1
|
Grüner B, Brynda J, Das V, Šícha V, Štěpánková J, Nekvinda J, Holub J, Pospíšilová K, Fábry M, Pachl P, Král V, Kugler M, Mašek V, Medvedíková M, Matějková S, Nová A, Lišková B, Gurská S, Džubák P, Hajdúch M, Řezáčová P. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J Med Chem 2019; 62:9560-9575. [PMID: 31568723 DOI: 10.1021/acs.jmedchem.9b00945] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme that regulates pH in hypoxic tumors and promotes tumor cell survival. Its expression is associated with the occurrence of metastases and poor prognosis. Here, we present nine derivatives of the cobalt bis(dicarbollide)(1-) anion substituted at the boron or carbon sites by alkysulfamide group(s) as highly specific and selective inhibitors of CAIX. Interactions of these compounds with the active site of CAIX were explored on the atomic level using protein crystallography. Two selected derivatives display subnanomolar or picomolar inhibition constants and high selectivity for the tumor-specific CAIX over cytosolic isoform CAII. Both derivatives had a time-dependent effect on the growth of multicellular spheroids of HT-29 and HCT116 colorectal cancer cells, facilitated penetration and/or accumulation of doxorubicin into spheroids, and displayed low toxicity and showed promising pharmacokinetics and a significant inhibitory effect on tumor growth in syngenic breast 4T1 and colorectal HT-29 cancer xenotransplants.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
51 |
2
|
Borková L, Frydrych I, Jakubcová N, Adámek R, Lišková B, Gurská S, Medvedíková M, Hajdúch M, Urban M. Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursonic acid. Eur J Med Chem 2019; 185:111806. [PMID: 31677446 DOI: 10.1016/j.ejmech.2019.111806] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 12/19/2022]
Abstract
In this work, 35 new derivatives of betulonic, dihydrobetulonic and ursonic acid were prepared including 30 aminothiazoles and all of them were tested for their in vitro cytotoxic activity in eight cancer cell lines and two non-cancer fibroblasts. Compounds with the IC50 below 5 μM in CCRF-CEM cells and low toxicity in non-cancer fibroblasts (4m, 5c, 5m, 6c, 6m, 7b, and 7c) were further subjected to tests of pharmacological parameters yielding the final set for advanced biological evaluation (4m, 5m, 6m, and 7b). It was proved by several methods, that all of them trigger apoptosis via the intrinsic pathway and derivatives 5m and 7b are the most effective (IC50 2.4 μM and 3.6 μM). They are the best candidates to become potentially new anticancer drugs and will be subjected to in vivo tests in mice. In addition, compounds 6b and 6c deserve more attention because their activity is not limited only to chemosensitive CCRF-CEM cell line. Specifically, compound 6b is highly active against K562 leukemic cell line (0.7 μM) and its IC50 activity in colon cancer HCT116 cell line is 1.0 μM. Compound 6c is active in both normal K562 and resistant K562-TAX cell lines (IC50 3.4 μM and 5.4 μM) and both colon cancer cell lines (HCT116 and HCT116p53-/-, IC50 3.5 μM and 3.4 μM).
