1
|
Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010; 376:235-44. [PMID: 20609467 DOI: 10.1016/s0140-6736(10)60892-6] [Citation(s) in RCA: 1355] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Olaparib, a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor, induced synthetic lethality in BRCA-deficient cells. A maximum tolerated dose and initial signal of efficacy in BRCA-deficient ovarian cancers have been reported. We therefore assessed the efficacy, safety, and tolerability of olaparib alone in women with BRCA1 or BRCA2 mutations and advanced breast cancer. METHODS Women (aged >or=18 years) with confirmed BRCA1 or BRCA2 mutations and recurrent, advanced breast cancer were assigned to two sequential cohorts in a phase 2 study undertaken in 16 centres in Australia, Germany, Spain, Sweden, the UK, and the USA. The first cohort (n=27) was given continuous oral olaparib at the maximum tolerated dose (400 mg twice daily), and the second (n=27) was given a lower dose (100 mg twice daily). The primary efficacy endpoint was objective response rate (ORR). This study is registered with ClinicalTrials.gov, number NCT00494234. FINDINGS Patients had been given a median of three previous chemotherapy regimens (range 1-5 in cohort 1, and 2-4 in cohort 2). ORR was 11 (41%) of 27 patients (95% CI 25-59) in the cohort assigned to 400 mg twice daily, and six (22%) of 27 (11-41) in the cohort assigned to 100 mg twice daily. Toxicities were mainly at low grades. The most frequent causally related adverse events in the cohort given 400 mg twice daily were fatigue (grade 1 or 2, 11 [41%]; grade 3 or 4, four [15%]), nausea (grade 1 or 2, 11 [41%]; grade 3 or 4, four [15%]), vomiting (grade 1 or 2, three [11%]; grade 3 or 4, three [11%]), and anaemia (grade 1 or 2, one [4%]; grade 3 or 4, three [11%]). The most frequent causally related adverse events in the cohort given 100 mg twice daily were nausea (grade 1 or 2, 11 [41%]; none grade 3 or 4) and fatigue (grade 1 or 2, seven [26%]; grade 3 or 4, one [4%]). INTERPRETATION The results of this study provide positive proof of concept for PARP inhibition in BRCA-deficient breast cancers and shows a favourable therapeutic index for a novel targeted treatment strategy in patients with tumours that have genetic loss of function of BRCA1-associated or BRCA2-associated DNA repair. Toxicity in women with BRCA1 and BRCA2 mutations was similar to that reported previously in those without such mutations. FUNDING AstraZeneca.
Collapse
|
Clinical Trial, Phase II |
15 |
1355 |
2
|
Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376:245-51. [PMID: 20609468 DOI: 10.1016/s0140-6736(10)60893-8] [Citation(s) in RCA: 1075] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Olaparib is a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor that induces synthetic lethality in homozygous BRCA-deficient cells. We aimed to assess the efficacy and safety of olaparib for treatment of advanced ovarian cancer in patients with BRCA1 or BRCA2 mutations. METHODS In this international, multicentre, phase 2 study, we enrolled two sequential cohorts of women (aged >or=18 years) with confirmed genetic BRCA1 or BRCA2 mutations, and recurrent, measurable disease. The study was undertaken in 12 centres in Australia, Germany, Spain, Sweden, and the USA. The first cohort (n=33) was given continuous oral olaparib at the maximum tolerated dose of 400 mg twice daily, and the second cohort (n=24) was given continuous oral olaparib at 100 mg twice daily. The primary efficacy endpoint was objective response rate (ORR). This study is registered with ClinicalTrials.gov, number NCT00494442. FINDINGS Patients had been given a median of three (range 1-16) previous chemotherapy regimens. ORR was 11 (33%) of 33 patients (95% CI 20-51) in the cohort assigned to olaparib 400 mg twice daily, and three (13%) of 24 (4-31) in the cohort assigned to 100 mg twice daily. In patients given olaparib 400 mg twice daily, the most frequent causally related adverse events were nausea (grade 1 or 2, 14 [42%]; grade 3 or 4, two [6%]), fatigue (grade 1 or 2, ten [30%]; grade 3 or 4, one [3%]), and anaemia (grade 1 or two, five [15%]; grade 3 or 4, one [3%]). The most frequent causally related adverse events in the cohort given 100 mg twice daily were nausea (grade 1 or 2, seven [29%]; grade 3 or 4, two [8%]) and fatigue (grade 1 or 2, nine [38%]; none grade 3 or 4). INTERPRETATION Findings from this phase 2 study provide positive proof of concept of the efficacy and tolerability of genetically targeted treatment with olaparib in BRCA-mutated advanced ovarian cancer. FUNDING AstraZeneca.
