1
|
Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes NA, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I. Glial origin of mesenchymal stem cells in a tooth model system. Nature 2014; 513:551-4. [PMID: 25079316 DOI: 10.1038/nature13536] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 05/28/2014] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells. These stem cells dwell in a niche at the tooth apex where they produce a variety of differentiated derivatives. Cells constituting the tooth are mostly derived from two embryonic sources: neural crest ectomesenchyme and ectodermal epithelium. It has been thought for decades that the dental mesenchymal stem cells giving rise to pulp cells and odontoblasts derive from neural crest cells after their migration in the early head and formation of ectomesenchymal tissue. Here we show that a significant population of mesenchymal stem cells during development, self-renewal and repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that produce pulp cells and odontoblasts. By combining a clonal colour-coding technique with tracing of peripheral glia, we provide new insights into the dynamics of tooth organogenesis and growth.
Collapse
|
|
11 |
317 |
2
|
Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Häring M, Dyachuk V, Bock C, Farlik M, Piacentino ML, Boismoreau F, Hilscher MM, Yokota C, Qian X, Nilsson M, Bronner ME, Croci L, Hsiao WY, Guertin DA, Brunet JF, Consalez GG, Ernfors P, Fried K, Kharchenko PV, Adameyko I. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 2019; 364:364/6444/eaas9536. [DOI: 10.1126/science.aas9536] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 12/12/2018] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
Neural crest cells are embryonic progenitors that generate numerous cell types in vertebrates. With single-cell analysis, we show that mouse trunk neural crest cells become biased toward neuronal lineages when they delaminate from the neural tube, whereas cranial neural crest cells acquire ectomesenchyme potential dependent on activation of the transcription factor Twist1. The choices that neural crest cells make to become sensory, glial, autonomic, or mesenchymal cells can be formalized as a series of sequential binary decisions. Each branch of the decision tree involves initial coactivation of bipotential properties followed by gradual shifts toward commitment. Competing fate programs are coactivated before cells acquire fate-specific phenotypic traits. Determination of a specific fate is achieved by increased synchronization of relevant programs and concurrent repression of competing fate programs.
Collapse
|
|
6 |
238 |
3
|
Krejci P, Aklian A, Kaucka M, Sevcikova E, Prochazkova J, Masek JK, Mikolka P, Pospisilova T, Spoustova T, Weis M, Paznekas WA, Wolf JH, Gutkind JS, Wilcox WR, Kozubik A, Jabs EW, Bryja V, Salazar L, Vesela I, Balek L. Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS One 2012; 7:e35826. [PMID: 22558232 PMCID: PMC3338780 DOI: 10.1371/journal.pone.0035826] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 12/27/2022] Open
Abstract
Receptor tyrosine kinase signaling cooperates with WNT/β-catenin signaling in regulating many biological processes, but the mechanisms of their interaction remain poorly defined. We describe a potent activation of WNT/β-catenin by FGFR2, FGFR3, EGFR and TRKA kinases, which is independent of the PI3K/AKT pathway. Instead, this phenotype depends on ERK MAP kinase-mediated phosphorylation of WNT co-receptor LRP6 at Ser1490 and Thr1572 during its Golgi network-based maturation process. This phosphorylation dramatically increases the cellular response to WNT. Moreover, FGFR2, FGFR3, EGFR and TRKA directly phosphorylate β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via release of β-catenin from membranous cadherin complexes. We conclude that signaling via ERK/LRP6 pathway and direct β-catenin phosphorylation at Tyr142 represent two mechanisms used by various receptor tyrosine kinase systems to activate canonical WNT signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
134 |
4
|
Kaucka M, Ivashkin E, Gyllborg D, Zikmund T, Tesarova M, Kaiser J, Xie M, Petersen J, Pachnis V, Nicolis SK, Yu T, Sharpe P, Arenas E, Brismar H, Blom H, Clevers H, Suter U, Chagin AS, Fried K, Hellander A, Adameyko I. Analysis of neural crest-derived clones reveals novel aspects of facial development. SCIENCE ADVANCES 2016; 2:e1600060. [PMID: 27493992 PMCID: PMC4972470 DOI: 10.1126/sciadv.1600060] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/29/2016] [Indexed: 05/05/2023]
Abstract
Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
61 |
5
|
