1
|
Zhou EY, Knox HJ, Reinhardt CJ, Partipilo G, Nilges MJ, Chan J. Near-Infrared Photoactivatable Nitric Oxide Donors with Integrated Photoacoustic Monitoring. J Am Chem Soc 2018; 140:11686-11697. [PMID: 30198716 PMCID: PMC7331458 DOI: 10.1021/jacs.8b05514] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoacoustic (PA) tomography is a noninvasive technology that utilizes near-infrared (NIR) excitation and ultrasonic detection to image biological tissue at centimeter depths. While several activatable small-molecule PA sensors have been developed for various analytes, the use of PA molecules for deep-tissue analyte delivery and monitoring remains an underexplored area of research. Herein, we describe the synthesis, characterization, and in vivo validation of photoNOD-1 and photoNOD-2, the first organic, NIR-photocontrolled nitric oxide (NO) donors that incorporate a PA readout of analyte release. These molecules consist of an aza-BODIPY dye appended with an aryl N-nitrosamine NO-donating moiety. The photoNODs exhibit chemostability to various biological stimuli, including redox-active metals and CYP450 enzymes, and demonstrate negligible cytotoxicity in the absence of irradiation. Upon single-photon NIR irradiation, photoNOD-1 and photoNOD-2 release NO as well as rNOD-1 or rNOD-2, PA-active products that enable ratiometric monitoring of NO release. Our in vitro studies show that, upon irradiation, photoNOD-1 and photoNOD-2 exhibit 46.6-fold and 21.5-fold ratiometric turn-ons, respectively. Moreover, unlike existing NIR NO donors, the photoNODs do not require encapsulation or multiphoton activation for use in live animals. In this study, we use PA tomography to monitor the local, irradiation-dependent release of NO from photoNOD-1 and photoNOD-2 in mice after subcutaneous treatment. In addition, we use a murine model for breast cancer to show that photoNOD-1 can selectively affect tumor growth rates in the presence of NIR light stimulation following systemic administration.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
136 |
2
|
Bacic G, Nilges MJ, Magin RL, Walczak T, Swartz HM. In vivo localized ESR spectroscopy reflecting metabolism. Magn Reson Med 1989; 10:266-72. [PMID: 2761384 DOI: 10.1002/mrm.1910100211] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Localized electron spin resonance spectroscopy in live mice was performed using a surface coil operating at 1.1 GHz with sufficient sensitivity and stability to measure quantitatively the time course of the distribution, uptake, and reduction of nitroxides in selected organs/regions (liver, bladder, head) of mice. The ability to measure regional concentrations of nitroxides in vivo could be used for pharmacokinetic analysis of drugs labeled with nitroxides and for measurement of oxygen concentrations and redox metabolism.
Collapse
|
|
36 |
113 |
3
|
Weiner BE, Huang H, Dattilo BM, Nilges MJ, Fanning E, Chazin WJ. An Iron-Sulfur Cluster in the C-terminal Domain of the p58 Subunit of Human DNA Primase. J Biol Chem 2007; 282:33444-33451. [PMID: 17893144 DOI: 10.1074/jbc.m705826200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA primase synthesizes short RNA primers that are required to initiate DNA synthesis on the parental template strands during DNA replication. Eukaryotic primase contains two subunits, p48 and p58, and is normally tightly associated with DNA polymerase alpha. Despite the fundamental importance of primase in DNA replication, structural data on eukaryotic DNA primase are lacking. The p48/p58 dimer was subjected to limited proteolysis, which produced two stable structural domains: one containing the bulk of p48 and the other corresponding to the C-terminal fragment of p58. These domains were identified by mass spectrometry and N-terminal sequencing. The C-terminal p58 domain (p58C) was expressed, purified, and characterized. CD and NMR spectroscopy experiments demonstrated that p58C forms a well folded structure. The protein has a distinctive brownish color, and evidence from inductively coupled plasma mass spectrometry, UV-visible spectrophotometry, and EPR spectroscopy revealed characteristics consistent with the presence of a [4Fe-4S] high potential iron protein cluster. Four putative cysteine ligands were identified using a multiple sequence alignment, and substitution of just one was sufficient to cause loss of the iron-sulfur cluster and a reduction in primase enzymatic activity relative to the wild-type protein. The discovery of an iron-sulfur cluster in DNA primase that contributes to enzymatic activity provides the first suggestion that the DNA replication machinery may have redox-sensitive activities. Our results offer new horizons in which to investigate the function of high potential [4Fe-4S] clusters in DNA-processing machinery.