Collapse
|
Clinical Trial, Phase II |
15 |
1075 |
3
|
McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997; 385:357-61. [PMID: 9002523 DOI: 10.1038/385357a0] [Citation(s) in RCA: 705] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Messenger RNA is produced by RNA polymerase II (pol II) transcription, followed by processing of the primary transcript. Transcription, splicing and cleavage-polyadenylation can occur independently in vitro, but we demonstrate here that these processes are intimately linked in vivo. We show that the carboxy-terminal domain (CTD) of the pol II large subunit is required for efficient RNA processing. Splicing, processing of the 3' end and termination of transcription downstream of the poly(A) site, are all inhibited by truncation of the CTD. We found that the cleavage-polyadenylation factors CPSF and CstF specifically bound to CTD affinity columns and copurified with pol II in a high-molecular-mass complex. Our demonstration of an association between the CTD and 3'-processing factors, considered together with reports of a similar interaction with splicing factors, suggests that an mRNA 'factory' exists which carries out coupled transcription, splicing and cleavage-polyadenylation of mRNA precursors.
Collapse
|
|
28 |
705 |
4
|
Husted S, Emanuelsson H, Heptinstall S, Sandset PM, Wickens M, Peters G. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J 2006; 27:1038-47. [PMID: 16476694 DOI: 10.1093/eurheartj/ehi754] [Citation(s) in RCA: 549] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIMS This double-blind, parallel-group study was conducted to assess the pharmacodynamics, pharmacokinetics, and safety of AZD6140, the first oral, reversible adenosine diphosphate (ADP) receptor antagonist. METHODS AND RESULTS Patients (n = 200) with atherosclerosis were randomized to receive AZD6140 50, 100, or 200 mg twice daily (bid) or 400 mg daily (qd) or clopidogrel 75 mg qd for 28 days. All groups received aspirin 75-100 mg qd. AZD6140 (100 and 200 mg bid, 400 mg qd) rapidly and nearly completely inhibited ADP-induced platelet aggregation after initial dosing (day 1) and at day 28. On day 1, peak final-extent inhibition of platelet aggregation (IPA) was observed 2-4 h post-dose with AZD6140, whereas clopidogrel minimally inhibited platelet aggregation (mean percentage IPA < 20%, all time points). Four hour post-dose at steady state, the three higher doses of AZD6140 produced comparable final-extent mean percentage IPA (approximately 90-95%), which exceeded that with AZD6140 50 mg bid or clopidogrel (approximately 60%). AZD6140 was generally well tolerated. All bleeding events, except one in a patient receiving 400 mg qd, were minor and of mild-to-moderate severity. CONCLUSION AZD6140 100 and 200 mg bid were well tolerated and were superior to AZD6140 50 mg bid and clopidogrel 75 mg qd with regard to antiplatelet efficacy.
Collapse
|
|
19 |
549 |
5
|
Wickens M, Stephenson P. Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3' end formation. Science 1984; 226:1045-51. [PMID: 6208611 DOI: 10.1126/science.6208611] [Citation(s) in RCA: 472] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
41 |
472 |
6
|
Abstract
Regulation of translation initiation is a central control point in animal cells. We review our current understanding of the mechanisms of regulation, drawing particularly on examples in which the biological consequences of the regulation are clear. Specific mRNAs can be controlled via sequences in their 5' and 3' untranslated regions (UTRs) and by alterations in the translation machinery. The 5'UTR sequence can determine which initiation pathway is used to bring the ribosome to the initiation codon, how efficiently initiation occurs, and which initiation site is selected. 5'UTR-mediated control can also be accomplished via sequence-specific mRNA-binding proteins. Sequences in the 3' untranslated region and the poly(A) tail can have dramatic effects on initiation frequency, with particularly profound effects in oogenesis and early development. The mechanism by which 3'UTRs and poly(A) regulate initiation may involve contacts between proteins bound to these regions and the basal translation apparatus. mRNA localization signals in the 3'UTR can also dramatically influence translational activation and repression. Modulations of the initiation machinery, including phosphorylation of initiation factors and their regulated association with other proteins, can regulate both specific mRNAs and overall translation rates and thereby affect cell growth and phenotype.
