)-UV absorbance method, we envision a versatile detection platform for applications requiring real-time monitoring over a wide target concentration range.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
218 |
2
|
Tay RY, Griep MH, Mallick G, Tsang SH, Singh RS, Tumlin T, Teo EHT, Karna SP. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. NANO LETTERS 2014; 14:839-846. [PMID: 24447201 DOI: 10.1021/nl404207f] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hexagonal-boron nitride (h-BN) or "white graphene" has many outstanding properties including high thermal conductivity, high mechanical strength, chemical inertness, and high electrical resistance, which open up a wide range of applications such as thermal interface material, protective coatings, and dielectric in nanoelectronics that easily exceed the current advertised benefits pertaining to the graphene-based applications. The development of h-BN films using chemical vapor deposition (CVD) has thus far led into nucleation of triangular or asymmetric diamond shapes on different metallic surfaces. Additionally, the average size of the triangular domains has remained relatively small (∼ 0.5 μm(2)) leading to a large number of grain boundaries and defects. While the morphology of Cu surfaces for CVD-grown graphene may have impacts on the nucleation density, domain sizes, thickness, and uniformity, the effects of the decreased roughness of Cu surface to develop h-BN films are unknown. Here, we report the growth and characterization of novel large area h-BN hexagons using highly electropolished Cu substrate under atmospheric pressure CVD conditions. We found that the nucleation density of h-BN is significantly reduced while domain sizes increase. In this study, the largest hexagonal-shape h-BN domain observed is 35 μm(2), which is an order of magnitude larger than a typical triangular domain. As the domains coalesce to form a continuous film, the larger grain size offers a more pristine and smoother film with lesser grain boundaries induced defects.
Collapse
|
|
11 |
113 |
3
|
Li J, Griep M, Choi Y, Chu D. Photoelectrochemical overall water splitting with textured CuBi2O4as a photocathode. Chem Commun (Camb) 2018; 54:3331-3334. [DOI: 10.1039/c7cc09041b] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tailoring CuBi2O4photocathodes demonstrates their applicability in a photoelectrochemical tandem cell for entirely solar-driven overall water splitting.
Collapse
|
|
7 |
54 |
4
|
Fadel TR, Farrell DF, Friedersdorf LE, Griep MH, Hoover MD, Meador MA, Meyyappan M. Toward the Responsible Development and Commercialization of Sensor Nanotechnologies. ACS Sens 2016; 1:207-216. [PMID: 28261665 PMCID: PMC5332131 DOI: 10.1021/acssensors.5b00279] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) "Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment" Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed.
Collapse
|
research-article |
9 |
42 |
5
|
West AL, Griep MH, Cole DP, Karna SP. DNase 1 retains endodeoxyribonuclease activity following gold nanocluster synthesis. Anal Chem 2014; 86:7377-82. [PMID: 24999001 DOI: 10.1021/ac5005794] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we present the synthesis of the enzyme DNase 1 stabilized gold nanoclusters (DNase 1:AuNCs) with core size consisting of either 8 or 25 atoms. The DNase 1:Au8NCs exhibit blue fluorescence whereas the DNase 1:Au25NCs are red emitting. In addition to the intense fluorescence emission, the synthesized DNase 1:AuNC hybrid retains the native functionality of the protein, allowing simultaneous detection and digestion of DNA with a detection limit of 2 μg/mL. The DNase 1:AuNCs could be conveniently employed as efficient and fast sensors to augment the current time-consuming DNA contamination analysis techniques.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
42 |
6
|
Griep MH, Walczak KA, Winder EM, Lueking DR, Friedrich CR. Quantum dot enhancement of bacteriorhodopsin-based electrodes. Biosens Bioelectron 2010; 25:1493-7. [DOI: 10.1016/j.bios.2009.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 11/04/2009] [Accepted: 11/07/2009] [Indexed: 11/29/2022]
|
|
15 |
30 |
7
|
Zhang C, Zhang C, Xie Y, Su J, He X, Demaree JD, Griep MH, Atwood JL, Lin J. A Supramolecular Coordination‐Polymer‐Derived Electrocatalyst for the Oxygen Evolution Reaction. Chemistry 2018; 25:4036-4039. [DOI: 10.1002/chem.201805152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Indexed: 11/08/2022]
|
|
7 |
21 |
8
|