Collapse
|
|
18 |
104 |
4
|
Enochs WS, Nilges MJ, Swartz HM. A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. PIGMENT CELL RESEARCH 1993; 6:91-9. [PMID: 8391699 DOI: 10.1111/j.1600-0749.1993.tb00587.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Melanins are complex, incompletely understood polymeric pigments that historically have been difficult to investigate with common chemical, histochemical, and physicochemical techniques. Because these pigments uniquely contain a stable population of organic free radicals, electron paramagnetic resonance (EPR) spectroscopy is a particularly effective method for studying them, and a set of qualitative EPR criteria has been established for their identification. However, a number of practical problems have arisen in applying these criteria to identify and characterize unknown pigments in relatively scarce pathological specimens, indicating that a standardized approach is needed. As reported here, a standardized EPR test for melanin based on the EPR criteria has been developed, guided by the requirements that it be sensitive, accurate, simple, and easy to interpret. It has been evaluated using the well-characterized synthetic melanin prepared by alkaline autooxidation of 5,6-dihydroxyphenylalanine (Dopa) and initially applied to the identification and characterization of an unknown pigment purified from an unusual malignant lung tumor.
Collapse
|
|
32 |
101 |
5
|
Diril H, Chang HR, Nilges MJ, Zhang X, Potenza JA, Schugar HJ, Isied SS, Hendrickson DN. Simulation strategies for unusual EPR spectra of binuclear mixed-valence manganese complexes: synthesis, properties, and x-ray structures of the MnIIMnIII complexes [Mn2(bpmp)(.mu.-OAc)2](ClO4)2.cntdot.H2O and [Mn2(bcmp)(.mu.-OAc)2](ClO4)2.cntdot.CH2Cl2. J Am Chem Soc 2002. [DOI: 10.1021/ja00196a013] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
23 |
99 |
6
|
Justice AK, De Gioia L, Nilges MJ, Rauchfuss TB, Wilson SR, Zampella G. Redox and structural properties of mixed-valence models for the active site of the [FeFe]-hydrogenase: progress and challenges. Inorg Chem 2008; 47:7405-14. [PMID: 18620387 PMCID: PMC2562777 DOI: 10.1021/ic8007552] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The one-electron oxidations of a series of diiron(I) dithiolato carbonyls were examined to evaluate the factors that affect the oxidation state assignments, structures, and reactivity of these low-molecular weight models for the H ox state of the [FeFe]-hydrogenases. The propanedithiolates Fe 2(S 2C 3H 6)(CO) 3(L)(dppv) (L = CO, PMe 3, P i-Pr 3) oxidize at potentials approximately 180 mV milder than the related ethanedithiolates ( Angew. Chem., Int. Ed. 2007, 46, 6152). The steric clash between the central methylene of the propanedithiolate and the phosphine favors the rotated structure, which forms upon oxidation. Electron Paramagnetic Resonance (EPR) spectra for the mixed-valence cations indicate that the unpaired electron is localized on the Fe(CO)(dppv) center in both [Fe 2(S 2C 3H 6)(CO) 4(dppv)]BF 4 and [Fe 2(S 2C 3H 6)(CO) 3(PMe 3)(dppv)]BF 4, as seen previously for the ethanedithiolate [Fe 2(S 2C 2H 4)(CO) 3(PMe 3)(dppv)]BF 4. For [Fe 2(S 2C n H 2 n )(CO) 3(P i-Pr 3)(dppv)]BF 4; however, the spin is localized on the Fe(CO) 2(P i-Pr 3) center, although the Fe(CO)(dppv) site is rotated in the crystalline state. IR and EPR spectra, as well as redox potentials and density-functional theory (DFT) calculations, suggest that the Fe(CO) 2(P i-Pr 3) site is rotated in solution, driven by steric factors. Analysis of the DFT-computed partial atomic charges for the mixed-valence species shows that the Fe atom featuring a vacant apical coordination position is an electrophilic Fe(I) center. One-electron oxidation of [Fe 2(S 2C 2H 4)(CN)(CO) 3(dppv)] (-) resulted in 2e oxidation of 0.5 equiv to give the mu-cyano derivative [Fe (I) 2(S 2C 2H 4)(CO) 3(dppv)](mu-CN)[Fe (II) 2(S 2C 2H 4)(mu-CO)(CO) 2(CN)(dppv)], which was characterized spectroscopically.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
97 |
7
|
Mirts EN, Petrik ID, Hosseinzadeh P, Nilges MJ, Lu Y. A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme. Science 2018; 361:1098-1101. [PMID: 30213908 DOI: 10.1126/science.aat8474] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023]
Abstract
Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved-through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites-to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
96 |
8
|
Pugh RA, Honda M, Leesley H, Thomas A, Lin Y, Nilges MJ, Cann IKO, Spies M. The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction. J Biol Chem 2007; 283:1732-1743. [PMID: 18029358 DOI: 10.1074/jbc.m707064200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helicases often achieve functional specificity through utilization of unique structural features incorporated into an otherwise conserved core. The archaeal Rad3 (xeroderma pigmentosum group D protein (XPD)) helicase is a prototypical member of the Rad3 family, distinct from other related (superfamily II) SF2 enzymes because of a unique insertion containing an iron-sulfur (FeS) cluster. This insertion may represent an auxiliary domain responsible for modifying helicase activity or for conferring specificity for selected DNA repair intermediates. The importance