Collapse
|
Review |
26 |
420 |
7
|
SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci U S A 1996; 93:8496-501. [PMID: 8710898 PMCID: PMC38700 DOI: 10.1073/pnas.93.16.8496] [Citation(s) in RCA: 387] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RNA-protein interactions are pivotal in fundamental cellular processes such as translation, mRNA processing, early development, and infection by RNA viruses. However, in spite of the central importance of these interactions, few approaches are available to analyze them rapidly in vivo. We describe a yeast genetic method to detect and analyze RNA-protein interactions in which the binding of a bifunctional RNA to each of two hybrid proteins activates transcription of a reporter gene in vivo. We demonstrate that this three-hybrid system enables the rapid, phenotypic detection of specific RNA-protein interactions. As examples, we use the binding of the iron regulatory protein 1 (IRP1) to the iron response element (IRE), and of HIV trans-activator protein (Tat) to the HIV trans-activation response element (TAR) RNA sequence. The three-hybrid assay we describe relies only on the physical properties of the RNA and protein, and not on their natural biological activities; as a result, it may have broad application in the identification of RNA-binding proteins and RNAs, as well as in the detailed analysis of their interactions.
Collapse
|
research-article |
29 |
387 |
8
|
Kaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY, Amnon A, Bell-McGuinn KM, Chen LM, Friedlander M, Safra T, Vergote I, Wickens M, Lowe ES, Carmichael J, Kaufman B. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 2011; 30:372-9. [PMID: 22203755 DOI: 10.1200/jco.2011.36.9215] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Olaparib (AZD2281), an orally active poly (ADP-ribose) polymerase inhibitor that induces synthetic lethality in BRCA1- or BRCA2-deficient cells, has shown promising clinical efficacy in nonrandomized phase II trials in patients with ovarian cancer with BRCA1 or BRCA2 deficiency. We assessed the comparative efficacy and safety of olaparib and pegylated liposomal doxorubicin (PLD) in this patient population. PATIENTS AND METHODS In this multicenter, open-label, randomized, phase II study, patients with ovarian cancer that recurred within 12 months of prior platinum therapy and with confirmed germline BRCA1 or BRCA2 mutations were enrolled. Patients were assigned in a 1:1:1 ratio to olaparib 200 mg twice per day or 400 mg twice per day continuously or PLD 50 mg/m(2) intravenously every 28 days. The primary efficacy end point was Response Evaluation Criteria in Solid Tumors (RECIST) -assessed progression-free survival (PFS). Secondary end points included objective response rate (ORR) and safety. RESULTS Ninety-seven patients were randomly assigned. Median PFS was 6.5 months (95% CI, 5.5 to 10.1 months), 8.8 months (95% CI, 5.4 to 9.2 months), and 7.1 months (95% CI, 3.7 to 10.7 months) for the olaparib 200 mg, olaparib 400 mg, and PLD groups, respectively. There was no statistically significant difference in PFS (hazard ratio, 0.88; 95% CI, 0.51 to 1.56; P = .66) for combined olaparib doses versus PLD. RECIST-assessed ORRs were 25%, 31%, and 18% for olaparib 200 mg, olaparib 400 mg, and PLD, respectively; differences were not statistically significant. Tolerability of both treatments was as expected based on previous trials. CONCLUSION The efficacy of olaparib was consistent with previous studies. However, the efficacy of PLD was greater than expected. Olaparib 400 mg twice per day is a suitable dose to explore in further studies in this patient population.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
375 |
9
|
Storey RF, Husted S, Harrington RA, Heptinstall S, Wilcox RG, Peters G, Wickens M, Emanuelsson H, Gurbel P, Grande P, Cannon CP. Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. J Am Coll Cardiol 2007; 50:1852-6. [PMID: 17980251 DOI: 10.1016/j.jacc.2007.07.058] [Citation(s) in RCA: 366] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/19/2007] [Accepted: 07/24/2007] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In a substudy of DISPERSE (Dose confIrmation Study assessing anti-Platelet Effects of AZD6140 vs. clopidogRel in non-ST-segment Elevation myocardial infarction)-2, we compared the antiplatelet effects of AZD6140 and clopidogrel and assessed the effects of AZD6140 in clopidogrel-pretreated patients. BACKGROUND Clopidogrel, in combination with aspirin, reduces cardiovascular events in patients with acute coronary syndromes (ACS). However, patients with poor inhibition of platelet