Bedoya-Reina OC, Li W, Arceo M, Plescher M, Bullova P, Pui H, Kaucka M, Kharchenko P, Martinsson T, Holmberg J, Adameyko I, Deng Q, Larsson C, Juhlin CC, Kogner P, Schlisio S. Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nat Commun 2021; 12:5309. [PMID: 34493726 PMCID: PMC8423786 DOI: 10.1038/s41467-021-24870-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Childhood neuroblastoma has a remarkable variability in outcome. Age at diagnosis is one of the most important prognostic factors, with children less than 1 year old having favorable outcomes. Here we study single-cell and single-nuclei transcriptomes of neuroblastoma with different clinical risk groups and stages, including healthy adrenal gland. We compare tumor cell populations with embryonic mouse sympatho-adrenal derivatives, and post-natal human adrenal gland. We provide evidence that low and high-risk neuroblastoma have different cell identities, representing two disease entities. Low-risk neuroblastoma presents a transcriptome that resembles sympatho- and chromaffin cells, whereas malignant cells enriched in high-risk neuroblastoma resembles a subtype of TRKB+ cholinergic progenitor population identified in human post-natal gland. Analyses of these populations reveal different gene expression programs for worst and better survival in correlation with age at diagnosis. Our findings reveal two cellular identities and a composition of human neuroblastoma tumors reflecting clinical heterogeneity and outcome.
Collapse
|
|
4 |
50 |
6
|
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 2022; 41:e108780. [PMID: 35815410 PMCID: PMC9434083 DOI: 10.15252/embj.2021108780] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Collapse
|
research-article |
3 |
47 |
7
|
Janovska P, Poppova L, Plevova K, Plesingerova H, Behal M, Kaucka M, Ovesna P, Hlozkova M, Borsky M, Stehlikova O, Brychtova Y, Doubek M, Machalova M, Baskar S, Kozubik A, Pospisilova S, Pavlova S, Bryja V. Autocrine Signaling by Wnt-5a Deregulates Chemotaxis of Leukemic Cells and Predicts Clinical Outcome in Chronic Lymphocytic Leukemia. Clin Cancer Res 2015; 22:459-69. [PMID: 26240275 DOI: 10.1158/1078-0432.ccr-15-0154] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/16/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE ROR1, a receptor in the noncanonical Wnt/planar cell polarity (PCP) pathway, is upregulated in malignant B cells of chronic lymphocytic leukemia (CLL) patients. It has been shown that the Wnt/PCP pathway drives pathogenesis of CLL, but which factors activate the ROR1 and PCP pathway in CLL cells remains unclear. EXPERIMENTAL DESIGN B lymphocytes from the peripheral blood of CLL patients were negatively separated using RosetteSep (StemCell) and gradient density centrifugation. Relative expression of WNT5A, WNT5B, and ROR1 was assessed by quantitative real-time PCR. Protein levels, protein interaction, and downstream signaling were analyzed by immunoprecipitation and Western blotting. Migration capacity of primary CLL cells was analyzed by the Transwell migration assay. RESULTS By analyzing the expression in 137 previously untreated CLL patients, we demonstrate that WNT5A and WNT5B genes show dramatically (five orders of magnitude) varying expression in CLL cells. High WNT5A and WNT5B expression strongly associates with unmutated IGHV and shortened time to first treatment. In addition, WNT5A levels associate, independent of IGHV status, with the clinically worst CLL subgroups characterized by dysfunctional p53 and mutated SF3B1. We provide functional evidence that WNT5A-positive primary CLL cells have increased motility and attenuated chemotaxis toward CXCL12 and CCL19 that can be overcome by inhibitors of Wnt/PCP signaling. CONCLUSIONS These observations identify Wnt-5a as the crucial regulator of ROR1 activity in CLL and suggest that the autocrine Wnt-5a signaling pathway allows CLL cells to overcome natural microenvironmental regulation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
46 |
8
|
Kaucka M, Zikmund T, Tesarova M, Gyllborg D, Hellander A, Jaros J, Kaiser J, Petersen J, Szarowska B, Newton PT, Dyachuk V, Li L, Qian H, Johansson AS, Mishina Y, Currie JD, Tanaka EM, Erickson A, Dudley A, Brismar H, Southam P, Coen E, Chen M, Weinstein LS, Hampl A, Arenas E, Chagin AS, Fried K, Adameyko I. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. eLife 2017; 6. [PMID: 28414273 PMCID: PMC5417851 DOI: 10.7554/elife.25902] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022] Open
Abstract
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale. DOI:http://dx.doi.org/10.7554/eLife.25902.001
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
39 |
9
|
Klimovich A, Giacomello S, Björklund Å, Faure L, Kaucka M, Giez C, Murillo-Rincon AP, Matt AS, Willoweit-Ohl D, Crupi G, de Anda J, Wong GCL, D'Amato M, Adameyko I, Bosch TCG. Prototypical pacemaker neurons interact with the resident microbiota. Proc Natl Acad Sci U S A 2020; 117:17854-17863. [PMID: 32647059 PMCID: PMC7395494 DOI: 10.1073/pnas.1920469117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoan Hydra by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.
