1
|
van Langelaar J, Rijvers L, Smolders J, van Luijn MM. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front Immunol 2020; 11:760. [PMID: 32457742 PMCID: PMC7225320 DOI: 10.3389/fimmu.2020.00760] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Historically, multiple sclerosis (MS) has been viewed as being primarily driven by T cells. However, the effective use of anti-CD20 treatment now also reveals an important role for B cells in MS patients. The results from this treatment put forward T-cell activation rather than antibody production by B cells as a driving force behind MS. The main question of how their interaction provokes both B and T cells to infiltrate the CNS and cause local pathology remains to be answered. In this review, we highlight key pathogenic events involving B and T cells that most likely contribute to the pathogenesis of MS. These include (1) peripheral escape of B cells from T cell-mediated control, (2) interaction of pathogenic B and T cells in secondary lymph nodes, and (3) reactivation of B and T cells accumulating in the CNS. We will focus on the functional programs of CNS-infiltrating lymphocyte subsets in MS patients and discuss how these are defined by mechanisms such as antigen presentation, co-stimulation and cytokine production in the periphery. Furthermore, the potential impact of genetic variants and viral triggers on candidate subsets will be debated in the context of MS.
Collapse
|
Review |
5 |
175 |
2
|
van Langelaar J, van der Vuurst de Vries RM, Janssen M, Wierenga-Wolf AF, Spilt IM, Siepman TA, Dankers W, Verjans GMGM, de Vries HE, Lubberts E, Hintzen RQ, van Luijn MM. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain 2018; 141:1334-1349. [DOI: 10.1093/brain/awy069] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
|
|
7 |
109 |
3
|
van Langelaar J, Rijvers L, Janssen M, Wierenga-Wolf AF, Melief MJ, Siepman TA, de Vries HE, Unger PPA, van Ham SM, Hintzen RQ, van Luijn MM. Induction of brain-infiltrating T-bet-expressing B cells in multiple sclerosis. Ann Neurol 2019; 86:264-278. [PMID: 31136008 PMCID: PMC6771938 DOI: 10.1002/ana.25508] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022]
Abstract
Objective Results from anti‐CD20 therapies demonstrate that B‐ and T‐cell interaction is a major driver of multiple sclerosis (MS). The local presence of B‐cell follicle‐like structures and oligoclonal bands in MS patients indicates that certain B cells infiltrate the central nervous system (CNS) to mediate pathology. Which peripheral triggers underlie the development of CNS‐infiltrating B cells is not fully understood. Methods Ex vivo flow cytometry was used to assess chemokine receptor profiles of B cells in blood, cerebrospinal fluid, meningeal, and brain tissues of MS patients (n = 10). Similar analyses were performed for distinct memory subsets in the blood of untreated and natalizumab‐treated MS patients (n = 38). To assess T‐bet(CXCR3)+ B‐cell differentiation, we cultured B cells from MS patients (n = 21) and healthy individuals (n = 34) under T helper 1‐ and TLR9‐inducing conditions. Their CNS transmigration capacity was confirmed using brain endothelial monolayers. Results CXC chemokine receptor 3 (CXCR3)‐expressing B cells were enriched in different CNS compartments of MS patients. Treatment with the clinically effective drug natalizumab prevented the recruitment of CXCR3high IgG1+ subsets, corresponding to their increased ability to cross CNS barriers in vitro. Blocking of interferon‐γ (IFNγ) reduced the transmigration potential and antigen‐presenting function of these cells. IFNγ‐induced B cells from MS patients showed increased T‐bet expression and plasmablast development. Additional TLR9 triggering further upregulated T‐bet and CXCR3, and was essential for IgG1 switching. Interpretation This study demonstrates that T‐bethigh IgG1+ B cells are triggered by IFNγ and TLR9 signals, likely contributing to enhanced CXCR3‐mediated recruitment and local reactivity in the CNS of MS patients. ANN NEUROL 2019;86:264–278
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
62 |
4
|
van Luijn MM, Kreft KL, Jongsma ML, Mes SW, Wierenga-Wolf AF, van Meurs M, Melief MJ, der Kant RV, Janssen L, Janssen H, Tan R, Priatel JJ, Neefjes J, Laman JD, Hintzen RQ. Multiple sclerosis-associated CLEC16A controls HLA class II expression via late endosome biogenesis. Brain 2015; 138:1531-47. [PMID: 25823473 DOI: 10.1093/brain/awv080] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/26/2015] [Indexed: 01/20/2023] Open
Abstract