West AL, Schaeublin NM, Griep MH, Maurer-Gardner EI, Cole DP, Fakner AM, Hussain SM, Karna SP. In situ Synthesis of Fluorescent Gold Nanoclusters by Nontumorigenic Microglial Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21221-21227. [PMID: 27328035 DOI: 10.1021/acsami.6b06624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To date, the directed in situ synthesis of fluorescent gold nanoclusters (AuNCs) has only been demonstrated in cancerous cells, with the theorized synthesis mechanism prohibiting AuNC formation in nontumorigenic cell lines. This limitation hinders potential biostabilized AuNC-based technology in healthy cells involving both chemical and mechanical analysis, such as the direct sensing of protein function and the elucidation of local mechanical environments. Thus, new synthesis strategies are required to expand the application space of AuNCs beyond cancer-focused cellular studies. In this contribution, we have developed the methodology and demonstrated the direct in situ synthesis of AuNCs in the nontumorigenic neuronal microglial line, C8B4. The as-synthesized AuNCs form in situ and are stabilized by cellular proteins. The clusters exhibit bright green fluorescence and demonstrate low (<10%) toxicity. Interestingly, elevated ROS levels were not required for the in situ formation of AuNCs, although intracellular reductants such as glutamate were required for the synthesis of AuNCs in C8B4 cells. To our knowledge, this is the first-ever demonstration of AuNC synthesis in nontumorigenic cells and, as such, it considerably expands the application space of biostabilized fluorescent AuNCs.
Collapse
|
|
9 |
17 |
9
|
Griep MH, Sandoz-Rosado E, Tumlin TM, Wetzel E. Enhanced Graphene Mechanical Properties through Ultrasmooth Copper Growth Substrates. NANO LETTERS 2016; 16:1657-62. [PMID: 26882091 DOI: 10.1021/acs.nanolett.5b04531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The combination of extraordinary strength and stiffness in conjunction with exceptional electronic and thermal properties in lightweight two-dimensional materials has propelled graphene research toward a wide array of applications including flexible electronics and functional structural components. Tailoring graphene's properties toward a selected application requires precise control of the atomic layer growth process, transfer, and postprocessing procedures. To date, the mechanical properties of graphene are largely controlled through postprocess defect engineering techniques. In this work, we demonstrate the role of varied catalytic surface morphologies on the tailorability of subsequent graphene film quality and breaking strength, providing a mechanism to tailor the physical, electrical, and mechanical properties at the growth stage. A new surface planarization methodology that results in over a 99% reduction in Cu surface roughness allows for smoothness parameters beyond that reported to date in literature and clearly demonstrates the role of Cu smoothness toward a decrease in the formation of bilayer graphene defects, altered domain sizes, monolayer graphene sheet resistance values down to 120 Ω/□ and a 78% improvement in breaking strength. The combined electrical and mechanical enhancements achieved through this methodology allows for the direct growth of application quality flexible transparent conductive films with monolayer graphene.
Collapse
|
|
9 |
12 |
10
|
Boyne DA, Savage AM, Griep MH, Beyer FL, Orlicki JA. Process induced alignment of gold nano-rods (GNRs) in thermoplastic polymer composites with tailored optical properties. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
8 |
9 |
11
|
Griep M, Whitney S, Nelson M, Viljoen H. DNA polymerase chain reaction: A model of error frequencies and extension rates. AIChE J 2005. [DOI: 10.1002/aic.10604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
20 |
9 |
12
|
Cerjan B, Gerislioglu B, Link S, Nordlander P, Halas NJ, Griep MH. Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing. NANOTECHNOLOGY 2022; 33:405201. [PMID: 35732108 DOI: 10.1088/1361-6528/ac7b33] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Transitioning plasmonic metasurfaces into practical, low-cost applications requires meta-atom designs that focus on ease of manufacturability and a robustness with respect to structural imperfections and nonideal substrates. It also requires the use of inexpensive, earth-abundant metals such as Al for plasmonic properties. In this study, we focus on combining two aspects of plasmonic metasurfaces-visible coloration and Fano resonances-in a morphology amenable to scalable manufacturing. The resulting plasmonic metasurface is a candidate for reflective colorimetric sensing. We examine the potential of this metasurface for reflective strain sensing, where the periodicity of the meta-atoms could ultimately be modified by a potential flexion, and for localized surface plasmon resonance refractive index sensing. This study evaluates the potential of streamlined meta-atom design combined with low-cost metallization for inexpensive sensor readout based on human optical perception.