Collapse
|
research-article |
5 |
35 |
10
|
Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife 2018; 7:34465. [PMID: 29897331 PMCID: PMC6019068 DOI: 10.7554/elife.34465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
29 |
11
|
Hockman D, Adameyko I, Kaucka M, Barraud P, Otani T, Hunt A, Hartwig AC, Sock E, Waithe D, Franck MCM, Ernfors P, Ehinger S, Howard MJ, Brown N, Reese J, Baker CVH. Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev Biol 2018; 444 Suppl 1:S308-S324. [PMID: 29807017 PMCID: PMC6453021 DOI: 10.1016/j.ydbio.2018.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/20/2018] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Abstract
Carotid body glomus cells mediate essential reflex responses to arterial blood hypoxia. They are dopaminergic and secrete growth factors that support dopaminergic neurons, making the carotid body a potential source of patient-specific cells for Parkinson's disease therapy. Like adrenal chromaffin cells, which are also hypoxia-sensitive, glomus cells are neural crest-derived and require the transcription factors Ascl1 and Phox2b; otherwise, their development is little understood at the molecular level. Here, analysis in chicken and mouse reveals further striking molecular parallels, though also some differences, between glomus and adrenal chromaffin cell development. Moreover, histology has long suggested that glomus cell precursors are ‘émigrés’ from neighbouring ganglia/nerves, while multipotent nerve-associated glial cells are now known to make a significant contribution to the adrenal chromaffin cell population in the mouse. We present conditional genetic lineage-tracing data from mice supporting the hypothesis that progenitors expressing the glial marker proteolipid protein 1, presumably located in adjacent ganglia/nerves, also contribute to glomus cells. Finally, we resolve a paradox for the ‘émigré’ hypothesis in the chicken - where the nearest ganglion to the carotid body is the nodose, in which the satellite glia are neural crest-derived, but the neurons are almost entirely placode-derived - by fate-mapping putative nodose neuronal 'émigrés' to the neural crest.
Glomus cell precursors express the neuron-specific marker Elavl3/4 (HuC/D). Developing glomus cells express multiple ‘sympathoadrenal' genes. Glomus cell development requires Hand2 and Sox4/11, but not Ret or Tfap2b. Multipotent progenitors with a glial phenotype contribute to glomus cells. Fate-mapping resolves a paradox for the ganglionic 'émigré' hypothesis in birds.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
21 |
12
|
Murillo-Rincón AP, Kaucka M. Insights Into the Complexity of Craniofacial Development From a Cellular Perspective. Front Cell Dev Biol 2020; 8:620735. [PMID: 33392208 PMCID: PMC7775397 DOI: 10.3389/fcell.2020.620735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The head represents the most complex part of the body and a distinctive feature of the vertebrate body plan. This intricate structure is assembled during embryonic development in the four-dimensional process of morphogenesis. The head integrates components of the central and peripheral nervous system, sensory organs, muscles, joints, glands, and other specialized tissues in the framework of a complexly shaped skull. The anterior part of the head is referred to as the face, and a broad spectrum of facial shapes across vertebrate species enables different feeding strategies, communication styles, and diverse specialized functions. The face formation starts early during embryonic development and is an enormously complex, multi-step process regulated on a genomic, molecular, and cellular level. In this review, we will discuss recent discoveries that revealed new aspects of facial morphogenesis from the time of the neural crest cell emergence till the formation of the chondrocranium, the primary design of the individual facial shape. We will focus on molecular mechanisms of cell fate specification, the role of individual and collective cell migration, the importance of dynamic and continuous cellular interactions, responses of cells and tissues to generated physical forces, and their morphogenetic outcomes. In the end, we will examine the spatiotemporal activity of signaling centers tightly regulating the release of signals inducing the formation of craniofacial skeletal elements. The existence of these centers and their regulation by enhancers represent one of the core morphogenetic mechanisms and might lay the foundations for intra- and inter-species facial variability.