C-type lectins are key players in immune regulation by driving distinct functions of antigen-presenting cells. The C-type lectin CLEC16A gene is located at 16p13, a susceptibility locus for several autoimmune diseases, including multiple sclerosis. However, the function of this gene and its potential contribution to these diseases in humans are poorly understood. In this study, we found a strong upregulation of CLEC16A expression in the white matter of multiple sclerosis patients (n = 14) compared to non-demented controls (n = 11), mainly in perivascular leukocyte infiltrates. Moreover, CLEC16A levels were significantly enhanced in peripheral blood mononuclear cells of multiple sclerosis patients (n = 69) versus healthy controls (n = 46). In peripheral blood mononuclear cells, CLEC16A was most abundant in monocyte-derived dendritic cells, in which it strongly co-localized with human leukocyte antigen class II. Treatment of these professional antigen-presenting cells with vitamin D, a key protective environmental factor in multiple sclerosis, downmodulated CLEC16A in parallel with human leukocyte antigen class II. Knockdown of CLEC16A in distinct types of model and primary antigen-presenting cells resulted in severely impaired cytoplasmic distribution and formation of human leucocyte antigen class II-positive late endosomes, as determined by immunofluorescence and electron microscopy. Mechanistically, CLEC16A participated in the molecular machinery of human leukocyte antigen class II-positive late endosome formation and trafficking to perinuclear regions, involving the dynein motor complex. By performing co-immunoprecipitations, we found that CLEC16A directly binds to two critical members of this complex, RILP and the HOPS complex. CLEC16A silencing in antigen-presenting cells disturbed RILP-mediated recruitment of human leukocyte antigen class II-positive late endosomes to perinuclear regions. Together, we identify CLEC16A as a pivotal gene in multiple sclerosis that serves as a direct regulator of the human leukocyte antigen class II pathway in antigen-presenting cells. These findings are a first step in coupling multiple sclerosis-associated genes to the regulation of the strongest genetic factor in multiple sclerosis, human leukocyte antigen class II.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
43 |
5
|
Ghanbari M, Darweesh SK, de Looper HW, van Luijn MM, Hofman A, Ikram MA, Franco OH, Erkeland SJ, Dehghan A. Genetic Variants in MicroRNAs and Their Binding Sites Are Associated with the Risk of Parkinson Disease. Hum Mutat 2015; 37:292-300. [DOI: 10.1002/humu.22943] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
|
|
10 |
38 |
6
|
van der Vuurst de Vries RM, Wong YYM, Mescheriakova JY, van Pelt ED, Runia TF, Jafari N, Siepman TA, Melief MJ, Wierenga-Wolf AF, van Luijn MM, Samijn JP, Neuteboom RF, Hintzen RQ. High neurofilament levels are associated with clinically definite multiple sclerosis in children and adults with clinically isolated syndrome. Mult Scler 2018; 25:958-967. [PMID: 29774770 PMCID: PMC6545618 DOI: 10.1177/1352458518775303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: A promising biomarker for axonal damage early in the disease course of multiple sclerosis (MS) is neurofilament light chain (NfL). It is unknown whether NfL has the same predictive value for MS diagnosis in children as in adults. Objective: To explore the predictive value of NfL levels in cerebrospinal fluid (CSF) for MS diagnosis in paediatric and adult clinically isolated syndrome (CIS) patients. Methods: A total of 88 adult and 65 paediatric patients with a first attack of demyelination were included and followed (mean follow up-time in adults: 62.8 months (standard deviation (SD) ±38.7 months) and 43.8 months (SD ±27.1 months) in children). Thirty control patients were also included. Lumbar puncture was done within 6 months after onset of symptoms. NfL was determined in CSF using enzyme-linked immunosorbent assay (ELISA). COX regression analyses were used to calculate hazard ratios (HR) for clinically definite multiple sclerosis (CDMS) diagnosis. Results: After adjustments for age, oligoclonal bands (OCB), and asymptomatic T2 lesions on baseline magnetic resonance imaging (MRI), increased NfL levels in both paediatric and adult CIS patients were associated with a shorter time to CDMS diagnosis (children HR = 3.7; p = 0.007, adults HR = 2.1; p = 0.032). For CIS patients with a future CDMS diagnosis, children showed higher NfL levels than adults (geometric mean 4888 vs 2156 pg/mL; p = 0.007). Conclusion: CSF NfL levels are associated with CDMS diagnosis in children and adults with CIS. This makes NfL a promising predictive marker for disease course with potential value in clinical practice.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
34 |
7
|