aggregation with clopidogrel may be less well protected. AZD6140 is a reversible oral P2Y(12) receptor antagonist that has been studied in ACS patients in comparison with clopidogrel (DISPERSE-2 study). METHODS Patients were randomized to receive either AZD6140 90 mg twice a day, AZD6140 180 mg twice a day, or clopidogrel 75 mg once a day for up to 12 weeks in a double-blind, double-dummy design. One-half the patients allocated AZD6140 received a 270-mg loading dose. Patients randomized to receive clopidogrel were given a 300-mg loading dose unless they had already been treated with clopidogrel. Adenosine diphosphate-induced platelet aggregation was assessed by optical aggregometry on day 1 and at 4-week intervals. RESULTS AZD6140 inhibited platelet aggregation in a dose-dependent fashion and both doses achieved greater levels of inhibition than clopidogrel (e.g., 4 weeks, 4-h postdose [mean (+/-SD)]: clopidogrel 64% [+/-22%], AZD6140 90 mg 79% [+/-22%], AZD6140 180 mg 95% [+/-8%]. AZD6140 also produced further suppression of platelet aggregation in patients previously treated with clopidogrel. CONCLUSIONS AZD6140 exhibited greater mean inhibition of platelet aggregation than a standard regimen of clopidogrel in ACS patients. In addition, AZD6140 further suppressed platelet aggregation in clopidogrel pretreated patients.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
366 |
10
|
Abstract
Most mRNAs end in a poly(A) tail, the addition of which is catalysed by a poly(A) polymerase in conjunction with a distinct factor that provides specificity for mRNAs. The reaction is dynamic, involving separable initiation, elongation and termination phases. A companion article in next month's TIBS will review the regulation of poly(A) addition and removal during early animal development.
Collapse
|
Review |
35 |
309 |
11
|
Abstract
The cytoplasmic life of an mRNA revolves around the regulation of its localization, translation and stability. Interactions between the two ends of the mRNA may integrate translation and mRNA turnover. Regulatory elements in the region between the termination codon and poly(A) tail - the 3' untranslated region - have been identified in a wide variety of systems, as have been some of the key players with which these elements interact.
Collapse
|
Review |
28 |
285 |
12
|
Sheets MD, Fox CA, Hunt T, Vande Woude G, Wickens M. The 3'-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev 1994; 8:926-38. [PMID: 7926777 DOI: 10.1101/gad.8.8.926] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributable to a change in the translational activity or stability of an mRNA in the egg. As a result, translational control is critical for a variety of developmental decisions, including axis formation in Drosophila and sex determination in Caenorhabditis elegans. Previous work demonstrated that increases in poly(A) length can activate translation, whereas removal of poly(A) can prevent it. In this report we focus on the control of c-mos and cyclin A1, B1, and B2 mRNAs during meiotic maturation and after fertilization of frog eggs. We show that addition and removal of poly(A) from these mRNAs is extensively regulated: The time at which each mRNA receives or loses poly(A), as well as the number of adenosines it gains or loses, differ substantially. Signals in the 3'-untranslated region (UTR) of each mRNA are sufficient to reconstitute both the temporal and quantitative control of poly(A) addition: Chimeric mRNAs in which a luciferase-coding region is joined to the 3' UTRs of cyclin A1, cyclin B1, or c-mos mRNA, receive poly(A) of the same length and at the same time as do the endogenous mRNAs. Moreover, each 3' UTR also regulates translation of the chimeric mRNAs, determining when and how much translation of the luciferase reporter is stimulated during maturation. The magnitude of stimulation in luciferase activity varies from 5- to 100-fold, depending on the 3' UTR. Translational stimulation by each 3' UTR requires poly(A) lengthening, as it is prevented by mutations that prevent that process. These results suggest that the 3' UTRs of cyclin and c-mos mRNAs control not only whether or not an mRNA is turned on during maturation, but when that activation occurs and to what extent. Translational control of c-mos mRNA, which may be achieved through regulation of poly(A) length, may be critical in the activation of maturation, and in the onset of cleavage divisions. Our findings, as well as those of others, suggest that even quite complex patterns of translational activation in the early embryo can be attained through the differential control of a common mechanism.