of the FeS cluster for the fine-tuning of Rad3-DNA interactions is illustrated by several clinically relevant point mutations in the FeS domain of human Bach1 (FancJ) and XPD helicases that result in distinct disease phenotypes. Here we analyzed the substrate specificity of the Rad3 (XPD) helicase from Ferroplasma acidarmanus (FacRad3) and probed the importance of the FeS cluster for Rad3-DNA interactions. We found that the FeS cluster stabilizes secondary structure of the auxiliary domain important for coupling of single-stranded (ss) DNA-dependent ATP hydrolysis to ssDNA translocation. Additionally, we observed specific quenching of the Cy5 fluorescent dye when the FeS cluster of a bound helicase is positioned in close proximity to a Cy5 fluorophore incorporated into the DNA molecule. Taking advantage of this Cy5 quenching, we developed an equilibrium assay for analysis of the Rad3 interactions with various DNA substrates. We determined that the FeS cluster-containing domain recognizes the ssDNA-double-stranded DNA junction and positions the helicase in an orientation consistent with duplex unwinding. Although it interacts specifically with the junction, the enzyme binds tightly to ssDNA, and the single-stranded regions of the substrate are the major contributors to the energetics of FacRad3-substrate interactions.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
82 |
9
|
Barquera B, Morgan JE, Lukoyanov D, Scholes CP, Gennis RB, Nilges MJ. X- and W-band EPR and Q-band ENDOR studies of the flavin radical in the Na+ -translocating NADH:quinone oxidoreductase from Vibrio cholerae. J Am Chem Soc 2003; 125:265-75. [PMID: 12515529 DOI: 10.1021/ja0207201] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Na(+)-NQR is the entry point for electrons into the respiratory chain of Vibrio cholerae. It oxidizes NADH, reduces ubiquinone, and uses the free energy of this redox reaction to translocate sodium across the cell membrane. The enzyme is a membrane complex of six subunits that accommodates a 2Fe-2S center and several flavins. Both the oxidized and reduced forms of Na(+)-NQR exhibit a radical EPR signal. Here, we present EPR and ENDOR data that demonstrate that, in both forms of the enzyme, the radical is a flavin semiquinone. In the oxidized enzyme, the radical is a neutral flavin, but in the reduced enzyme the radical is an anionic flavin, where N(5) is deprotonated. By combining results of ENDOR and multifrequency continuous wave EPR, we have made an essentially complete determination of the g-matrix and all major nitrogen and proton hyperfine matrices. From careful analysis of the W-band data, the full g-matrix of a flavin radical has been determined. For the neutral radical, the g-matrix has significant rhombic character, but this is significantly decreased in the anionic radical. The out-of-plane component of the g-matrix and the nitrogen hyperfine matrices are found to be noncoincident as a result of puckering of the pyrazine ring. Two possible assignments of the radical signals are considered. The neutral and anionic forms of the radical may each arise from a different flavin cofactor, one of which is converted from semiquinone to flavohydroquinone, while the other goes from flavoquinone to semiquinone, at almost exactly the same redox potential, during reduction of the enzyme. Alternatively, both forms of the radical signal may arise from a single, extremely stable, flavin semiquinone, which becomes deprotonated upon reduction of the enzyme.
Collapse
|
|
22 |
74 |
10
|
Berry SM, Gieselman MD, Nilges MJ, van Der Donk WA, Lu Y. An engineered azurin variant containing a selenocysteine copper ligand. J Am Chem Soc 2002; 124:2084-5. [PMID: 11878940 DOI: 10.1021/ja0169163] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modulating the properties of proteins through de novo design or redesign of existing proteins has been a longstanding goal in protein chemistry. Over the past two decades, site-directed mutagenesis has been a powerful tool to probe the role of certain residues and to fine-tune the activity of proteins. A limitation of this approach has been the accessibility of only a restricted number of functional groups through the 20 amino acids in the genetic code. The more recent technique of expressed protein ligation (EPL) provides an alternative route that allows efficient incorporation of nonnatural residues into proteins. We report here the preparation and spectroscopic characterization of an azurin variant in which a cysteine ligand to the blue copper center has been replaced by EPL with selenocysteine (Sec). This reports marks the first time that selenocysteine is artificially incorporated into the active site of a metalloprotein. The variant displays a significantly increased A(parallel) (from 56 to 104 G) and red-shifted CT band (from 625 to 677 nm), while maintaining the general type 1 copper characteristics, including similarity in reduction potentials. This study illustrates that iso-structural substitution using EPL can fine-tune the structural and functional properties of a metal-binding site without loss of most of its characteristics. Further spectroscopic and X-ray crystallographic studies of this and other EPL variants will provide new insights into the fine-control of the structure and function of metalloproteins.