van Langelaar J, Wierenga-Wolf AF, Samijn JPA, Luijks CJM, Siepman TA, van Doorn PA, Bell A, van Zelm MC, Smolders J, van Luijn MM. The association of Epstein-Barr virus infection with CXCR3 + B-cell development in multiple sclerosis: impact of immunotherapies. Eur J Immunol 2020; 51:626-633. [PMID: 33152118 PMCID: PMC7984177 DOI: 10.1002/eji.202048739] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/17/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Epstein–Barr virus (EBV) infection of B cells is associated with increased multiple sclerosis (MS) susceptibility. Recently, we found that CXCR3‐expressing B cells preferentially infiltrate the CNS of MS patients. In chronic virus‐infected mice, these types of B cells are sustained and show increased antiviral responsiveness. How EBV persistence in B cells influences their development remains unclear. First, we analyzed ex vivo B‐cell subsets from MS patients who received autologous bone marrow transplantation (n = 9), which is often accompanied by EBV reactivation. The frequencies of nonclass‐switched and class‐switched memory B cells were reduced at 3–7 months, while only class‐switched B cells returned back to baseline at 24–36 months posttransplantation. At these time points, EBV DNA load positively correlated to the frequency of CXCR3+, and not CXCR4+ or CXCR5+, class‐switched B cells. Second, for CXCR3+ memory B cells trapped within the blood of MS patients treated with natalizumab (anti‐VLA‐4 antibody n = 15), latent EBV infection corresponded to enhanced in vitro formation of anti‐EBNA1 IgG‐secreting plasma cells under GC‐like conditions. These findings imply that EBV persistence in B cells potentiates brain‐homing and antibody‐producing CXCR3+ subsets in MS.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
26 |
8
|
van Luijn MM, van den Ancker W, Chamuleau MED, Zevenbergen A, Westers TM, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Absence of class II-associated invariant chain peptide on leukemic blasts of patients promotes activation of autologous leukemia-reactive CD4+ T cells. Cancer Res 2011; 71:2507-17. [PMID: 21310823 DOI: 10.1158/0008-5472.can-10-3689] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune escape in cancer poses a substantial obstacle to successful cancer immunotherapy. Multiple defects in HLA class I antigen presentation exist in cancer that may contribute to immune escape, but less is known about roles for HLA class II antigen presentation. On class II(+) leukemic blasts, the presence of class II-associated invariant chain peptide (CLIP) is known to be correlated with poor survival in acute myeloid leukemia (AML). In this study, we evaluated the functional significance of CLIP expression on leukemic blasts of AML patients. CD4(+) T cells from patients were cocultured with autologous CLIP(-) and CLIP(+) primary leukemic blasts and analyzed for several functional parameters by flow cytometry. Increased HLA-DR and IFN-γ expression was observed for CD4(+) T cells stimulated with CLIP(-) leukemic blasts, in contrast to CLIP(+) leukemic blasts, which indicated an activation and polarization of the CD4(+) T cells toward T-helper 1 cells. In addition, CLIP(-) leukemic blasts induced greater outgrowth of effector memory CD4(+) T cells (with HLA-DR-restricted T-cell receptor Vβ repertoires) that were associated with better leukemia-specific reactivity than with CLIP(+) leukemic blasts. Our findings offer a clinical rationale to downmodulate CLIP on leukemic blasts as a strategy to degrade immune escape and improve leukemia-specific T-cell immunity in AML patients.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
22 |
9
|
Rijvers L, Melief M, van der Vuurst de Vries RM, Stéphant M, van Langelaar J, Wierenga‐Wolf AF, Hogervorst JM, Geurts‐Moespot AJ, Sweep FCGJ, Hintzen RQ, van Luijn MM. The macrophage migration inhibitory factor pathway in human B cells is tightly controlled and dysregulated in multiple sclerosis. Eur J Immunol 2018; 48:1861-1871. [PMID: 30160778 PMCID: PMC6282801 DOI: 10.1002/eji.201847623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/04/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022]
Abstract
In MS, B cells survive peripheral tolerance checkpoints to mediate local inflammation, but the underlying molecular mechanisms are relatively underexplored. In mice, the MIF pathway controls B-cell development and the induction of EAE. Here, we found that MIF and MIF receptor CD74 are downregulated, while MIF receptor CXCR4 is upregulated in B cells from early onset MS patients. B cells were identified as the main immune subset in blood expressing MIF. Blocking of MIF and CD74 signaling in B cells triggered CXCR4 expression, and vice versa, with separate effects on their proinflammatory activity, proliferation, and sensitivity to Fas-mediated apoptosis. This study reveals a new reciprocal negative regulation loop between CD74 and CXCR4 in human B cells. The disturbance of this loop during MS onset provides further insights into how pathogenic B cells survive peripheral tolerance checkpoints to mediate disease activity in MS.
