1
|
Silveira MM, Donelson JM, McCormick MI, Araujo-Silva H, Luchiari AC. Impact of ocean warming on a coral reef fish learning and memory. PeerJ 2023; 11:e15729. [PMID: 37576501 PMCID: PMC10416774 DOI: 10.7717/peerj.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/18/2023] [Indexed: 08/15/2023] Open
Abstract
Tropical ectotherms are highly sensitive to environmental warming, especially coral reef fishes, which are negatively impacted by an increase of a few degrees in ocean temperature. However, much of our understanding on the thermal sensitivity of reef fish is focused on a few traits (e.g., metabolism, reproduction) and we currently lack knowledge on warming effects on cognition, which may endanger decision-making and survival. Here, we investigated the effects of warming on learning and memory in a damselfish species, Acanthochromis polyacanthus. Fish were held at 28-28.5 °C (control group), 30-30.5 °C (moderate warming group) or 31.5-32 °C (high warming group) for 2 weeks, and then trained to associate a blue tag (cue) to the presence of a conspecific (reward). Following 20 training trials (5 days), fish were tested for associative learning (on the following day) and memory storage (after a 5-days interval). The control group A. polyacanthus showed learning of the task and memory retention after five days, but increasing water temperature impaired learning and memory. A thorough understanding of the effects of heat stress, cognition, and fitness is urgently required because cognition may be a key factor determining animals' performance in the predicted scenario of climate changes. Knowing how different species respond to warming can lead to better predictions of future community dynamics, and because it is species specific, it could pinpoint vulnerable/resilience species.
Collapse
|
2
|
Fakan EP, Allan BJM, Illing B, Hoey AS, McCormick MI. Habitat complexity and predator odours impact on the stress response and antipredation behaviour in coral reef fish. PLoS One 2023; 18:e0286570. [PMID: 37379294 DOI: 10.1371/journal.pone.0286570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
Mass coral bleaching events coupled with local stressors have caused regional-scale loss of corals on reefs globally. Following the loss of corals, the structural complexity of these habitats is often reduced. By providing shelter, obscuring visual information, or physically impeding predators, habitat complexity can influence predation risk and the perception of risk by prey. Yet little is known on how habitat complexity and risk assessment interact to influence predator-prey interactions. To better understand how prey's perception of threats may shift in degraded ecosystems, we reared juvenile Pomacentrus chrysurus in environments of various habitat complexity levels and then exposed them to olfactory risk odours before simulating a predator strike. We found that the fast-start escape responses were enhanced when forewarned with olfactory cues of a predator and in environments of increasing complexity. However, no interaction between complexity and olfactory cues was observed in escape responses. To ascertain if the mechanisms used to modify these escape responses were facilitated through hormonal pathways, we conducted whole-body cortisol analysis. Cortisol concentrations interacted with habitat complexity and risk odours, such that P. chrysurus exhibited elevated cortisol levels when forewarned with predator odours, but only when complexity levels were low. Our study suggests that as complexity is lost, prey may more appropriately assess predation risk, likely as a result of receiving additional visual information. Prey's ability to modify their responses depending on the environmental context suggests that they may be able to partly alleviate the risk of increased predator-prey interactions as structural complexity is reduced.
Collapse
|
3
|
Downie AT, Lefevre S, Illing B, Harris J, Jarrold MD, McCormick MI, Nilsson GE, Rummer JL. Rapid physiological and transcriptomic changes associated with oxygen delivery in larval anemonefish suggest a role in adaptation to life on hypoxic coral reefs. PLoS Biol 2023; 21:e3002102. [PMID: 37167194 PMCID: PMC10174562 DOI: 10.1371/journal.pbio.3002102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Connectivity of coral reef fish populations relies on successful dispersal of a pelagic larval phase. Pelagic larvae must exhibit high swimming abilities to overcome ocean and reef currents, but once settling onto the reef, larvae transition to endure habitats that become hypoxic at night. Therefore, coral reef fish larvae must rapidly and dramatically shift their physiology over a short period of time. Taking an integrative, physiological approach, using swimming respirometry, and examining hypoxia tolerance and transcriptomics, we show that larvae of cinnamon anemonefish (Amphiprion melanopus) rapidly transition between "physiological extremes" at the end of their larval phase. Daily measurements of swimming larval anemonefish over their entire early development show that they initially have very high mass-specific oxygen uptake rates. However, oxygen uptake rates decrease midway through the larval phase. This occurs in conjunction with a switch in haemoglobin gene expression and increased expression of myoglobin, cytoglobin, and neuroglobin, which may all contribute to the observed increase in hypoxia tolerance. Our findings indicate that critical ontogenetic changes in the gene expression of oxygen-binding proteins may underpin the physiological mechanisms needed for successful larval recruitment to reefs.