Collapse
|
Review |
5 |
18 |
13
|
Fedorova V, Vanova T, Elrefae L, Pospisil J, Petrasova M, Kolajova V, Hudacova Z, Baniariova J, Barak M, Peskova L, Barta T, Kaucka M, Killinger M, Vecera J, Bernatik O, Cajanek L, Hribkova H, Bohaciakova D. Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Res 2019; 40:101563. [DOI: 10.1016/j.scr.2019.101563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
|
|
6 |
14 |
14
|
Kaucka M, Adameyko I. Evolution and development of the cartilaginous skull: From a lancelet towards a human face. Semin Cell Dev Biol 2019; 91:2-12. [DOI: 10.1016/j.semcdb.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022]
|
|
6 |
14 |
15
|
Sunadome K, Erickson AG, Kah D, Fabry B, Adori C, Kameneva P, Faure L, Kanatani S, Kaucka M, Dehnisch Ellström I, Tesarova M, Zikmund T, Kaiser J, Edwards S, Maki K, Adachi T, Yamamoto T, Fried K, Adameyko I. Directionality of developing skeletal muscles is set by mechanical forces. Nat Commun 2023; 14:3060. [PMID: 37244931 PMCID: PMC10224984 DOI: 10.1038/s41467-023-38647-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/05/2023] [Indexed: 05/29/2023] Open
Abstract
Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
12 |
16
|
Kaucka M, Joven Araus A, Tesarova M, Currie JD, Boström J, Kavkova M, Petersen J, Yao Z, Bouchnita A, Hellander A, Zikmund T, Elewa A, Newton PT, Fei JF, Chagin AS, Fried K, Tanaka EM, Kaiser J, Simon A, Adameyko I. Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration. Nat Commun 2022; 13:6949. [PMID: 36376278 PMCID: PMC9663504 DOI: 10.1038/s41467-022-34266-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.
Collapse
|
research-article |
3 |
7 |
17
|
Nottmeier C, Liao N, Simon A, Decker MG, Luther J, Schweizer M, Yorgan T, Kaucka M, Bockamp E, Kahl-Nieke B, Amling M, Schinke T, Petersen J, Koehne T. Wnt1 Promotes Cementum and Alveolar Bone Growth in a Time-Dependent Manner. J Dent Res 2021; 100:1501-1509. [PMID: 34009051 PMCID: PMC8649456 DOI: 10.1177/00220345211012386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The WNT/β-catenin signaling pathway plays a central role in the biology
of the periodontium, yet the function of specific extracellular WNT
ligands remains poorly understood. By using a
Wnt1-inducible transgenic mouse model targeting
Col1a1-expressing alveolar osteoblasts,
odontoblasts, and cementoblasts, we demonstrate that the WNT ligand
WNT1 is a strong promoter of cementum and alveolar bone formation in
vivo. We induced Wnt1 expression for 1, 3, or 9 wk in
Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk.
Micro–computed tomography (CT) analyses of the mandibles revealed a
1.8-fold increased bone volume after 1 and 3 wk of
Wnt1 expression and a 3-fold increased bone
volume after 9 wk of Wnt1 expression compared to
controls. In addition, the alveolar ridges were higher in Wnt1Tg mice
as compared to controls. Nondecalcified histology demonstrated
increased acellular cementum thickness and cellular cementum volume
after 3 and 9 wk of Wnt1 expression. However, 9 wk of
Wnt1 expression was also associated with
periodontal breakdown and ectopic mineralization of the pulp. The
composition of this ectopic matrix was comparable to those of cellular
cementum as demonstrated by quantitative backscattered electron
imaging and immunohistochemistry for noncollagenous proteins. Our
analyses of 52-wk-old mice after 9 wk of Wnt1
expression revealed that Wnt1 expression affects
mandibular bone and growing incisors but not molar teeth, indicating
that Wnt1 influences only growing tissues. To further
investigate the effect of Wnt1 on cementoblasts, we
stably transfected the cementoblast cell line (OCCM-30) with a vector
expressing Wnt1-HA and performed proliferation as
well as differentiation experiments. These experiments demonstrated
that Wnt1 promotes proliferation but not
differentiation of cementoblasts. Taken together, our findings
identify, for the first time, Wnt1 as a critical
regulator of alveolar bone and cementum formation, as well as provide
important insights for harnessing the WNT signal pathway in
regenerative dentistry.