Collapse
|
research-article |
7 |
21 |
10
|
van den Ancker W, van Luijn MM, Westers TM, Bontkes HJ, Ruben JM, de Gruijl TD, Ossenkoppele GJ, van de Loosdrecht AA. Recent advances in antigen-loaded dendritic cell-based strategies for treatment of minimal residual disease in acute myeloid leukemia. Immunotherapy 2010; 2:69-83. [PMID: 20635890 DOI: 10.2217/imt.09.85] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Therapeutic vaccination with dendritic cells (DCs) is recognized as an important experimental therapy for the treatment of minimal residual disease in acute myeloid leukemia. Many sources of leukemia-associated antigens and different methods for antigen loading of DCs have been used in an attempt to optimize anti-tumor responses. For instance, monocyte-derived DCs have been loaded with apoptotic whole-cell suspensions, necrotic cell lysates, tumor-associated peptides, eluted peptides and cellular DNA or RNA. Furthermore, monocyte-derived DCs can be chemically or electrically fused with leukemic blasts, and DCs have been cultured out of leukemic blasts. However, it remains a challenge in cancer immunotherapy to identify which of these methods is the most optimal for antigen loading and activation of DCs. This review discusses recent advances in DC research and the application of this knowledge towards new strategies for antigen loading of DCs in the treatment of minimal residual disease in acute myeloid leukemia.
Collapse
|
Review |
15 |
19 |
11
|
van Luijn MM, Chamuleau MED, Thompson JA, Ostrand-Rosenberg S, Westers TM, Souwer Y, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Class II-associated invariant chain peptide down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4+ T-cell responses. Haematologica 2009; 95:485-93. [PMID: 19903675 DOI: 10.3324/haematol.2009.010595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Disease recurrence in patients with acute myeloid leukemia may be partially explained by the escape of leukemic blasts from CD4(+) T-cell recognition. The current study investigates the role of aberrant HLA class II antigen presentation on leukemic blasts by determining both the clinical and functional impact of the class II-associated invariant chain peptide (CLIP). DESIGN AND METHODS The levels of expression of CLIP and HLA-DR on blood and bone marrow samples from 207 patients with acute myeloid leukemia were correlated with clinical outcome. Irradiated CLIP(-) and CLIP(+) leukemic blasts were compared for their ability to induce CD4(+) T cells during mixed leukocyte reactions. To discriminate between these blasts, we down-modulated CLIP expression on myeloid leukemic cell lines by RNA interference of the invariant chain, a chaperone protein critically involved in HLA-DR processing, and performed flow cytometric sorting for their isolation from primary acute myeloid leukemia samples. RESULTS We found that patients with leukemic blasts characterized by a high amount of HLA-DR occupied by CLIP (relative amount of CLIP) had a significantly shortened disease-free survival. The clear reductions in amount of HLA-DR occupied by CLIP on blasts of the THP-1 and Kasumi-1 myeloid leukemic cell lines after treatment with invariant chain short interfering RNA resulted in enhanced rates of allogeneic CD4(+) T-cell proliferation. Similar findings were obtained in an autologous setting, in which there were strong increases in proliferation of remission CD4(+) T cells stimulated with CLIP(-)-sorted leukemic blasts from HLA-DR(+) acute myeloid leukemia patients, in contrast to CLIP(+)-sorted leukemic blasts from the same patients. CONCLUSIONS These data highlight the relevance of CLIP expression on leukemic blasts and the potential of CLIP as a target for immunomodulatory strategies to enhance HLA class II antigen presentation and CD4(+) T-cell reactivity in acute myeloid leukemia.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
19 |
12
|
van Luijn MM, van Meurs M, Stoop MP, Verbraak E, Wierenga-Wolf AF, Melief MJ, Kreft KL, Verdijk RM, 't Hart BA, Luider TM, Laman JD, Hintzen RQ. Elevated Expression of the Cerebrospinal Fluid Disease Markers Chromogranin A and Clusterin in Astrocytes of Multiple Sclerosis White Matter Lesions. J Neuropathol Exp Neurol 2016; 75:86-98. [PMID: 26683597 DOI: 10.1093/jnen/nlv004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Using proteomics, we previously identified chromogranin A (CgA) and clusterin (CLU) as disease-related proteins in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS). CgA and CLU are involved in cell survival and are implicated in neurodegenerative disorders and may also have roles in MS pathophysiology. We investigated CgA and CLU expression in lesions and nonlesional regions in postmortem brains of MS patients and controls and in the brains of marmosets with experimental autoimmune encephalomyelitis. By quantitative PCR, mRNA levels of CgA and CLU were elevated in white matter but not in grey matter of MS patients. In situ analyses showed greater expression of CgA and CLU in white matter lesions than in normal-appearing regions in MS patients and in the marmosets, primarily in or adjacent to perivascular spaces and inflammatory infiltrates. Both proteins were expressed by glial fibrillary acidic protein-positive astrocytes. CgA was more localized in astrocytic processes and endfeet surrounding blood vessels and was abundant in the superficial glia limitans and ependyma, 2 CSF-brain borders. Increased expression of CgA and CLU in reactive astrocytes in MS white matter lesions supports a role for these molecules as neuro-inflammatory mediators and their potential as CSF markers of active pathological processes in MS patients.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
18 |
13
|
van Luijn MM, van den Ancker W, Chamuleau MED, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Impaired antigen presentation in neoplasia: basic mechanisms and implications for acute myeloid leukemia. Immunotherapy 2010; 2:85-97. [DOI: 10.2217/imt.09.84] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During onset, treatment and progression of acute myeloid leukemia (AML), inadequate immune responses against certain myeloid leukemic blasts might be associated with the occurrence of minimal residual disease and subsequent relapse. Several studies on this subject have demonstrated that, in general, solid tumor cells are able to avoid CD8+ cytotoxic T-cell recognition by downregulating HLA class I-restricted presentation of tumor-associated antigens. In tumor cells that can express HLA class II molecules, such as myeloid leukemic blasts, abnormalities in the processing pathways of endogenous antigens could also result in impaired HLA class II-restricted tumor-associated antigen presentation to CD4+ T helper cells. More insight into impaired tumor-associated antigen presentation by myeloid leukemic blasts could explain their escape from immune recognition and might be crucial for selecting appropriate strategies to improve whole-cell or dendritic cell-based tumor vaccine efficacy in the treatment of AML patients.