Collapse
|
4
|
Asunsolo-Rivera A, Lester E, Langlois T, Vaughan B, McCormick MI, Simpson SD, Meekan MG. Behaviour of mesopredatory coral reef fishes in response to threats from sharks and humans. Sci Rep 2023; 13:6714. [PMID: 37185796 PMCID: PMC10130163 DOI: 10.1038/s41598-023-33415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Both sharks and humans present a potentially lethal threat to mesopredatory fishes in coral reef systems, with implications for both population dynamics and the role of mesopredatory fishes in reef ecosystems. This study quantifies the antipredator behaviours mesopredatory fishes exhibit towards the presence of large coral reef carnivores and compares these behavioural responses to those elicited by the presence of snorkelers. Here, we used snorkelers and animated life-size models of the blacktip reef shark (Carcharhinus melanopterus) to simulate potential predatory threats to mesopredatory reef fishes (lethrinids, lutjanids, haemulids and serranids). The responses of these reef fishes to the models and the snorkelers were compared to those generated by three non-threatening controls (life-size models of a green turtle [Chelonia mydas], a PVC-pipe [an object control] and a Perspex shape [a second object control]). A Remote Underwater Stereo-Video System (Stereo-RUV) recorded the approach of the different treatments and controls and allowed accurate measurement of Flight Initiation Distance (FID) and categorization of the type of flight response by fishes. We found that mesopredatory reef fishes had greater FIDs in response to the approach of threatening models (1402 ± 402-1533 ± 171 mm; mean ± SE) compared to the controls (706 ± 151-896 ± 8963 mm). There was no significant difference in FID of mesopredatory fishes between the shark model and the snorkeler, suggesting that these treatments provoked similar levels of predator avoidance behaviour. This has implications for researchers monitoring behaviour in situ or using underwater census as a technique to estimate the abundance of reef fishes. Our study suggests that, irrespective of the degree to which sharks actually consume these mesopredatory reef fishes, they still elicit a predictable and consistent antipredator response that has the potential to create risk effects.
Collapse
|
5
|
Lester EK, Langlois TJ, McCormick MI, Simpson SD, Bond T, Meekan MG. Relative influence of predators, competitors and seascape heterogeneity on behaviour and abundance of coral reef mesopredators. OIKOS 2021. [DOI: 10.1111/oik.08463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Nadler LE, McCormick MI, Johansen JL, Domenici P. Social familiarity improves fast-start escape performance in schooling fish. Commun Biol 2021; 4:897. [PMID: 34285330 PMCID: PMC8292327 DOI: 10.1038/s42003-021-02407-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Using social groups (i.e. schools) of the tropical damselfish Chromis viridis, we test how familiarity through repeated social interactions influences fast-start responses, the primary defensive behaviour in a range of taxa, including fish, sharks, and larval amphibians. We focus on reactivity through response latency and kinematic performance (i.e. agility and propulsion) following a simulated predator attack, while distinguishing between first and subsequent responders (direct response to stimulation versus response triggered by integrated direct and social stimulation, respectively). In familiar schools, first and subsequent responders exhibit shorter latency than unfamiliar individuals, demonstrating that familiarity increases reactivity to direct and, potentially, social stimulation. Further, familiarity modulates kinematic performance in subsequent responders, demonstrated by increased agility and propulsion. These findings demonstrate that the benefits of social recognition and memory may enhance individual fitness through greater survival of predator attacks.