Collapse
|
|
23 |
73 |
11
|
Justice AK, Nilges MJ, Rauchfuss TB, Wilson SR, De Gioia L, Zampella G. Diiron dithiolato carbonyls related to the H(ox)CO state of [FeFe]-hydrogenase. J Am Chem Soc 2008; 130:5293-301. [PMID: 18341276 PMCID: PMC2435217 DOI: 10.1021/ja7113008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation of the electron-rich (E(1/2) = -175 vs Ag/AgCl) ethanedithiolato complex Fe2(S2C2H4)(CO)2(dppv)2 (1) under a CO atmosphere yielded [Fe2(S2C2H4)(mu-CO)(CO)2(dppv)2](+) ([1(CO)](+)), a model for the H(ox)(CO) state of the [FeFe]-hydrogenases. This complex exists as two isomers: a kinetically favored unsymmetrical derivative, unsym-[1(CO)](+), and a thermodynamically favored isomer, sym-[1(CO)](+), wherein both diphosphines span apical and basal sites. Crystallographic characterization of sym-[1(CO)](+) confirmed a C2-symmetric structure with a bridging CO ligand and an elongated Fe-Fe bond of 2.7012(14) A, as predicted previously. Oxidation of sym-[1(CO)](+) and unsym-[1(CO)](+) again by 1e(-) oxidation afforded the respective diamagnetic diferrous derivatives where the relative stabilities of the sym and unsym isomers are reversed. DFT calculations indicate that the stabilities of sym and unsym isomers are affected differently by the oxidation state of the diiron unit: the mutually trans CO ligands in the sym isomer are more destabilizing in the mixed-valence state than in the diferrous state. EPR analysis of mixed-valence complexes revealed that, for [1](+), the unpaired spin is localized on a single iron center, whereas for unsym/sym-[1(CO)](+), the unpaired spin was delocalized over both iron centers, as indicated by the magnitude of the hyperfine coupling to the phosphine ligands trans to the Fe-Fe vector. Oxidation of 1 by 2 equiv of acetylferrocenium afforded the dication [1](2+), which, on the basis of low-temperature IR spectrum, is structurally similar to [1](+). Treatment of [1](2+) with CO gives unsym-[1(CO)](2+).
Collapse
|
Research Support, N.I.H., Extramural |
17 |
68 |
12
|
Chang HR, Diril H, Nilges MJ, Zhang X, Potenza JA, Schugar HJ, Hendrickson DN, Isied SS. An unusually stable manganese(II)manganese(III) complex with novel EPR spectra: synthesis, structure, magnetism, and EPR analysis. J Am Chem Soc 2002. [DOI: 10.1021/ja00210a067] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
62 |
13
|
Wang W, Nilges MJ, Rauchfuss TB, Stein M. Isolation of a Mixed Valence Diiron Hydride: Evidence for a Spectator Hydride in Hydrogen Evolution Catalysis. J Am Chem Soc 2013; 135:3633-9. [DOI: 10.1021/ja312458f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
|
12 |
60 |
14
|
Yu Y, Lv X, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ, Wang J, Lu Y. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. J Am Chem Soc 2015; 137:4594-7. [PMID: 25672571 PMCID: PMC4676419 DOI: 10.1021/ja5109936] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 12/31/2022]
Abstract
While a conserved tyrosine (Tyr) is found in oxidases, the roles of phenol ring pKa and reduction potential in O2 reduction have not been defined despite many years of research on numerous oxidases and their models. These issues represent major challenges in our understanding of O2 reduction mechanism in bioenergetics. Through genetic incorporation of unnatural amino acid analogs of Tyr, with progressively decreasing pKa of the phenol ring and increasing reduction potential, in the active site of a functional model of oxidase in myoglobin, a linear dependence of both the O2 reduction activity and the fraction of H2O formation with the pKa of the phenol ring has been established. By using these unnatural amino acids as spectroscopic probe, we have provided conclusive evidence for the location of a Tyr radical generated during reaction with H2O2, by the distinctive hyperfine splitting patterns of the halogenated tyrosines and one of its deuterated derivatives incorporated at the 33 position of the protein. These results demonstrate for the first time that enhancing the proton donation ability of the Tyr enhances the oxidase activity, allowing the Tyr analogs to augment enzymatic activity beyond that of natural Tyr.
Collapse
|
rapid-communication |
10 |
59 |
15
|
Ralle M, Berry SM, Nilges MJ, Gieselman MD, van der Donk WA, Lu Y, Blackburn NJ. The Selenocysteine-Substituted Blue Copper Center: Spectroscopic Investigations of Cys112SeCys Pseudomonas aeruginosa Azurin. J Am Chem Soc 2004; 126:7244-56. [PMID: 15186162 DOI: 10.1021/ja031821h] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Azurin is a small electron-transfer protein belonging to the cupredoxin family. The Cu atom is located within a trigonal plane coordinated by two histidines (His46 and His117) and a cysteine (Cys112) with two more distant ligands (Gly45 and Met121) providing axial interactions. A Cys112SeCys derivative has been prepared by expressed protein ligation, and detailed UV/vis, EPR and EXAFS studies at the Cu and Se K-edges have been carried out. Marked changes are observed between the EPR parameters of the Cys112SeCys and WT azurin derivatives, which include a 2-fold increase in A(||), a decrease in g-values, and a large increase in rhombicity of the g-tensor. The Cu-Se and Se-Cu bond lengths obtained from analysis of the Cu and Se K-EXAFS of the oxidized protein were found to be 2.30 and 2.31 A, respectively, 0.14 A longer than the Cu-S distance of the WT protein. Unexpectedly, the Cu-Se bond lengths were found to undergo only minor changes during reduction, suggesting a very similar structure in both redox states and extending the "rack" hypothesis to the Se-substituted protein.