Collapse
|
|
15 |
17 |
14
|
Bogers L, Engelenburg HJ, Janssen M, Unger PPA, Melief MJ, Wierenga-Wolf AF, Hsiao CC, Mason MRJ, Hamann J, van Langelaar J, Smolders J, van Luijn MM. Selective emergence of antibody-secreting cells in the multiple sclerosis brain. EBioMedicine 2023; 89:104465. [PMID: 36796230 PMCID: PMC9958261 DOI: 10.1016/j.ebiom.2023.104465] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Although distinct brain-homing B cells have been identified in multiple sclerosis (MS), it is unknown how these further evolve to contribute to local pathology. We explored B-cell maturation in the central nervous system (CNS) of MS patients and determined their association with immunoglobulin (Ig) production, T-cell presence, and lesion formation. METHODS Ex vivo flow cytometry was performed on post-mortem blood, cerebrospinal fluid (CSF), meninges and white matter from 28 MS and 10 control brain donors to characterize B cells and antibody-secreting cells (ASCs). MS brain tissue sections were analysed with immunostainings and microarrays. IgG index and CSF oligoclonal bands were measured with nephelometry, isoelectric focusing, and immunoblotting. Blood-derived B cells were cocultured under T follicular helper-like conditions to evaluate their ASC-differentiating capacity in vitro. FINDINGS ASC versus B-cell ratios were increased in post-mortem CNS compartments of MS but not control donors. Local presence of ASCs associated with a mature CD45low phenotype, focal MS lesional activity, lesional Ig gene expression, and CSF IgG levels as well as clonality. In vitro B-cell maturation into ASCs did not differ between MS and control donors. Notably, lesional CD4+ memory T cells positively correlated with ASC presence, reflected by local interplay with T cells. INTERPRETATION These findings provide evidence that local B cells at least in late-stage MS preferentially mature into ASCs, which are largely responsible for intrathecal and local Ig production. This is especially seen in active MS white matter lesions and likely depends on the interaction with CD4+ memory T cells. FUNDING Stichting MS Research (19-1057 MS; 20-490f MS), National MS Fonds (OZ2018-003).