Collapse
|
7
|
Killen SS, Nadler LE, Grazioso K, Cox A, McCormick MI. The effect of metabolic phenotype on sociability and social group size preference in a coral reef fish. Ecol Evol 2021. [DOI: 10.1002/ece3.7672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Chivers DP, McCormick MI, Fakan EP, Edmiston JW, Ferrari MCO. Coral degradation impairs learning of non‐predators by Whitetail damselfish. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Palacios MDM, McCormick MI. Positive indirect effects of top‐predators on the behaviour and survival of juvenile fishes. OIKOS 2020. [DOI: 10.1111/oik.07731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
McCloskey KP, Chapman KE, Chapuis L, McCormick MI, Radford AN, Simpson SD. Assessing and mitigating impacts of motorboat noise on nesting damselfish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115376. [PMID: 32829125 DOI: 10.1016/j.envpol.2020.115376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 05/15/2023]
Abstract
Motorboats are a pervasive, growing source of anthropogenic noise in marine environments, with known impacts on fish physiology and behaviour. However, empirical evidence for the disruption of parental care remains scarce and stems predominantly from playback studies. Additionally, there is a paucity of experimental studies examining noise-mitigation strategies. We conducted two field experiments to investigate the effects of noise from real motorboats on the parental-care behaviours of a common coral-reef fish, the Ambon damselfish Pomacentrus amboinensis, which exhibits male-only egg care. When exposed to motorboat noise, we found that males exhibited vigilance behaviour 34% more often and spent 17% more time remaining vigilant, compared to an ambient-sound control. We then investigated nest defence in the presence of an introduced conspecific male intruder, incorporating a third noise treatment of altered motorboat-driving practice that was designed to mitigate noise exposure via speed and distance limitations. The males spent 22% less time interacting with the intruder and 154% more time sheltering during normal motorboat exposure compared to the ambient-sound control, with nest-defence levels in the mitigation treatment equivalent to those in ambient conditions. Our results reveal detrimental impacts of real motorboat noise on some aspects of parental care in fish, and successfully demonstrate the positive effects of an affordable, easily implemented mitigation strategy. We strongly advocate the integration of mitigation strategies into future experiments in this field, and the application of evidence-based policy in our increasingly noisy world.
Collapse
|
11
|
McCormick MI, Chivers DP, Ferrari MCO, Blandford MI, Nanninga GB, Richardson C, Fakan EP, Vamvounis G, Gulizia AM, Allan BJM. Microplastic exposure interacts with habitat degradation to affect behaviour and survival of juvenile fish in the field. Proc Biol Sci 2020; 287:20201947. [PMID: 33109008 DOI: 10.1098/rspb.2020.1947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coral reefs are degrading globally due to increased environmental stressors including warming and elevated levels of pollutants. These stressors affect not only habitat-forming organisms, such as corals, but they may also directly affect the organisms that inhabit these ecosystems. Here, we explore how the dual threat of habitat degradation and microplastic exposure may affect the behaviour and survival of coral reef fish in the field. Fish were caught prior to settlement and pulse-fed polystyrene microplastics six times over 4 days, then placed in the field on live or dead-degraded coral patches. Exposure to microplastics or dead coral led fish to be bolder, more active and stray further from shelter compared to control fish. Effect sizes indicated that plastic exposure had a greater effect on behaviour than degraded habitat, and we found no evidence of synergistic effects. This pattern was also displayed in their survival in the field. Our results highlight that attaining low concentrations of microplastic in the environment will be a useful management strategy, since minimizing microplastic intake by fishes may work concurrently with reef restoration strategies to enhance the resilience of coral reef populations.