Collapse
|
|
21 |
58 |
16
|
Schilter D, Nilges MJ, Chakrabarti M, Lindahl PA, Rauchfuss TB, Stein M. Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site. Inorg Chem 2012; 51:2338-48. [PMID: 22304696 PMCID: PMC3288512 DOI: 10.1021/ic202329y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of mixed-valence nickel-iron dithiolates is described. Oxidation of (diphosphine)Ni(dithiolate)Fe(CO)(3) complexes 1, 2, and 3 with ferrocenium salts affords the corresponding tricarbonyl cations [(dppe)Ni(pdt)Fe(CO)(3)](+) ([1](+)), [(dppe)Ni(edt)Fe(CO)(3)](+) ([2](+)) and [(dcpe)Ni(pdt)Fe(CO)(3)](+) ([3](+)), respectively, where dppe = Ph(2)PCH(2)CH(2)PPh(2), dcpe = Cy(2)PCH(2)CH(2)PCy(2), (Cy = cyclohexyl), pdtH(2) = HSCH(2)CH(2)CH(2)SH, and edtH(2) = HSCH(2)CH(2)SH. The cation [2](+) proved unstable, but the propanedithiolates are robust. IR and EPR spectroscopic measurements indicate that these species exist as C(s)-symmetric species. Crystallographic characterization of [3]BF(4) shows that Ni is square planar. Interaction of [1]BF(4) with P-donor ligands (L) afforded a series of substituted derivatives of type [(dppe)Ni(pdt)Fe(CO)(2)L]BF(4) for L = P(OPh)(3) ([4a]BF(4)), P(p-C(6)H(4)Cl)(3) ([4b]BF(4)), PPh(2)(2-py) ([4c]BF(4)), PPh(2)(OEt) ([4d]BF(4)), PPh(3) ([4e]BF(4)), PPh(2)(o-C(6)H(4)OMe) ([4f]BF(4)), PPh(2)(o-C(6)H(4)OCH(2)OMe) ([4g]BF(4)), P(p-tol)(3) ([4h]BF(4)), P(p-C(6)H(4)OMe)(3) ([4i]BF(4)), and PMePh(2) ([4j]BF(4)). EPR analysis indicates that ethanedithiolate [2](+) exists as a single species at 110 K, whereas the propanedithiolate cations exist as a mixture of two conformers, which are proposed to be related through a flip of the chelate ring. Mössbauer spectra of 1 and oxidized S = 1/2 [4e]BF(4) are both consistent with a low-spin Fe(I) state. The hyperfine coupling tensor of [4e]BF(4) has a small isotropic component and significant anisotropy. DFT calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the SOMOs in complexes of the present type are localized in an Fe(I)-centered d(z(2)) orbital. The DFT calculations allow an assignment of oxidation states of the metals and rationalization of the conformers detected by EPR spectroscopy. Treatment of [1](+) with CN(-) and compact basic phosphines results in complex reactions. With dppe, [1](+) undergoes quasi-disproportionation to give 1 and the diamagnetic complex [(dppe)Ni(pdt)Fe(CO)(2)(dppe)](2+) ([5](2+)), which features square-planar Ni linked to an octahedral Fe center.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
57 |
17
|
Weisser JT, Nilges MJ, Sever MJ, Wilker JJ. EPR Investigation and Spectral Simulations of Iron−Catecholate Complexes and Iron−Peptide Models of Marine Adhesive Cross-Links. Inorg Chem 2006; 45:7736-47. [PMID: 16961365 DOI: 10.1021/ic060685p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron paramagnetic resonance (EPR) spectra are presented for iron complexes of catecholate, tironate, and a 3,4-dihydroxyphenylalanine (DOPA)-containing peptide of sequence Ac-Ala-DOPA-Thr-Pro-CONH2 ("AdopaTP"). This peptide was prepared to model potential metal-protein cross-links in the adhesive used by marine mussels, Mytilus edulis, for affixing themselves to surfaces. Spectra are shown for iron bound to each ligand in mono, bis, and tris coordination environments. For example, the catecholate complexes {Fe(cat)}, {Fe(cat)2}, and [Fe(cat)3]3- are provided. Detailed simulations are presented to describe the origin of spectra for the iron-catecholate and iron-peptide species, which show that the spectral features can be accounted for only with the inclusion of D- and E-strain. The spectroscopy of each compound is shown under both anaerobic and aerobic conditions. When exposed to air, the high-spin Fe3+ signal of [Fe(AdopaTP)3]3- decreases and an organic radical is formed. No other sample exhibited an appreciable radical signal. These data are discussed in light of the biomaterial synthesis carried out by marine mussels.