Collapse
|
research-article |
2 |
16 |
15
|
Wijdeven RH, van Luijn MM, Wierenga-Wolf AF, Akkermans JJ, van den Elsen PJ, Hintzen RQ, Neefjes J. Chemical and genetic control of IFNγ-induced MHCII expression. EMBO Rep 2018; 19:embr.201745553. [PMID: 30021835 DOI: 10.15252/embr.201745553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/05/2023] Open
Abstract
The cytokine interferon-γ (IFNγ) can induce expression of MHC class II (MHCII) on many different cell types, leading to antigen presentation to CD4+ T cells and immune activation. This has also been linked to anti-tumour immunity and graft-versus-host disease. The extent of MHCII upregulation by IFNγ is cell type-dependent and under extensive control of epigenetic regulators and signalling pathways. Here, we identify novel genetic and chemical factors that control this form of MHCII expression. Loss of the oxidative stress sensor Keap1, autophagy adaptor p62/SQSTM1, ubiquitin E3-ligase Cullin-3 and chromatin remodeller BPTF impair IFNγ-mediated MHCII expression. A similar phenotype is observed for arsenite, an oxidative stressor. Effects of the latter can be reversed by the inhibition of HDAC1/2, linking oxidative stress conditions to epigenetic control of MHCII expression. Furthermore, dimethyl fumarate, an antioxidant used for the treatment of several autoimmune diseases, impairs the IFNγ response by manipulating transcriptional control of MHCII We describe novel pathways and drugs related to oxidative conditions in cells impacting on IFNγ-mediated MHCII expression, which provide a molecular basis for the understanding of MHCII-associated diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
15 |
16
|
Rijvers L, van Langelaar J, Bogers L, Melief MJ, Koetzier SC, Blok KM, Wierenga-Wolf AF, de Vries HE, Rip J, Corneth OB, Hendriks RW, Grenningloh R, Boschert U, Smolders J, van Luijn MM. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight 2022; 7:160909. [PMID: 35852869 PMCID: PMC9462504 DOI: 10.1172/jci.insight.160909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recent clinical trials have shown promising results for the next-generation Bruton’s tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear. Compared with levels of BTK protein, we found higher levels of phospho-BTK in ex vivo blood memory B cells from patients with relapsing-remitting MS and secondary progressive MS compared with controls. In these MS groups, BTK activity was induced to a lesser extent after anti-IgM stimulation. BTK positively correlated with CXCR3 expression, both of which were increased in blood B cells from clinical responders to natalizumab (anti–VLA-4 antibody) treatment. Under in vitro T follicular helper–like conditions, BTK phosphorylation was enhanced by T-bet–inducing stimuli, IFN-γ and CpG-ODN, while the expression of T-bet and T-bet–associated molecules CXCR3, CD21, and CD11c was affected by evobrutinib. Furthermore, evobrutinib interfered with in vitro class switching, as well as memory recall responses, and disturbed CXCL10-mediated migration of CXCR3+ switched B cells through human brain endothelial monolayers. These findings demonstrate a functional link between BTK activity and disease-relevant B cells and offer valuable insights into how next-generation BTK inhibitors could modulate the clinical course of patients with MS.
Collapse
|
|
3 |
15 |
17
|
Koetzier SC, van Langelaar J, Blok KM, van den Bosch TPP, Wierenga-Wolf AF, Melief MJ, Pol K, Siepman TA, Verjans GMGM, Smolders J, Lubberts E, de Vries HE, van Luijn MM. Brain-homing CD4 + T cells display glucocorticoid-resistant features in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e894. [PMID: 33037101 PMCID: PMC7577536 DOI: 10.1212/nxi.0000000000000894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Objective To study whether glucocorticoid (GC) resistance delineates disease-relevant T helper (Th) subsets that home to the CNS of patients with early MS. Methods The expression of key determinants of GC sensitivity, multidrug resistance protein 1 (MDR1/ABCB1) and glucocorticoid receptor (GR/NR3C1), was investigated in proinflammatory Th subsets and compared between natalizumab-treated patients with MS and healthy individuals. Blood, CSF, and brain compartments from patients with MS were assessed for the recruitment of GC-resistant Th subsets using fluorescence-activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence. Results An MS-associated Th subset termed Th17.1 showed a distinct GC-resistant phenotype as reflected by high MDR1 and low GR expression. This expression ratio was further elevated in Th17.1 cells that accumulated in the blood of patients with MS treated with natalizumab, a drug that prevents their entry into the CNS. Proinflammatory markers C-C chemokine receptor 6, IL-23R, IFN-γ, and GM-CSF were increased in MDR1-expressing Th17.1 cells. This subset predominated the CSF of patients with early MS, which was not seen in the paired blood or in the CSF from patients with other inflammatory and noninflammatory neurologic disorders. The potential of MDR1-expressing Th17.1 cells to infiltrate brain tissue was confirmed by their presence in MS white matter lesions. Conclusion This study reveals that GC resistance coincides with preferential CNS recruitment of pathogenic Th17.1 cells, which may hamper the long-term efficacy of GCs in early MS.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