Collapse
|
|
31 |
267 |
13
|
Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 1999; 9:1009-18. [PMID: 10508609 DOI: 10.1016/s0960-9822(99)80449-7] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Caenorhabditis elegans FBF protein and its Drosophila relative, Pumilio, define a large family of eukaryotic RNA-binding proteins. By binding regulatory elements in the 3' untranslated regions (UTRs) of their cognate RNAs, FBF and Pumilio have key post-transcriptional roles in early developmental decisions. In C. elegans, FBF is required for repression of fem-3 mRNA to achieve the hermaphrodite switch from spermatogenesis to oogenesis. RESULTS We report here that FBF and NANOS-3 (NOS-3), one of three C. elegans Nanos homologs, interact with each other in both yeast two-hybrid and in vitro assays. We have delineated the portions of each protein required for this interaction. Worms lacking nanos function were derived either by RNA-mediated interference (nos-1 and nos-2) or by use of a deletion mutant (nos-3). The roles of the three nos genes overlap during germ-line development. In certain nos-deficient animals, the hermaphrodite sperm-oocyte switch was defective, leading to the production of excess sperm and no oocytes. In other nos-deficient animals, the entire germ line died during larval development. This germ-line death did not require CED-3, a protease required for apoptosis. CONCLUSIONS The data suggest that NOS-3 participates in the sperm-oocyte switch through its physical interaction with FBF, forming a regulatory complex that controls fem-3 mRNA. NOS-1 and NOS-2 also function in the switch, but do not interact directly with FBF. The three C. elegans nanos genes, like Drosophila nanos, are also critical for germ-line survival. We propose that this may have been the primitive function of nanos genes.
Collapse
|
Comparative Study |
26 |
222 |
14
|
Gray NK, Coller JM, Dickson KS, Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 2000; 19:4723-33. [PMID: 10970864 PMCID: PMC302064 DOI: 10.1093/emboj/19.17.4723] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Revised: 07/07/2000] [Accepted: 07/12/2000] [Indexed: 11/13/2022] Open
Abstract
Translational stimulation of mRNAs during early development is often accompanied by increases in poly(A) tail length. Poly(A)-binding protein (PAB) is an evolutionarily conserved protein that binds to the poly(A) tails of eukaryotic mRNAs. We examined PAB's role in living cells, using both Xenopus laevis oocytes and Saccharomyces cerevisiae, by tethering it to the 3'-untranslated region of reporter mRNAs. Tethered PAB stimulates translation in vivo. Neither a poly(A) tail nor PAB's poly(A)-binding activity is required. Multiple domains of PAB act redundantly in oocytes to stimulate translation: the interaction of RNA recognition motifs (RRMs) 1 and 2 with eukaryotic initiation factor-4G correlates with translational stimulation. Interaction with Paip-1 is insufficient for stimulation. RRMs 3 and 4 also stimulate, but bind neither factor. The regions of tethered PAB required in yeast to stimulate translation and stabilize mRNAs differ, implying that the two functions are distinct. Our results establish that oocytes contain the machinery necessary to support PAB-mediated translation and suggest that PAB may be an important participant in translational regulation during early development.
Collapse
|
research-article |
25 |
193 |
15
|
Sheets MD, Wu M, Wickens M. Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature 1995; 374:511-6. [PMID: 7700377 DOI: 10.1038/374511a0] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
c-mos protein, encoded by a proto-oncogene, is essential for the meiotic maturation of frog oocytes. Polyadenylation of c-mos messenger RNA is shown here to be a pivotal regulatory step in meiotic maturation. Maturation is prevented by selective amputation of polyadenylation signals from c-mos mRNA. Injection of a prosthetic RNA, which restores c-mos polyadenylation signals by base pairing to the amputated mRNA, rescues maturation and can stimulate translation in trans. Prosthetic RNAs may provide a general strategy by which to alter patterns of mRNA expression in vivo.
Collapse
|
|
30 |
177 |
16
|
Forrester W, Stutz F, Rosbash M, Wickens M. Defects in mRNA 3'-end formation, transcription initiation, and mRNA transport associated with the yeast mutation prp20: possible coupling of mRNA processing and chromatin structure. Genes Dev 1992; 6:1914-26. [PMID: 1398069 DOI: 10.1101/gad.6.10.1914] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A temperature-sensitive lethal mutation in Saccharomyces cerevisiae, prp20-1, causes defects in several different steps in mRNA metabolism, including mRNA 3'-end formation, transcription initiation, and mRNA transport. Previous work has demonstrated that prp20 mutants are defective in actin pre-mRNA splicing. PRP20 is related, both in structure and function, to the RCC1 gene of mammals and the PIM1 gene of Schizosaccharomyces pombe, both of which appear to regulate entry into mitosis and chromosome condensation. In this report we demonstrate that, after a shift of prp20 mutants to the restrictive temperature, transcripts of several genes (CUP1, CYH2, and GAL10) are produced that extend 1-10 kb beyond their normal polyadenylation sites. The failure in 3'-end formation occurs within 1-2 min of the temperature shift. Transcription initiation also is disrupted, in that initiation sites upstream of the normal cap site are used. mRNA transport from nucleus to cytoplasm also is perturbed: In situ hybridization using an oligo(dT) probe demonstrates accumulation of poly(A) in the nucleus, consistent with the accumulation of longer bulk poly(A) (up to approximately 90-100 nucleotides) and with a failure to transport newly synthesized RNA to the cytoplasm. We demonstrate that prp20 and rna1 mutants are very similar, if not identical, with respect to each of these biochemical phenotypes. In light of the putative role of PRP20 in mitotic control, our results suggest a common step in that process and multiple steps in mRNA synthesis and maturation. We speculate that the perturbations in mRNA processing are the result of effects on the chromatin-nascent RNP-transcription complex or misregulation of a cell cycle component that modifies multiple mRNA-processing activities.