Collapse
|
Journal Article |
4 |
6 |
18
|
Yaryhin O, Klembara J, Pichugin Y, Kaucka M, Werneburg I. Limb reduction in squamate reptiles correlates with the reduction of the chondrocranium: A case study on serpentiform anguids. Dev Dyn 2021; 250:1300-1317. [PMID: 33511716 DOI: 10.1002/dvdy.307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In vertebrates, the skull evolves from a complex network of dermal bones and cartilage-the latter forming the pharyngeal apparatus and the chondrocranium. Squamates are particularly important in this regard as they maintain at least part of the chondrocranium throughout their whole ontogeny until adulthood. Anguid lizards represent a unique group of squamates, which contains limbed and limbless forms and show conspicuous variation of the adult skull. RESULTS Based on several emboadryonic stages of the limbless lizards Pseudopus apodus and Anguis fragilis, and by comparing with other squamates, we identified and interpreted major differences in chondrocranial anatomy. Among others, the most important differences are in the orbitotemporal region. P. apodus shows a strikingly similar development of this region to other squamates. Unexpectedly, however, A. fragilis differs considerably in the composition of the orbitotemporal region. In addition, A. fragilis retains a paedomorphic state of the nasal region. CONCLUSIONS Taxonomic comparisons indicate that even closely related species with reduced limbs show significant differences in chondrocranial anatomy. The Pearson correlation coefficient suggests strong correlation between chondrocranial reduction and limb reduction. We pose the hypothesis that limb reduction could be associated with the reduction in chondrocrania by means of genetic mechanisms.
Collapse
|
Journal Article |
4 |
5 |
19
|
Matula J, Tesarova M, Zikmund T, Kaucka M, Adameyko I, Kaiser J. X-ray microtomography-based atlas of mouse cranial development. Gigascience 2021; 10:giab012. [PMID: 33677535 PMCID: PMC7936920 DOI: 10.1093/gigascience/giab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND X-ray microtomography (μCT) has become an invaluable tool for non-destructive analysis of biological samples in the field of developmental biology. Mouse embryos are a typical model for investigation of human developmental diseases. By obtaining 3D high-resolution scans of the mouse embryo heads, we gain valuable morphological information about the structures prominent in the development of future face, brain, and sensory organs. The development of facial skeleton tracked in these μCT data provides a valuable background for further studies of congenital craniofacial diseases and normal development. FINDINGS In this work, reusable tomographic data from 7 full 3D scans of mouse embryo heads are presented and made publicly available. The ages of these embryos range from E12.5 to E18.5. The samples were stained by phosphotungstic acid prior to scanning, which greatly enhanced the contrast of various tissues in the reconstructed images and enabled precise segmentation. The images were obtained on a laboratory-based μCT system. Furthermore, we provide manually segmented masks of mesenchymal condensations (for E12.5 and E13.5) and cartilage present in the nasal capsule of the scanned embryos. CONCLUSION We present a comprehensive dataset of X-ray 3D computed tomography images of the developing mouse head with high-quality manual segmentation masks of cartilaginous nasal capsules. The provided μCT images can be used for studying any other major structure within the developing mouse heads. The high quality of the manually segmented models of nasal capsules may be instrumental to understanding the complex process of the development of the face in a mouse model.