12 |
18
|
Koetzier SC, Neuteboom RF, Wierenga-Wolf AF, Melief MJ, de Mol CL, van Rijswijk A, Dik WA, Broux B, van der Wal R, van den Berg SAA, Smolders J, van Luijn MM. Effector T Helper Cells Are Selectively Controlled During Pregnancy and Related to a Postpartum Relapse in Multiple Sclerosis. Front Immunol 2021; 12:642038. [PMID: 33790911 PMCID: PMC8005718 DOI: 10.3389/fimmu.2021.642038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Multiple sclerosis (MS) patients are protected from relapses during pregnancy and have an increased relapse risk after delivery. It is unknown how pregnancy controls disease-contributing CD4+ T helper (Th) cells and whether this differs in MS patients who experience a postpartum relapse. Here, we studied the effector phenotype of Th cells in relation to pregnancy and postpartum relapse occurrence in MS. Methods: Memory skewing and activation of effector Th subsets were analyzed in paired third trimester and postpartum blood of 19 MS patients with and without a postpartum relapse and 12 healthy controls. Ex vivo results were associated with circulating levels of pregnancy-induced hormones and mirrored in vitro by exposing proliferating Th cells to corresponding serum samples. Results: Based on HSNE-guided analyses, we found that effector memory proportions of Th cells were increased in postpartum vs. third trimester samples from MS patients without a postpartum relapse. This was not seen for relapsing patients or healthy controls. CXCR3 was upregulated on postpartum memory Th cells, except for relapsing patients. These changes were verified by adding sera from the same individuals to proliferating Th cells, but did not associate with third trimester cortisol, estradiol or progesterone levels. For relapsing patients, activated memory Th cells of both third trimester and postpartum samples produced higher levels of pro-inflammatory cytokines. Conclusion: Effector Th cells are differentially regulated during pregnancy in MS patients, likely via serum-related factors beyond the studied hormones. The pro-inflammatory state of memory Th cells during pregnancy may predict a postpartum relapse.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
10 |
19
|
Rijvers L, Melief MJ, van Langelaar J, van der Vuurst de Vries RM, Wierenga-Wolf AF, Koetzier SC, Priatel JJ, Jorritsma T, van Ham SM, Hintzen RQ, van Luijn MM. The Role of Autoimmunity-Related Gene CLEC16A in the B Cell Receptor-Mediated HLA Class II Pathway. THE JOURNAL OF IMMUNOLOGY 2020; 205:945-956. [PMID: 32641384 DOI: 10.4049/jimmunol.1901409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin CLEC16A is located next to CIITA, the master transcription factor of HLA class II (HLA-II), at a susceptibility locus for several autoimmune diseases, including multiple sclerosis (MS). We previously found that CLEC16A promotes the biogenesis of HLA-II peptide-loading compartments (MIICs) in myeloid cells. Given the emerging role of B cells as APCs in these diseases, in this study, we addressed whether and how CLEC16A is involved in the BCR-dependent HLA-II pathway. CLEC16A was coexpressed with surface class II-associated invariant chain peptides (CLIP) in human EBV-positive and not EBV-negative B cell lines. Stable knockdown of CLEC16A in EBV-positive Raji B cells resulted in an upregulation of surface HLA-DR and CD74 (invariant chain), whereas CLIP was slightly but significantly reduced. In addition, IgM-mediated Salmonella uptake was decreased, and MIICs were less clustered in CLEC16A-silenced Raji cells, implying that CLEC16A controls both HLA-DR/CD74 and BCR/Ag processing in MIICs. In primary B cells, CLEC16A was only induced under CLIP-stimulating conditions in vitro and was predominantly expressed in CLIPhigh naive populations. Finally, CLIP-loaded HLA-DR molecules were abnormally enriched, and coregulation with CLEC16A was abolished in blood B cells of patients who rapidly develop MS. These findings demonstrate that CLEC16A participates in the BCR-dependent HLA-II pathway in human B cells and that this regulation is impaired during MS disease onset. The abundance of CLIP already on naive B cells of MS patients may point to a chronically induced stage and a new mechanism underlying B cell-mediated autoimmune diseases such as MS.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
10 |
20
|
van den Ancker W, van Luijn MM, Chamuleau ME, Kelder A, Feller N, Terwijn M, Zevenbergen A, Schuurhuis GJ, Ham SMV, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. High class II-associated invariant chain peptide expression on residual leukemic cells is associated with increased relapse risk in acute myeloid leukemia. Leuk Res 2014; 38:691-3. [DOI: 10.1016/j.leukres.2014.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/12/2014] [Accepted: 03/16/2014] [Indexed: 12/28/2022]
|
|
11 |
10 |
21
|
van Luijn MM, van de Loosdrecht AA, Lampen MH, van Veelen PA, Zevenbergen A, Kester MGD, de Ru AH, Ossenkoppele GJ, van Hall T, van Ham SM. Promiscuous binding of invariant chain-derived CLIP peptide to distinct HLA-I molecules revealed in leukemic cells. PLoS One 2012; 7:e34649. [PMID: 22563374 PMCID: PMC3338516 DOI: 10.1371/journal.pone.0034649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 03/05/2012] [Indexed: 01/20/2023] Open