Collapse
|
|
3 |
9 |
13
|
Griep MH, Winder EM, Lueking DR, Garrett GA, Karna SP, Friedrich CR. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin. Mol Biol Int 2012; 2012:910707. [PMID: 22737583 PMCID: PMC3376779 DOI: 10.1155/2012/910707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/02/2012] [Indexed: 11/17/2022] Open
Abstract
An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.
Collapse
|
research-article |
13 |
8 |
14
|
Griep M, Winder E, Lueking D, Friedrich C, Mallick G, Karna S. Optical protein modulation via quantum dot coupling and use of a hybrid sensor protein. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2010; 10:6029-6035. [PMID: 21133143 DOI: 10.1166/jnn.2010.2612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Harnessing the energy transfer interactions between the optical protein bacteriorhodopsin (bR) and CdSe/ZnS quantum dots (QDs) could provide a novel bio-nano electronics substrate with a variety of applications. In the present study, a polydimethyldiallyammonium chloride based I-SAM technique has been utilized to produce bilayers, trilayers and multilayers of alternating monolayers of bR, PDAC and QD's on a conductive ITO substrate. The construction of multilayer systems was directly monitored by measuring the unique A570 nm absorbance of bR, as well as QD fluorescence emission. Both of these parameters displayed a linear relationship to the number of monolayers present on the ITO substrate. The photovoltaic response of bilayers of bR/PDAC was observed over a range of 3 to 12 bilayers and the ability to efficiently create an electrically active multilayered substrate composed of bR and QDs has been demonstrated for the first time. Evaluation of QD fluorescence emission in the multilayer system strongly suggests that FRET coupling is occurring and, since the I-SAM technique provide a means to control the bR/QD separation distance on the nanometer scale, this technique may prove highly valuable for optimizing the distance dependent energy transfer effects for maximum sensitivity to target molecule binding by a biosensor. Finally, preliminary studies on the production of a sensor protein/bR hybrid gene construct are presented. It is proposed that the energy associated with target molecule binding to a hybrid sensor protein would provide a means to directly modulate the electrical output from a sensor protein/bR biosensor platform.
Collapse
|
|
15 |
6 |
15
|
Griep MH, Sellers MS, Subhash B, Fakner AM, West AL, Bedford NM. Towards the identification of the gold binding region within trypsin stabilized nanoclusters using microwave synthesis routes. NANOSCALE 2021; 13:1061-1068. [PMID: 33393579 DOI: 10.1039/d0nr07068h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elucidating the location of stabilized nanoclusters within their protein hosts is an existing challenge towards the optimized development of functional protein-nanoclusters. While nanoclusters of various metal compositions can be readily synthesized within a wide array of protein hosts and exhibit tailorable properties, the inability to identify the cluster stabilization region prevents controllable property manipulation of both metallic and protein components. Additionally, the ability to synthesize protein-nanoclusters in a consistent and high-throughput fashion is also highly desirable. In this effort, trypsin stabilized gold nanoclusters are synthesized through standard and microwave-enabled methodologies to determine the impact of processing parameters on the materials physical and functional properties. Density functional theory simulations are employed to localize high probability regions within the trypsin enzyme for Au25 cluster stabilization, which reveal that cluster location is likely within close proximity of the trypsin active region. Trypsin activity measurements support our findings from DFT, as trypsin enzymatic activity is eliminated following cluster growth and stabilization. Moreover, studies on the reactivity of Au NCs and synchrotron characterization measurements further reveal that clusters made by microwave-based techniques exhibit slight structural differences to those made via standard methodologies, indicating that microwave-based syntheses largely maintain the native structural attributes despite the faster synthetic conditions. Overall, this work illustrates the importance of understanding the connections between synthetic conditions, atomic-scale structure, and materials properties that can be potentially used to further tune the properties of metal cluster-protein materials for future applications.