Collapse
|
Journal Article |
6 |
34 |
3
|
Veselovská L, Kudlová N, Gurská S, Lišková B, Medvedíková M, Hodek O, Tloušťová E, Milisavljevic N, Tichý M, Perlíková P, Mertlíková‐Kaiserová H, Trylčová J, Pohl R, Klepetářová B, Džubák P, Hajdúch M, Hocek M. Synthesis and Cytotoxic and Antiviral Activity Profiling of All‐Four Isomeric Series of Pyrido‐Fused 7‐Deazapurine Ribonucleosides. Chemistry 2020; 26:13002-13015. [DOI: 10.1002/chem.202001124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 12/16/2022]
|
|
5 |
9 |
4
|
Hodoň J, Frydrych I, Trhlíková Z, Pokorný J, Borková L, Benická S, Vlk M, Lišková B, Kubíčková A, Medvedíková M, Pisár M, Šarek J, Das V, Ligasová A, Koberna K, Džubák P, Hajdúch M, Urban M. Triterpenoid pyrazines and pyridines - Synthesis, cytotoxicity, mechanism of action, preparation of prodrugs. Eur J Med Chem 2022; 243:114777. [PMID: 36174412 DOI: 10.1016/j.ejmech.2022.114777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
A set of fifteen triterpenoid pyrazines and pyridines was prepared from parent triterpenoid 3-oxoderivatives (betulonic acid, dihydrobetulonic acid, oleanonic acid, moronic acid, ursonic acid, heterobetulonic acid, and allobetulone). Cytotoxicity of all compounds was tested in eight cancer and two non-cancer cell lines. Evaluation of the structure-activity relationships revealed that the triterpenoid core determined whether the final molecule is active or not, while the heterocycle is able to increase the activity and modulate the specificity. Five compounds (1b, 1c, 2b, 2c, and 8) were found to be preferentially and highly cytotoxic (IC50 ≈ 1 μM) against leukemic cancer cell lines (CCRF-CEM, K562, CEM-DNR, or K562-TAX). Surprisingly, compounds 1c, 2b, and 2c are 10-fold more active in multidrug-resistant leukemia cells (CEM-DNR and K562-TAX) than in their non-resistant analogs (CCRF-CEM and K562). Pharmacological parameters were measured for the most promising candidates and two types of prodrugs were synthesized: 1) Sugar-containing conjugates, most of which had improved cell penetration and retained high cytotoxicity in the CCRF-CEM cell line, unfortunately, they lost the selectivity against resistant cells. 2) Medoxomil derivatives, among which compounds 26-28 gained activities of IC50 0.026-0.043 μM against K562 cells. Compounds 1b, 8, 21, 22, 23, and 24 were selected for the evaluation of the mechanism of action based on their highest cytotoxicity against CCRF-CEM cell line. Several experiments showed that the majority of them cause apoptosis via the mitochondrial pathway. Compounds 1b, 8, and 21 inhibit growth and disintegrate spheroid cultures of HCT116 and HeLa cells, which would be important for the treatment of solid tumors. In summary, compounds 1b, 1c, 2b, 2c, 24, and 26-28 are highly and selectively cytotoxic against cancer cell lines and were selected for future in vivo tests and further development of anticancer drugs.
Collapse
|
|
3 |
9 |
5
|
Švec P, Nový Z, Kučka J, Petřík M, Sedláček O, Kuchař M, Lišková B, Medvedíková M, Kolouchová K, Groborz O, Loukotová L, Konefał RŁ, Hajdúch M, Hrubý M. Iodinated Choline Transport-Targeted Tracers. J Med Chem 2020; 63:15960-15978. [PMID: 33271015 DOI: 10.1021/acs.jmedchem.0c01710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a novel series of radioiodinated tracers and potential theranostics for diseases accompanied by pathological function of proteins involved in choline transport. Unlike choline analogues labeled with 11C or 18F that are currently used in the clinic, the iodinated compounds described herein are applicable in positron emission tomography, single-photon emission computed tomography, and potentially in therapy, depending on the iodine isotope selection. Moreover, favorable half-lives of iodine isotopes result in much less challenging synthesis by isotope exchange reaction. Six of the described compounds were nanomolar ligands, and the best compound possessed an affinity 100-fold greater than that of choline. Biodistribution data of 125I-labeled ligands in human prostate carcinoma bearing (PC-3) mice revealed two compounds with a biodistribution profile superior to that of [18F]fluorocholine.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
4 |
6
|
Maková B, Mik V, Lišková B, Gonzalez G, Vítek D, Medvedíková M, Monfort B, Ručilová V, Kadlecová A, Khirsariya P, Gándara Barreiro Z, Havlíček L, Zatloukal M, Soural M, Paruch K, D'Autréaux B, Hajdúch M, Strnad M, Voller J. Cytoprotective activities of kinetin purine isosteres. Bioorg Med Chem 2021; 33:115993. [PMID: 33497938 DOI: 10.1016/j.bmc.2021.115993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/31/2020] [Indexed: 01/23/2023]