Collapse
|
12
|
Ferrari MCO, McCormick MI, Fakan E, Barry R, Chivers DP. The fading of fear effects due to coral degradation is modulated by community composition. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Allan BJM, Illing B, Fakan EP, Narvaez P, Grutter AS, Sikkel PC, McClure EC, Rummer JL, McCormick MI. Parasite infection directly impacts escape response and stress levels in fish. J Exp Biol 2020; 223:jeb230904. [PMID: 32611788 DOI: 10.1242/jeb.230904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 08/26/2023]
Abstract
Parasites can account for a substantial proportion of the biomass in marine communities. As such, parasites play a significant ecological role in ecosystem functioning via host interactions. Unlike macropredators, such as large piscivores, micropredators, such as parasites, rarely cause direct mortality. Rather, micropredators impose an energetic tax, thus significantly affecting host physiology and behaviour via sublethal effects. Recent research suggests that infection by gnathiid isopods (Crustacea) causes significant physiological stress and increased mortality rates. However, it is unclear whether infection causes changes in the behaviours that underpin escape responses or changes in routine activity levels. Moreover, it is poorly understood whether the cost of gnathiid infection manifests as an increase in cortisol. To investigate this, we examined the effect of experimental gnathiid infection on the swimming and escape performance of a newly settled coral reef fish and whether infection led to increased cortisol levels. We found that micropredation by a single gnathiid caused fast-start escape performance and swimming behaviour to significantly decrease and cortisol levels to double. Fast-start escape performance is an important predictor of recruit survival in the wild. As such, altered fitness-related traits and short-term stress, perhaps especially during early life stages, may result in large scale changes in the number of fish that successfully recruit to adult populations.
Collapse
|
14
|
Atherton JA, McCormick MI. Parents know best: transgenerational predator recognition through parental effects. PeerJ 2020; 8:e9340. [PMID: 32596050 PMCID: PMC7306219 DOI: 10.7717/peerj.9340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/20/2020] [Indexed: 11/30/2022] Open
Abstract
In highly biodiverse systems, such as coral reefs, prey species are faced with predatory threats from numerous species. Recognition of predators can be innate, or learned, and can help increase the chance of survival. Research suggests that parental exposure to increased predatory threats can affect the development, behaviour, and ultimately, success of their offspring. Breeding pairs of damselfish (Acanthochromis polyacanthus) were subjected to one of three olfactory and visual treatments (predator, herbivore, or control), and their developing embryos were subsequently exposed to five different chemosensory cues. Offspring of parents assigned to the predator treatment exhibited a mean increase in heart rate two times greater than that of offspring from parents in herbivore or control treatments. This increased reaction to a parentally known predator odour suggests that predator-treated parents passed down relevant threat information to their offspring, via parental effects. This is the first time transgenerational recognition of a specific predator has been confirmed in any species. This phenomenon could influence predator-induced mortality rates and enable populations to adaptively respond to fluctuations in predator composition and environmental changes.
Collapse
|
15
|
Lester EK, Langlois TJ, Simpson SD, McCormick MI, Meekan MG. The hemisphere of fear: the presence of sharks influences the three dimensional behaviour of large mesopredators in a coral reef ecosystem. OIKOS 2020. [DOI: 10.1111/oik.06844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Gordon TAC, Radford AN, Davidson IK, Barnes K, McCloskey K, Nedelec SL, Meekan MG, McCormick MI, Simpson SD. Acoustic enrichment can enhance fish community development on degraded coral reef habitat. Nat Commun 2019; 10:5414. [PMID: 31784508 PMCID: PMC6884498 DOI: 10.1038/s41467-019-13186-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
Coral reefs worldwide are increasingly damaged by anthropogenic stressors, necessitating novel approaches for their management. Maintaining healthy fish communities counteracts reef degradation, but degraded reefs smell and sound less attractive to settlement-stage fishes than their healthy states. Here, using a six-week field experiment, we demonstrate that playback of healthy reef sound can increase fish settlement and retention to degraded habitat. We compare fish community development on acoustically enriched coral-rubble patch reefs with acoustically unmanipulated controls. Acoustic enrichment enhances fish community development across all major trophic guilds, with a doubling in overall abundance and 50% greater species richness. If combined with active habitat restoration and effective conservation measures, rebuilding fish communities in this manner might accelerate ecosystem recovery at multiple spatial and temporal scales. Acoustic enrichment shows promise as a novel tool for the active management of degraded coral reefs.