Collapse
|
|
19 |
57 |
18
|
Clark KM, Yu Y, Marshall NM, Sieracki NA, Nilges MJ, Blackburn NJ, van der Donk WA, Lu Y. Transforming a blue copper into a red copper protein: engineering cysteine and homocysteine into the axial position of azurin using site-directed mutagenesis and expressed protein ligation. J Am Chem Soc 2010; 132:10093-101. [PMID: 20608676 DOI: 10.1021/ja102632p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interactions of the axial ligand with its blue copper center are known to be important in tuning spectroscopic and redox properties of cupredoxins. While conversion of the blue copper center with a weak axial ligand to a green copper center containing a medium strength axial ligand has been demonstrated in cupredoxins, converting the blue copper center to a red copper center with a strong axial ligand has not been reported. Here we show that replacing Met121 in azurin from Pseudomonas aeruginosa with Cys caused an increased ratio (R(L)) of absorption at 447 nm over that at 621 nm. Whereas no axial Cu-S(Cys121) interaction in Met121Cys was detectable by extended X-ray absorption fine structure (EXAFS) spectroscopy at pH 5, similar to what was observed in native azurin with Met121 as the axial ligand, the Cu-S(Cys121) interaction at 2.74 A is clearly visible at higher pH. Despite the higher R(L) and stronger axial Cys121 interaction with Cu(II) ion, the Met121Cys variant remains largely a type 1 copper protein at low pH (with hyperfine coupling constant A( parallel) = 54 x 10(-4) cm(-1) at pH 4 and 5), or distorted type 1 or green copper protein at high pH (A(parallel) = 87 x 10(-4) cm(-1) at pH 8 and 9), attributable to the relatively long distance between the axial ligand and copper and the constraint placed by the protein scaffold. To shorten the distance between axial ligand and copper, we replaced Met121 with a nonproteinogenic amino acid homocysteine that contains an extra methylene group, resulting in a variant whose spectra (R(L)= 1.5, and A(parallel) = 180 x 10(-4) cm(-1)) and Cu-S(Cys) distance (2.22 A) are very similar to those of the red copper protein nitrosocyanin. Replacing Met121 with Cys or homocysteine resulted in lowering of the reduction potential from 222 mV in the native azurin to 95 +/- 3 mV for Met121Cys azurin and 113 +/- 6 mV for Met121Hcy azurin at pH 7. The results strongly support the "coupled distortion" model that helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of using unnatural amino acids to address critical chemical biological questions.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
54 |
19
|
Backiel J, Juárez O, Zagorevski DV, Wang Z, Nilges MJ, Barquera B. Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae. Biochemistry 2008; 47:11273-84. [PMID: 18831535 DOI: 10.1021/bi800920j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes of the Rnf family are believed to be bacterial redox-driven ion pumps, coupling an oxidoreduction process to the translocation of Na+ across the cell membrane. Here we show for the first time that Rnf is a flavoprotein, with FMN covalently bound to threonine-175 in RnfG and a second flavin bound to threonine-187 in RnfD. Rnf subunits D and G are homologous to subunits B and C of Na+-NQR, respectively. Each of these Na+-NQR subunits includes a conserved S(T)GAT motif, with FMN covalently bound to the final threonine. RnfD and RnfG both contain the same motif, suggesting that they bind flavins in a similar way. In order to investigate this, the genes for RnfD and RnfG from Vibrio cholerae were cloned and expressed individually in that organism. In both cases the produced protein fluoresced under UV illumination on an SDS gel, further indicating the presence of flavin. However, analysis of the mutants RnfG-T175L, RnfD-T278L, and RnfD-T187V showed that RnfG-T175 and RnfD-T187 are the likely flavin ligands. This indicates that, in the case of RnfD, the flavin is bound, not to the SGAT sequence but to the final residues of a TMAT sequence, a novel variant of the flavin binding motif. In the case of RnfG, flavin analysis, followed by MALDI-TOF-TOF mass spectrometry, showed that an FMN is covalently attached to threonine-175, the final threonine of the S(T)GAT sequence. Studies by visible, EPR, and ENDOR spectroscopy showed that, upon partial reduction, the isolated RnfG produces a neutral semiquinone intermediate. The semiquinone species disappeared upon full reduction and was not observed in the denatured protein. A topological analysis combining reporter protein fusion and computer predictions indicated that the flavins in RnfG and RnfD are localized in the periplasmic space. In contrast, in NqrC and NqrB the flavins are located in a cytoplasmic loop. This topological analysis suggests that there may be mechanistic differences between the Rnf and Na+-NQR complexes.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
52 |
20
|