Collapse
|
|
33 |
127 |
17
|
Wickens M. In the beginning is the end: regulation of poly(A) addition and removal during early development. Trends Biochem Sci 1990; 15:320-4. [PMID: 2204159 DOI: 10.1016/0968-0004(90)90022-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The addition of poly(A) tails to nearly all mRNAs within the nucleus was reviewed in the July issue of TIBS. Here we shift focus to the fate of poly(A) tails during early development. At specific times during oogenesis and embryogenesis, the poly(A) tails of certain maternal mRNAs are lengthened, while the tails of a number of other mRNAs are removed. The selective poly(A) addition reactions are regulated by a short, U-rich sequence in the 3' untranslated region, while the removal of poly(A) from specific mRNAs is a 'default state', requiring no specific sequence. These regulated changes in poly(A) length are likely to play a major role in translational regulation in the egg and early embryo.
Collapse
|
Review |
35 |
121 |
18
|
Luitjens C, Gallegos M, Kraemer B, Kimble J, Wickens M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev 2000; 14:2596-609. [PMID: 11040214 PMCID: PMC316992 DOI: 10.1101/gad.831700] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytoplasmic polyadenylation element binding (CPEB) proteins bind to and regulate the translation of specific mRNAs. CPEBs from Xenopus, Drosophila, and Spisula participate in oogenesis. In this report, we examine the biological roles of all identifiable CPEB homologs in a single organism, Caenorhabditis elegans. We find four homologs in the C. elegans genome: cbp-1, cpb-2, cpb-3, and fog-1. Surprisingly, two homologs, CPB-1 and FOG-1, have key functions in spermatogenesis and are dispensable for oogenesis. CPB-2 and CPB-3 also appear not to be required for oogenesis. CPB-1 is essential for progression through meiosis: cpb-1(RNAi) spermatocytes fail to undergo the meiotic cell divisions. CPB-1 protein is present in the germ line just prior to overt spermatogenesis; once sperm differentiation begins, CPB-1 disappears. CPB-1 physically interacts with FBF, another RNA-binding protein and 3' UTR regulator. In addition to its role in controlling the sperm/oocyte switch, we find that FBF also appears to be required for spermatogenesis, consistent with its interaction with CPEB. A second CPEB homolog, FOG-1, is required for specification of the sperm fate. The fog-1 gene produces fog-1(L) and fog-1(S) transcripts. The fog-1(L) RNA is enriched in animals making sperm and is predicted to encode a larger protein; fog-1(S) RNA is enriched in animals making oocytes and is predicted to encode a smaller protein. The relative abundance of the two mRNAs is controlled temporally during germ-line development and by the sex determination pathway in a fashion that suggests that the fog-1(L) species encodes the active form. In sum, our results demonstrate that, in C. elegans, two CPEB proteins have distinct functions in the germ line, both in spermatogenesis: FOG-1 specifies the sperm cell fate and CPB-1 executes that decision.