Collapse
|
17
|
Warren DT, McCormick MI. Intrageneric differences in the effects of acute temperature exposure on competitive behaviour of damselfishes. PeerJ 2019; 7:e7320. [PMID: 31346499 PMCID: PMC6642626 DOI: 10.7717/peerj.7320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/01/2022] Open
Abstract
Projected increases in global temperatures brought on by climate change threaten to disrupt many biological and ecological processes. Tropical ectotherms, like many fishes, can be particularly susceptible to temperature change as they occupy environments with narrow thermal fluctuations. While climate change models predict temperatures to increase over decades, thermal fluctuations are already experienced on a seasonal scale, which may affect the ability to capture and defend resources across a thermal gradient. For coral reef fish, losers of competitive interactions are often more vulnerable to predation, and this pressure is strongest just after settlement. Competitive interactions may determine future success for coral reef fishes, and understanding how temperature experienced during settlement can influence such interactions will give insight to community dynamics in a future warmer world. We tested the effect of increased temperatures on intraspecific competitive interactions of two sympatric species of reef damselfish, the blue damselfish Pomacentrus nagasakiensis, and the whitetail damselfish Pomacentrus chrysurus. Juvenile fishes were exposed to one of four temperature treatments, ranging from 26–32 °C, for seven days then placed into competitive arenas where aggressive interactions were recorded between sized matched individuals within each species. While there was no apparent effect of temperature treatment on aggressive behaviour for P. chrysurus, we observed up to a four-fold increase in aggression scores for P. nagasakiensis with increasing temperature. Results suggest that temperature experienced as juveniles can impact aggressive behaviour; however, species-specific thermal tolerances led to behavioural affects that differ among closely related species. Differential thermal tolerance among species may cause restructuring of the interaction network that underlies the structure of reef assemblages.
Collapse
|
18
|
McCormick MI, Ferrari MC, Fakan EP, Barry RP, Chivers DP. Diet cues and their utility for risk assessment in degraded habitats. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Chivers DP, McCormick MI, Fakan EP, Barry RP, Edmiston JW, Ferrari MCO. Coral degradation alters predator odour signatures and influences prey learning and survival. Proc Biol Sci 2019; 286:20190562. [PMID: 31138070 DOI: 10.1098/rspb.2019.0562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitat degradation is a key factor leading to the global loss of biodiversity. This problem is particularly acute in coral reef ecosystems. We investigated whether recognition of predator odours by damselfish was influenced by coral degradation and whether these changes altered survival in the wild. We taught whitespot damselfish to recognize the odour of a predator in the presence of live/healthy coral or dead/degraded coral. Fish were tested for a response to predator odours in environments that matched their conditioning environment or in environments that were mismatched. Next, we taught blue damselfish to recognize the odour of three common reef predators in live and degraded coral environments and then stocked them onto live or degraded patch reefs, where we monitored their subsequent response to predator odour along with their survival. Damselfish learned to recognize predator odours in both coral environments, but the intensity of their antipredator response was much greater when the conditioning and test environments matched. Fish released on degraded coral had about 50% higher survival if they had been trained in the presence of degraded coral rather than live coral. Altering the intensity of antipredator responses could have rather profound consequences on population growth.
Collapse
|
20
|
McCormick MI, Fakan EP, Nedelec SL, Allan BJM. Effects of boat noise on fish fast-start escape response depend on engine type. Sci Rep 2019; 9:6554. [PMID: 31024063 PMCID: PMC6484016 DOI: 10.1038/s41598-019-43099-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/12/2019] [Indexed: 12/02/2022] Open
Abstract
Vessel noise represents a relatively recent but rapidly increasing form of pollution, which affects the many organisms that use sound to inform their behavioural decisions. Recent research shows that anthropogenic noise can lead to reduced responsiveness to risk and higher mortality. The current laboratory experiment determined whether the playback of noise from motorboats powered by two- or four-stroke outboard engines affected the kinematics of the fast-start response in a juvenile coral reef fish, and the time scale over which the effects may occur. Results show that the two engine types produce slightly different sound spectra, which influence fish differently. Playback of 2-stroke engines had the greatest effect on activity, but only for a brief period (45 s). While noise from 4-stroke outboard engines affected fast-start kinematics, they had half the impact of noise from 2-stroke engines. Two-stroke engine noise affected routine swimming more than 4-stroke engines, while 4-stroke noise had a greater effect on the speed at which fish responded to a startle. Evidence suggests that the source of the noise pollution will have a major influence on the way marine organisms will respond, and this gives managers an important tool whereby they may reduce the effects of noise pollution on protected communities.