Collapse
|
research-article |
4 |
3 |
20
|
Kaucka M, Adameyko I. Spotlight on the Schwann cells during the regeneration. Stem Cell Investig 2016; 3:74. [PMID: 27868056 DOI: 10.21037/sci.2016.10.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
|
Comment |
9 |
2 |
21
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
|
Review |
2 |
1 |
22
|
Zhou B, Kaucka M, Chagin AS, Newton PT. Clonal Genetic Tracing using the Confetti Mouse to Study Mineralized Tissues. J Vis Exp 2019. [PMID: 31710038 DOI: 10.3791/60424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Labeling an individual cell in the body to monitor which cell types it can give rise to and track its migration through the organism or determine its longevity can be a powerful way to reveal mechanisms of tissue development and maintenance. One of the most important tools currently available to monitor cells in vivo is the Confetti mouse model. The Confetti model can be used to genetically label individual cells in living mice with various fluorescent proteins in a cell type-specific manner and monitor their fate, as well as the fate of their progeny over time, in a process called clonal genetic tracing or clonal lineage tracing. This model was generated almost a decade ago and has contributed to an improved understanding of many biological processes, particularly related to stem cell biology, development, and renewal of adult tissues. However, preserving the fluorescent signal until image collection and simultaneous capturing of various fluorescent signals is technically challenging, particularly for mineralized tissue. This publication describes a step-by-step protocol for using the Confetti model to analyze growth plate cartilage that can be applied to any mineralized or nonmineralized tissue.
Collapse
|
Video-Audio Media |
6 |
|
23
|
Petersen J, Englmaier L, Artemov AV, Poverennaya I, Mahmoud R, Bouderlique T, Tesarova M, Deviatiiarov R, Szilvásy-Szabó A, Akkuratov EE, Pajuelo Reguera D, Zeberg H, Kaucka M, Kastriti ME, Krivanek J, Radaszkiewicz T, Gömöryová K, Knauth S, Potesil D, Zdrahal Z, Ganji RS, Grabowski A, Buhl ME, Zikmund T, Kavkova M, Axelson H, Lindgren D, Kramann R, Kuppe C, Erdélyi F, Máté Z, Szabó G, Koehne T, Harkany T, Fried K, Kaiser J, Boor P, Fekete C, Rozman J, Kasparek P, Prochazka J, Sedlacek R, Bryja V, Gusev O, Adameyko I. Author Correction: A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology. Nat Commun 2023; 14:3565. [PMID: 37322005 DOI: 10.1038/s41467-023-39373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
|
Published Erratum |
2 |
|
24
|
Matula J, Polakova V, Salplachta J, Tesarova M, Zikmund T, Kaucka M, Adameyko I, Kaiser J. Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images. Sci Rep 2022; 12:8728. [PMID: 35610276 PMCID: PMC9130254 DOI: 10.1038/s41598-022-12329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic understanding of skeletal development. X-ray computed microtomography (μCT) enables inspecting relevant tissues in all three dimensions; however, most 3D models are still created by manual segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional neural network (CNN) to automatically segment the most complex cartilaginous system represented by the developing nasal capsule. The main challenges of this task stem from the large size of the image data (over a thousand pixels in each dimension) and a relatively small training database, including genetically modified mouse embryos, where the phenotype of the analysed structures differs from the norm. We propose a CNN-based segmentation model optimised for the large image size that we trained using a unique manually annotated database. The segmentation model was able to segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time necessary for segmentation of new samples shortened from approximately 8 h needed for manual segmentation to mere 130 s per sample. This will greatly accelerate the throughput of μCT analysis of cartilaginous skeletal elements in animal models of developmental diseases.
Collapse
|
research-article |
3 |
|
25
|
Petersen J, Englmaier L, Artemov AV, Poverennaya I, Mahmoud R, Bouderlique T, Tesarova M, Deviatiiarov R, Szilvásy-Szabó A, Akkuratov EE, Pajuelo Reguera D, Zeberg H, Kaucka M, Kastriti ME, Krivanek J, Radaszkiewicz T, Gömöryová K, Knauth S, Potesil D, Zdrahal Z, Ganji RS, Grabowski A, Buhl ME, Zikmund T, Kavkova M, Axelson H, Lindgren D, Kramann R, Kuppe C, Erdélyi F, Máté Z, Szabó G, Koehne T, Harkany T, Fried K, Kaiser J, Boor P, Fekete C, Rozman J, Kasparek P, Prochazka J, Sedlacek R, Bryja V, Gusev O, Adameyko I. A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology. Nat Commun 2023; 14:3092. [PMID: 37248239 PMCID: PMC10226981 DOI: 10.1038/s41467-023-38663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.
Collapse
|
research-article |
2 |
|