Collapse
|
research-article |
25 |
118 |
19
|
Bilger A, Fox CA, Wahle E, Wickens M. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev 1994; 8:1106-16. [PMID: 7926790 DOI: 10.1101/gad.8.9.1106] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the cytoplasm of oocytes and early embryos, addition of poly(A) to mRNAs can activate their translation. We demonstrate that despite many differences between poly(A) addition in the cytoplasm and nucleus, these two forms of polyadenylation may involve identical trans-acting factors. Nuclear polyadenylation requires the sequence AAUAAA, the AAUAAA-binding cleavage and polyadenylation specificity factor (CPSF), and a poly(A) polymerase (PAP). We show that CPSF and PAP, purified from calf thymus, exhibit the same sequence specificity observed in the cytoplasm during frog oocyte maturation, requiring both AAUAAA and a proximal U-rich sequence. The enhanced polyadenylation of RNAs containing U-rich sequences is caused by their increased affinity for CPSF. Frog nuclear polyadenylation factors display cytoplasmic sequence specificity when dilute, suggesting that a difference in their concentrations in the nucleus and cytoplasm underlies the different sequence specificities in the two compartments. Because polyadenylation in extracts prepared from oocytes before maturation is stimulated by addition of CPSF, the onset of polyadenylation during early development may be attributable to the activation or synthesis of a CPSF-like factor. We suggest that sequences upstream of AAUAAA that are required for cleavage and polyadenylation of certain pre-mRNAs in the nucleus may be functionally equivalent to the upstream, U-rich sequences that function in the cytoplasm, enhancing CPSF binding. We propose that CPSF and PAP comprise a core polyadenylation apparatus in the cytoplasm of oocytes and early embryos.
Collapse
|
|
31 |
107 |
20
|
Fox CA, Wickens M. Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3' UTR of certain maternal mRNAs. Genes Dev 1990; 4:2287-98. [PMID: 1980657 DOI: 10.1101/gad.4.12b.2287] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Certain maternal mRNAs lose their poly(A) tails during early development and concomitantly become translationally inactive. In this report we analyze the mechanism of poly(A) removal during frog oocyte maturation by injecting short synthetic RNAs. We demonstrate that removal of poly(A) during oocyte maturation is a default reaction: In the absence of any specific sequence information, poly(A) is removed. However, poly(A) removal can be prevented by specific sequences in the 3'-untranslated regions of certain maternal mRNAs. These sequences are also required for poly(A) addition during oocyte maturation and include AAUAAA and a nearby U-rich element. Mutations in either AAUAAA or the U-rich element cause loss of poly(A) and not merely a failure to extend the poly(A) tail. We infer that poly(A) addition is required to escape poly(A) loss. The enzyme that removes the poly(A) during oocyte maturation appears to be a 3'----5' nuclease that prefers a 3'-terminal poly(A) segment. We discuss possible mechanisms by which poly(A) addition might circumvent default poly(A) removal and consider whether poly(A) removal is also a default reaction in somatic cells. Finally, we consider the possible implications of our results for the selectivity of poly(A) addition and removal, and for translational regulation during early development.
Collapse
|
|
35 |
103 |
21
|
Batin P, Wickens M, McEntegart D, Fullwood L, Cowley AJ. The importance of abnormalities of liver function tests in predicting mortality in chronic heart failure. Eur Heart J 1995; 16:1613-8. [PMID: 8881855 DOI: 10.1093/oxfordjournals.eurheartj.a060785] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A number of simple clinical and laboratory variables were analysed in a group of patients with chronic heart failure to evaluate their prognostic significance. Five hundred and fifty-two patients were followed for a maximum of 13 years with a total exposure time to death or censored survival of 1148 years. Of the clinical variables, diuretic dose and NYHA class were related to mortality (P < 0.01), and ischaemic heart disease was associated with a worse prognosis than other aetiologies (P < 0.05). Of the laboratory variables, abnormalities of liver function tests including bilirubin (P < 0.01), aspartate transaminase (P < 0.005), gamma glutamyl transpeptidase (P < 0.005) and alkaline phosphatase (P < 0.01) were all related to mortality as was plasma urate (P < 0.01). Multivariate survival analysis of all variables showed aspartate transaminase (chi 2 17.36, P < 0.001) accounted for the greatest variance followed by serum bilirubin (chi 2 14.35, P < 0.005). Thus, abnormalities in liver function tests have prognostic importance in chronic heart failure.