Collapse
|
21
|
Fakan EP, McCormick MI. Boat noise affects the early life history of two damselfishes. MARINE POLLUTION BULLETIN 2019; 141:493-500. [PMID: 30955760 DOI: 10.1016/j.marpolbul.2019.02.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/15/2019] [Accepted: 02/24/2019] [Indexed: 05/15/2023]
Abstract
Anthropogenic noise can have a negative effect on the physiology and survival of marine fishes. Most research has focused on later life-stages, and few studies have investigated the effects of human-induced noise on embryogenesis. The current study investigated whether playback of motorboat noise affected the embryogenesis of the coral reef damselfishes, Amphiprion melanopus and Acanthochromis polyacanthus. Embryos reared under the playback of boat noise had faster heart rates compared to the ambient reef controls. The effects of noise on morphological development differed between species and the fundamental interrelationships between early life history characteristics changed dramatically under boat noise for Ac. polyacanthus. Noise treatments did not alter the survival rates of embryos under laboratory conditions. Although species specific, our findings suggest that anthropogenic noise causes physiological responses in fishes during embryogenesis and these changes have direct impacts on their development and these alterations may have carry-over effects to later life stages.
Collapse
|
22
|
Laubenstein TD, Rummer JL, McCormick MI, Munday PL. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci Rep 2019; 9:4265. [PMID: 30862781 PMCID: PMC6414711 DOI: 10.1038/s41598-018-36747-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 11/16/2022] Open
Abstract
Many studies have examined the average effects of ocean acidification and warming on phenotypic traits of reef fishes, finding variable, but often negative effects on behavioural and physiological performance. Yet the presence and nature of a relationship between these traits is unknown. A negative relationship between phenotypic traits could limit individual performance and even the capacity of populations to adapt to climate change. Here, we examined the relationship between behavioural and physiological performance of a juvenile reef fish under elevated CO2 and temperature in a full factorial design. Behaviourally, the response to an alarm odour was negatively affected by elevated CO2, but not elevated temperature. Physiologically, aerobic scope was significantly diminished under elevated temperature, but not under elevated CO2. At the individual level, there was no relationship between behavioural and physiological traits in the control and single-stressor treatments. However, a statistically significant negative relationship was detected between the traits in the combined elevated CO2 and temperature treatment. Our results demonstrate that trade-offs in performance between behavioural and physiological traits may only be evident when multiple climate change stressors are considered, and suggest that this negative relationship could limit adaptive potential to climate change.
Collapse
|
23
|
Rodgers GG, Rummer JL, Johnson LK, McCormick MI. Impacts of increased ocean temperatures on a low-latitude coral reef fish - Processes related to oxygen uptake and delivery. J Therm Biol 2019; 79:95-102. [PMID: 30612692 DOI: 10.1016/j.jtherbio.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/23/2018] [Accepted: 12/09/2018] [Indexed: 02/04/2023]
Abstract
Increasing temperatures are expected to significantly affect the physiological performance of ectotherms, particularly in tropical locations. The shape of an organism's thermal reaction norm can provide important information on its capacity to persist under climate change scenarios; however, difficulty lies in choosing a measurable trait that best depicts physiological performance. This study investigated the effects of elevated temperatures on processes related to oxygen uptake and delivery, including oxygen consumption, haematology, and tissue health for a low-latitude population of coral reef damselfish. Acanthochromis polyacanthus were collected from the Torres Strait (10°31-46'S, 142°20-35'E) and maintained at current average ocean temperatures (+0 °C; seasonally cycling), + 1.5 °C and + 3 °C higher than present day temperatures for 10 months. Aerobic performance indicated a limit to metabolic function at + 3 °C (33 °C), following an increase in aerobic capacity at + 1.5 °C (31.5 °C). Neither haematological parameters nor gill morphology showed the same improvement in performance at + 1.5 °C. Gill histopathology provided the first indicator of a decline in organism health, which corresponded with mortality observations from previous research. Findings from this study suggest thermal specialisation in this low-latitude population as well as variation in thermal sensitivity, depending on the physiological trait.