Abstract
Kinetin (N6-furfuryladenine), a plant growth substance of the cytokinin family, has been shown to modulate aging and various age-related conditions in animal models. Here we report the synthesis of kinetin isosteres with the purine ring replaced by other bicyclic heterocycles, and the biological evaluation of their activity in several in vitro models related to neurodegenerative diseases. Our findings indicate that kinetin isosteres protect Friedreich́s ataxia patient-derived fibroblasts against glutathione depletion, protect neuron-like SH-SY5Y cells from glutamate-induced oxidative damage, and correct aberrant splicing of the ELP1 gene in fibroblasts derived from a familial dysautonomia patient. Although the mechanism of action of kinetin derivatives remains unclear, our data suggest that the cytoprotective activity of some purine isosteres is mediated by their ability to reduce oxidative stress. Further, the studies of permeation across artificial membrane and model gut and blood-brain barriers indicate that the compounds are orally available and can reach central nervous system. Overall, our data demonstrate that isosteric replacement of the kinetin purine scaffold is a fruitful strategy for improving known biological activities of kinetin and discovering novel therapeutic opportunities.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
2 |
7
|
Medvedíková M, Ranc V, Vančo J, Trávníček Z, Anzenbacher P. Highly Cytotoxic Copper(II) Mixed-Ligand Quinolinonato Complexes: Pharmacokinetic Properties and Interactions with Drug Metabolizing Cytochromes P450. Pharmaceutics 2023; 15:pharmaceutics15041314. [PMID: 37111801 PMCID: PMC10146558 DOI: 10.3390/pharmaceutics15041314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of two anticancer active copper(II) mixed-ligand complexes of the type [Cu(qui)(mphen)]Y·H2O, where Hqui = 2-phenyl-3-hydroxy- 1H-quinolin-4-one, mphen = bathophenanthroline, and Y = NO3 (complex 1) or BF4 (complex 2) on the activities of different isoenzymes of cytochrome P450 (CYP) have been evaluated. The screening revealed significant inhibitory effects of the complexes on CYP3A4/5 (IC50 values were 2.46 and 4.88 μM), CYP2C9 (IC50 values were 16.34 and 37.25 μM), and CYP2C19 (IC50 values were 61.21 and 77.07 μM). Further, the analysis of mechanisms of action uncovered a non-competitive type of inhibition for both the studied compounds. Consequent studies of pharmacokinetic properties proved good stability of both the complexes in phosphate buffer saline (>96% stability) and human plasma (>91% stability) after 2 h of incubation. Both compounds are moderately metabolised by human liver microsomes (<30% after 1 h of incubation), and over 90% of the complexes bind to plasma proteins. The obtained results showed the potential of complexes 1 and 2 to interact with major metabolic pathways of drugs and, as a consequence of this finding, their apparent incompatibility in combination therapy with most chemotherapeutic agents.
Collapse
|
|
2 |
|
8
|
Maková B, Mik V, Lišková B, Drašarová L, Medvedíková M, Hořínková A, Vojta P, Zatloukal M, Plíhalová L, Hönig M, Doležal K, Forejt K, Oždian T, Hajdúch M, Strnad M, Voller J. Correction of aberrant splicing of ELP1 pre-mRNA by kinetin derivatives - A structure activity relationship study. Eur J Med Chem 2025; 284:117176. [PMID: 39756144 DOI: 10.1016/j.ejmech.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025]
Abstract
Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family. We explored the relationship between the structure of a set of kinetin derivatives (N = 72) and their ability to correct aberrant splicing of the ELP1 gene. Active compounds can be obtained by the substitution of the purine ring with chlorine and fluorine at the C2 atom, with a small alkyl group at the N7 atom, or with diverse groups at the C8 atom. On the other hand, a substitution at the N3 or N9 atoms resulted in a loss of activity. We successfully tested a hypothesis inspired by the remarkable tolerance of the position C8 to substitution, postulating that the imidazole of the purine moiety is not required for the activity. We also evaluated the activity of phytohormones from other families, but none of them corrected ELP1 mRNA aberrant splicing. A panel of in vitro ADME assays, including evaluation of transport across model barriers, stability in plasma and in the presence of liver microsomal fraction as well as plasma protein binding, was used for an initial estimation of the potential bioavailability of the active compounds. Finally, a RNA-seq data suggest that 8-aminokinetin modulates expression spliceosome components.
Collapse
|
|
1 |
|