Collapse
|
|
30 |
89 |
22
|
Ballantyne S, Daniel DL, Wickens M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol Biol Cell 1997; 8:1633-48. [PMID: 9285830 PMCID: PMC276181 DOI: 10.1091/mbc.8.8.1633] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During oocyte maturation and early development, mRNAs receive poly(A) in the cytoplasm at distinct times relative to one another and to the cell cycle. These cytoplasmic polyadenylation reactions do not occur during oogenesis, but begin during oocyte maturation and continue throughout early development. In this report, we focus on the link between cytoplasmic polyadenylation and control of the cell cycle during meiotic maturation. Activation of maturation promoting factor, a complex of CDK1 and cyclin, is required for maturation and dependent on c-mos protein kinase. We demonstrate here that two classes of polyadenylation exist during oocyte maturation, defined by their dependence of c-mos and CDK1 protein kinases. Polyadenylation of the first class of mRNAs (class I) is independent of c-mos and CDK1 kinase activities, whereas polyadenylation of the second class (class II) requires both of these activities. Class I polyadenylation, through its effects on c-mos mRNA, is required for class II polyadenylation. cis-acting elements responsible for this distinction reside in the 3'-untranslated region, upstream of the polyadenylation signal AAUAAA. Cytoplasmic polyadenylation elements (CPEs) are sufficient to specify class I polyadenylation, and subtle changes in the CPE can substantially, though not entirely, shift an RNA from class I to class II. Activation of class I polyadenylation events is independent of hyperphosphorylation of CPE-binding protein or poly(A) polymerase, and requires cellular protein synthesis. The two classes of polyadenylation and of mRNA define a dependent pathway, in which polyadenylation of certain mRNAs requires the prior polyadenylation of another. We propose that this provides one method of regulating the temporal order of polyadenylation events, and links polyadenylation to the control of the meiotic cell cycle.
Collapse
|
research-article |
28 |
87 |
23
|
Abstract
The addition of a poly(A) tail has been examined in a HeLa cell nuclear extract using SV40 late RNAs that end at or near the natural poly(A) site. We find that the addition of a full-length, 200-nucleotide poly(A) tail occurs in two discrete phases. In the first phase, the addition of each adenosine is dependent on the highly conserved sequence AAUAAA. Mutations in that sequence result in an accumulation of products that contain 9 or fewer adenosine residues. In the second phase, poly(A) addition no longer requires AAUAAA but, instead, requires the oligo(A) primer synthesized during the first phase. Thus, RNAs carrying an AAUAAA mutation and a 3'-terminal oligo(A) segment are extended efficiently to full-length poly(A). The transition between phases occurs with the addition of the tenth adenosine residue. An activity exists that limits the length of poly(A) added in the extract to approximately 200 nucleotides. The two phases share at least one component and are likely to involve the same poly(A) polymerase.
Collapse
|
|
36 |
78 |
24
|
Zarkower D, Stephenson P, Sheets M, Wickens M. The AAUAAA sequence is required both for cleavage and for polyadenylation of simian virus 40 pre-mRNA in vitro. Mol Cell Biol 1986; 6:2317-23. [PMID: 3023928 PMCID: PMC367784 DOI: 10.1128/mcb.6.7.2317-2323.1986] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sequence AAUAAA is found near the polyadenylation site of eucaryotic mRNAs. This sequence is required for accurate and efficient cleavage and polyadenylation of pre-mRNAs in vivo. In this study we show that synthetic simian virus 40 late pre-mRNAs are cleaved and polyadenylated in vitro in a HeLa cell nuclear extract, and that cleavage in vitro is abolished by each of four different single-base changes in AAUAAA. In this same extract, precleaved RNAs (RNAs with 3' termini at the polyadenylation site) are efficiently polyadenylated. This in vitro polyadenylation reaction also requires the AAUAAA sequence.
Collapse
|
research-article |
39 |
74 |
25
|
Barkoff AF, Dickson KS, Gray NK, Wickens M. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Dev Biol 2000; 220:97-109. [PMID: 10720434 DOI: 10.1006/dbio.2000.9613] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational control is prominent during meiotic maturation and early development. In this report, we investigate a mode of translational repression in Xenopus laevis oocytes, focusing on the mRNA encoding cyclin B1. Translation of cyclin B1 mRNA is relatively inactive in the oocyte and increases dramatically during meiotic maturation. We show, by injection of synthetic mRNAs, that the cis-acting sequences responsible for repression of cyclin B1 mRNA reside within its 3'UTR. Repression can be saturated by increasing the concentration of reporter mRNA injected, suggesting that the cyclin B1 3'UTR sequences provide a binding site for a trans-acting repressor. The sequences that direct repression overlap and include cytoplasmic polyadenylation elements (CPEs), sequences known to promote cytoplasmic polyadenylation. However, the presence of a CPE per se appears insufficient to cause repression, as other mRNAs that contain CPEs are not translationally repressed. We demonstrate that relief of repression and cytoplasmic polyadenylation are intimately linked. Repressing elements do not override the stimulatory effect of a long poly(A) tail, and polyadenylation of cyclin B1 mRNA is required for its translational recruitment. Our results suggest that translational recruitment of endogenous cyclin B1 mRNA is a collaborative effect of derepression and poly(A) addition. We discuss several molecular mechanisms that might underlie this collaboration.
Collapse
|
|
25 |
72 |