Collapse
|
24
|
Ferrari MCO, McCormick MI, Meekan MG, Simpson SD, Nedelec SL, Chivers DP. School is out on noisy reefs: the effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proc Biol Sci 2019; 285:rspb.2018.0033. [PMID: 29386370 DOI: 10.1098/rspb.2018.0033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/30/2023] Open
Abstract
Noise produced by anthropogenic activities is increasing in many marine ecosystems. We investigated the effect of playback of boat noise on fish cognition. We focused on noise from small motorboats, since its occurrence can dominate soundscapes in coastal communities, the number of noise-producing vessels is increasing rapidly and their proximity to marine life has the potential to cause deleterious effects. Cognition-or the ability of individuals to learn and remember information-is crucial, given that most species rely on learning to achieve fitness-promoting tasks, such as finding food, choosing mates and recognizing predators. The caveat with cognition is its latent effect: the individual that fails to learn an important piece of information will live normally until the moment where it needs the information to make a fitness-related decision. Such latent effects can easily be overlooked by traditional risk assessment methods. Here, we conducted three experiments to assess the effect of boat noise playbacks on the ability of fish to learn to recognize predation threats, using a common, conserved learning paradigm. We found that fish that were trained to recognize a novel predator while being exposed to 'reef + boat noise' playbacks failed to subsequently respond to the predator, while their 'reef noise' counterparts responded appropriately. We repeated the training, giving the fish three opportunities to learn three common reef predators, and released the fish in the wild. Those trained in the presence of 'reef + boat noise' playbacks survived 40% less than the 'reef noise' controls over our 72 h monitoring period, a performance equal to that of predator-naive fish. Our last experiment indicated that these results were likely due to failed learning, as opposed to stress effects from the sound exposure. Neither playbacks nor real boat noise affected survival in the absence of predator training. Our results indicate that boat noise has the potential to cause latent effects on learning long after the stressor has gone.
Collapse
|
25
|
Domenici P, Allan BJM, Lefrançois C, McCormick MI. The effect of climate change on the escape kinematics and performance of fishes: implications for future predator-prey interactions. CONSERVATION PHYSIOLOGY 2019; 7:coz078. [PMID: 31723432 PMCID: PMC6839432 DOI: 10.1093/conphys/coz078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 05/21/2023]
Abstract
Climate change can have a pronounced impact on the physiology and behaviour of fishes. Notably, many climate change stressors, such as global warming, hypoxia and ocean acidification (OA), have been shown to alter the kinematics of predator-prey interactions in fishes, with potential effects at ecological levels. Here, we review the main effects of each of these stressors on fish escape responses using an integrative approach that encompasses behavioural and kinematic variables. Elevated temperature was shown to affect many components of the escape response, including escape latencies, kinematics and maximum swimming performance, while the main effect of hypoxia was on escape responsiveness and directionality. OA had a negative effect on the escape response of juvenile fish by decreasing their directionality, responsiveness and locomotor performance, although some studies show no effect of acidification. The few studies that have explored the effects of multiple stressors show that temperature tends to have a stronger effect on escape performance than OA. Overall, the effects of climate change on escape responses may occur through decreased muscle performance and/or an interference with brain and sensory functions. In all of these cases, since the escape response is a behaviour directly related to survival, these effects are likely to be fundamental drivers of changes in marine communities. The overall future impact of these stressors is discussed by including their potential effects on predator attack behaviour, thereby allowing the development of potential future scenarios for predator-prey interactions.
Collapse
|