Collapse
|
|
4 |
1 |
16
|
Boyne DA, Orlicki JA, Walck SD, Savage AM, Li T, Griep MH. Plasmonic gold nanostars as optical nano-additives for injection molded polymer composites. NANOTECHNOLOGY 2017; 28:405304. [PMID: 28747583 DOI: 10.1088/1361-6528/aa8271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscale engineering of noble metal particles has provided numerous material configurations to selectively confine and manipulate light across the electromagnetic spectrum. Transitioning these materials to a composite form while maintaining the desired resonance properties has proven challenging. In this work, the successful integration of plasmon-focusing gold nanostars (GNSs) into polymer nanocomposites (PNCs) is demonstrated. Tailored GNSs are produced with over a 90% yield and methods to control the branching structures are shown. A protective silica capping shell is employed on the nanomaterials to facilitate survivability in the high temperate/high shear processing parameters to create optically-tuned injection molded PNCs. The developed GNS PNCs possess dichroic scattering and absorption behavior, opening up potential applications in the fields of holographic imaging, optical filtering and photovoltaics.
Collapse
|
|
8 |
1 |
17
|
Campa MF, Brown CM, Byrley P, Delborne J, Glavin N, Green C, Griep M, Kaarsberg T, Linkov I, Miller JB, Porterfield JE, Schwenzer B, Spadola Q, Brough B, Warren JA. Nanotechnology solutions for the climate crisis. NATURE NANOTECHNOLOGY 2024; 19:1422-1426. [PMID: 39385059 PMCID: PMC11555653 DOI: 10.1038/s41565-024-01772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Climate change is one of humankind’s biggest challenges, leading to more frequent and intense climate extremes, including heatwaves, wildfires, hurricanes, ocean acidification, and increased extinction rates. Nanotechnology already plays an important role in decarbonizing critical processes. Still, despite the technical advances seen in the last decades, the International Energy Agency has identified many sectors that are not on track to achieve the global climate mitigation goals by 2030. Here, a multi-stakeholder group of nanoscientists from the public, private, and philanthropic sectors discuss four high-potential application spaces where nanotechnologies could accelerate progress: batteries and energy storage; catalysis; coatings, lubricants, membranes, and other interface technology; and capture of greenhouse gases. This comment highlights opportunities and current gaps for those working to minimize the climate crisis and provides a framework for the nanotechnology community to answer the call to action on this global issue.
Collapse
|
research-article |
1 |
|
18
|
Mallick G, Griep M, Lastella S, Sahoo S, Hirsch S, Ajayan PM, Karna SP. Diode-like properties of as-grown chemical vapor deposited single-walled carbon nanotubes. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2010; 10:6062-6066. [PMID: 21133149 DOI: 10.1166/jnn.2010.2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Current rectification property of as-grown single-walled carbon nanotubes (SWNTs) is investigated. The SWNTs are grown by chemical vapor deposition (CVD) process. The process allowed to grow long strands of SWNT bundles, which are then used to fabricate multiple arrays of switching devices with the channel length of 3, 5, 7 and 10 microm on a 15 mm x 15 mm SiO2 on Si substrate. Regardless of the channel length, a majority of the fabricated devices show current rectification characteristics, with high throughput of current (I) in the forward bias (V) giving the forward and reverse current ratio (Ifor/Irev) of approximately 10(6). Atomic force microscopic (AFM) analysis of the device structure and surface topology of SWNT suggest the observed rectification of current to possibly result from (a) cross-tube junctions, (b) a mixture of metallic and semiconducting tubes in the SWNT bundles, and/or (c) chirality change along a single tube. The exact mechanism underlying the observed rectification could not be conclusively established. However, the analyses of the experimental results strongly suggest the observed rectification to result from Schottky-type diode properties of SWNTs with mixed chirality along the tube.
Collapse
|
|
15 |
|