Barquera B, Ramirez-Silva L, Morgan JE, Nilges MJ. A New Flavin Radical Signal in the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae. J Biol Chem 2006; 281:36482-91. [PMID: 16973619 DOI: 10.1074/jbc.m605765200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-pumping NADH-ubiquinone oxidoreductase has six polypeptide subunits (NqrA-F) and a number of redox cofactors, including a noncovalently bound FAD and a 2Fe-2S center in subunit F, covalently bound FMNs in subunits B and C, and a noncovalently bound riboflavin in an undisclosed location. The FMN cofactors in subunits B and C are bound to threonine residues by phosphoester linkages. A neutral flavin-semiquinone radical is observed in the oxidized enzyme, whereas an anionic flavin-semiquinone has been reported in the reduced enzyme. For this work, we have altered the binding ligands of the FMNs in subunits B and C by replacing the threonine ligands with other amino acids, and we studied the resulting mutants by EPR and electron nuclear double resonance spectroscopy. We conclude that the sodium-translocating NADH:quinone oxidoreductase forms three spectroscopically distinct flavin radicals as follows: 1) a neutral radical in the oxidized enzyme, which is observed in all of the mutants and most likely arises from the riboflavin; 2) an anionic radical observed in the fully reduced enzyme, which is present in wild type, and the NqrC-T225Y mutant but not the NqrB-T236Y mutant; 3) a second anionic radical, seen primarily under weakly reducing conditions, which is present in wild type, and the NqrB-T236Y mutant but not the NqrC-T225Y mutant. Thus, we can tentatively assign the first anionic radical to the FMN in subunit B and the second to the FMN in subunit C. The second anionic radical has not been reported previously. In electron nuclear double resonance spectra, it exhibits a larger line width and larger 8alpha-methyl proton splittings, compared with the first anionic radical.
Collapse
|
|
19 |
50 |
21
|
Ulloa OA, Huynh MT, Richers CP, Bertke JA, Nilges MJ, Hammes-Schiffer S, Rauchfuss TB. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. J Am Chem Soc 2016; 138:9234-45. [PMID: 27328053 DOI: 10.1021/jacs.6b04579] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intermediacy of a reduced nickel-iron hydride in hydrogen evolution catalyzed by Ni-Fe complexes was verified experimentally and computationally. In addition to catalyzing hydrogen evolution, the highly basic and bulky (dppv)Ni(μ-pdt)Fe(CO)(dppv) ([1](0); dppv = cis-C2H2(PPh2)2) and its hydride derivatives have yielded to detailed characterization in terms of spectroscopy, bonding, and reactivity. The protonation of [1](0) initially produces unsym-[H1](+), which converts by a first-order pathway to sym-[H1](+). These species have C1 (unsym) and Cs (sym) symmetries, respectively, depending on the stereochemistry of the octahedral Fe site. Both experimental and computational studies show that [H1](+) protonates at sulfur. The S = 1/2 hydride [H1](0) was generated by reduction of [H1](+) with Cp*2Co. Density functional theory (DFT) calculations indicate that [H1](0) is best described as a Ni(I)-Fe(II) derivative with significant spin density on Ni and some delocalization on S and Fe. EPR spectroscopy reveals both kinetic and thermodynamic isomers of [H1](0). Whereas [H1](+) does not evolve H2 upon protonation, treatment of [H1](0) with acids gives H2. The redox state of the "remote" metal (Ni) modulates the hydridic character of the Fe(II)-H center. As supported by DFT calculations, H2 evolution proceeds either directly from [H1](0) and external acid or from protonation of the Fe-H bond in [H1](0) to give a labile dihydrogen complex. Stoichiometric tests indicate that protonation-induced hydrogen evolution from [H1](0) initially produces [1](+), which is reduced by [H1](0). Our results reconcile the required reductive activation of a metal hydride and the resistance of metal hydrides toward reduction. This dichotomy is resolved by reduction of the remote (non-hydride) metal of the bimetallic unit.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
50 |
22
|
Andruzzi L, Nakano M, Nilges MJ, Blackburn NJ. Spectroscopic Studies of Metal Binding and Metal Selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p. J Am Chem Soc 2005; 127:16548-58. [PMID: 16305244 DOI: 10.1021/ja0529539] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sco1 is a mitochondrial membrane protein involved in the assembly of the CuA site of cytochrome c oxidase. The Bacillus subtilis genome contains a homologue of yeast Sco1, YpmQ (hereafter termed BSco), deletion of which leads to a phenotype lacking in caa3 (CuA-containing) oxidase activity but expressing normal levels of aa3 (quinol) oxidase activity. Here, we report the characterization of the metal binding site of BSco in its Cu(I)-, Cu(II)-, Zn(II)-, and Ni(II)-bound forms. Apo BSco was found to bind Cu(II), Zn(II), and Ni(II) at a 1:1 protein/metal ratio. The Cu(I) protein could be prepared by either dithionite reduction of the Cu(II) derivative or by reconstitution of the apo protein with Cu(I). X-ray absorption (XAS) spectroscopy showed that Cu(I) was coordinated by two cysteines at 2.22 +/- 0.01 A and by a weakly bound low-Z scatterer at 1.95 +/- 0.03 A. The Cu(II) derivative was reddish-orange and exhibited a strong type-2 thiolate to Cu(II) transition around 350 nm. Multifrequency electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and electron spin-echo envelope modulation (ESEEM) studies on the Cu(II) derivative provided evidence of one strongly coupled histidine residue, at least one strongly coupled cysteine, and coupling to an exchangeable proton. XAS spectroscopy indicated two cysteine ligands at 2.21 A and two O/N donor ligands at 1.95 A, at least one of which is derived from a coordinated histidine. The Zn(II) and Ni(II) derivatives were 4-coordinate with MS2N(His)X coordination. These results provide evidence that a copper chaperone can engage in redox chemistry at the metal center and may suggest interesting redox-based mechanisms for metalation of the mixed-valence CuA center of cytochrome c oxidase.
Collapse
|
|
20 |
48 |
23
|
Juárez O, Nilges MJ, Gillespie P, Cotton J, Barquera B. Riboflavin is an active redox cofactor in the Na+-pumping NADH: quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. J Biol Chem 2008; 283:33162-7. [PMID: 18832377 DOI: 10.1074/jbc.m806913200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
45 |
24
|
Barquera B, Nilges MJ, Morgan JE, Ramirez-Silva L, Zhou W, Gennis RB. Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na(+)-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae. Biochemistry 2004; 43:12322-30. [PMID: 15379571 DOI: 10.1021/bi048689y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many marine and pathogenic bacteria have a unique sodium-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR), which generates an electrochemical Na(+) gradient during aerobic respiration. Na(+)-NQR consists of six subunits (NqrA-F) and contains five known redox cofactors: two covalently bound FMNs, one noncovalently bound FAD, one riboflavin, and one 2Fe-2S center. A stable neutral flavin-semiquinone radical is observed in the air-oxidized enzyme, while the NADH- or dithionite-reduced enzyme exhibits a stable anionic flavin-semiquinone radical. The NqrF subunit has been implicated in binding of both the 2Fe-2S cluster and the FAD. Four conserved cysteines (C70, C76, C79, and C111) in NqrF match the canonical 2Fe-2S motif, and three conserved residues (R210, Y212, S246) have been predicted to be part of a flavin binding domain. In this work, these two motifs have been altered by site-directed mutagenesis of individual residues and are confirmed to be essential for binding, respectively, the 2Fe-2S cluster and FAD. EPR spectra of the FAD-deficient mutants in the oxidized and reduced forms exhibit neutral and anionic flavo-semiquinone radical signals, respectively, demonstrating that the FAD in NqrF is not the source of either radical signal. In both the FAD and 2Fe-2S center mutants the line widths of the neutral and anionic flavo-semiquinone EPR signals are unchanged from the wild-type enzyme, indicating that neither of these centers is nearby or coupled to the radicals. Measurements of steady-state turnover using NADH, Q-1, and the artificial electron acceptor ferricyanide strongly support an electron transport pathway model in which the noncovalently bound FAD in the NqrF subunit is the initial electron acceptor and electrons then flow to the 2Fe-2S center.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
44 |
25
|
Enochs WS, Nilges MJ, Swartz HM. Purified human neuromelanin, synthetic dopamine melanin as a potential model pigment, and the normal human substantia nigra: characterization by electron paramagnetic resonance spectroscopy. J Neurochem 1993; 61:68-79. [PMID: 8390568 DOI: 10.1111/j.1471-4159.1993.tb03538.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuromelanin is a poorly understood pigment that accumulates in catecholaminergic neurons during normal aging. Electron paramagnetic resonance spectroscopy, an especially effective technique for investigating melanins, is used in the present study to show unambiguously that neuromelanin is a melanin; however, it is not well modeled by synthetic dopamine melanin and thus is an atypical melanin. Some of the unusual features of neuromelanin can be explained by postulating two distinct sources for its free radicals, the dominant one possibly derived from a precursor containing sulfur. Examination of human substantia nigra by electron paramagnetic resonance spectroscopy during the purification of neuromelanin also demonstrates, contrary to some other studies, that a portion of the paramagnetic metal ions in this tissue are bound to the pigment in situ. Combined with previous histochemical data, these observations have implications for the mechanism through which neuromelanin accumulates in vivo and are consistent with its having a cytoprotective function under normal conditions, but a cytotoxic role at advanced ages and in patients with Parkinson's disease. Other results of this study show that homogenizing tissues during the purification of any natural pigment may cause contamination of the pigment by extraneous metal ions and that subsequent incubation in hot acid, though most effective in removing metal ions and hydrolyzing proteins, leads to degradation of melanin. A purification procedure using incubation in acid at room temperature, however, is well suited for identifying and characterizing unknown natural pigments by electron paramagnetic resonance spectroscopy.
Collapse
|
|
32 |
42 |