Abstract
Antigen presentation by HLA class I (HLA-I) and HLA class II (HLA-II) complexes is achieved by proteins that are specific for their respective processing pathway. The invariant chain (Ii)-derived peptide CLIP is required for HLA-II-mediated antigen presentation by stabilizing HLA-II molecules before antigen loading through transient and promiscuous binding to different HLA-II peptide grooves. Here, we demonstrate alternative binding of CLIP to surface HLA-I molecules on leukemic cells. In HLA-II-negative AML cells, we found plasma membrane display of the CLIP peptide. Silencing Ii in AML cells resulted in reduced HLA-I cell surface display, which indicated a direct role of CLIP in the HLA-I antigen presentation pathway. In HLA-I-specific peptide eluates from B-LCLs, five Ii-derived peptides were identified, of which two were from the CLIP region. In vitro peptide binding assays strikingly revealed that the eluted CLIP peptide RMATPLLMQALPM efficiently bound to four distinct HLA-I supertypes (-A2, -B7, -A3, -B40). Furthermore, shorter length variants of this CLIP peptide also bound to these four supertypes, although in silico algorithms only predicted binding to HLA-A2 or -B7. Immunization of HLA-A2 transgenic mice with these peptides did not induce CTL responses. Together these data show a remarkable promiscuity of CLIP for binding to a wide variety of HLA-I molecules. The found participation of CLIP in the HLA-I antigen presentation pathway could reflect an aberrant mechanism in leukemic cells, but might also lead to elucidation of novel processing pathways or immune escape mechanisms.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
9 |
22
|
van Luijn MM, Chamuleau MED, Ossenkoppele GJ, van de Loosdrecht AA, Marieke van Ham S. Tumor immune escape in acute myeloid leukemia: Class II-associated invariant chain peptide expression as result of deficient antigen presentation. Oncoimmunology 2021; 1:211-213. [PMID: 22720245 PMCID: PMC3376995 DOI: 10.4161/onci.1.2.18100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this overview, we discuss the role of class II-associated invariant chain peptide (CLIP) in acute myeloid leukemia (AML), one of the few tumors expressing HLA class II. The clinical impact, function and regulation of CLIP expression on leukemic cells is addressed, indicating its potential as immunotherapeutic target in AML.
Collapse
|
Journal Article |
4 |
9 |
23
|
van Luijn MM, Chamuleau MED, Ressing ME, Wiertz EJ, Ostrand-Rosenberg S, Souwer Y, Zevenbergen A, Ossenkoppele GJ, van de Loosdrecht AA, van Ham SM. Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes. Cancer Immunol Immunother 2010; 59:1825-38. [PMID: 20820776 PMCID: PMC2945475 DOI: 10.1007/s00262-010-0908-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023]
Abstract
During HLA class II synthesis in antigen-presenting cells, the invariant chain (Ii) not only stabilizes HLA class II complexes in the endoplasmic reticulum, but also mediates their transport to specialized lysosomal antigen-loading compartments termed MIICs. This study explores an alternative HLA class II presentation pathway in leukemic blasts that involves proteasome and transporter associated with antigen processing (TAP)-dependent peptide loading. Although HLA-DR did associate with Ii, Ii silencing in the human class II-associated invariant chain peptide (CLIP)-negative KG-1 myeloid leukemic cell line did not affect total and plasma membrane expression levels of HLA-DR, as determined by western blotting and flow cytometry. Since HLA-DR expression does require peptide binding, we examined the role of endogenous antigen-processing machinery in HLA-DR presentation by CLIP(-) leukemic blasts. The suppression of proteasome and TAP function using various inhibitors resulted in decreased HLA-DR levels in both CLIP(-) KG-1 and ME-1 blasts. Simultaneous inhibition of TAP and Ii completely down-modulated the expression of HLA-DR, demonstrating that together these molecules form the key mediators of HLA class II antigen presentation in leukemic blasts. By the use of a proteasome- and TAP-dependent pathway for HLA class II antigen presentation, CLIP(-) leukemic blasts might be able to present a broad range of endogenous leukemia-associated peptides via HLA class II to activate leukemia-specific CD4(+) T cells.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
9 |
24
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
|
|
2 |
7 |
25
|
Koetzier SC, van Langelaar J, Melief MJ, Wierenga-Wolf AF, Corsten CEA, Blok KM, Hoeks C, Broux B, Wokke B, van Luijn MM, Smolders J. Distinct Effector Programs of Brain-Homing CD8+ T Cells in Multiple Sclerosis. Cells 2022; 11:cells11101634. [PMID: 35626671 PMCID: PMC9139595 DOI: 10.3390/cells11101634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
The effector programs of CD8+ memory T cells are influenced by the transcription factors RUNX3, EOMES and T-bet. How these factors define brain-homing CD8+ memory T cells in multiple sclerosis (MS) remains unknown. To address this, we analyzed blood, CSF and brain tissues from MS patients for the impact of differential RUNX3, EOMES and T-bet expression on CD8+ T cell effector phenotypes. The frequencies of RUNX3- and EOMES-, but not T-bet-expressing CD8+ memory T cells were reduced in the blood of treatment-naïve MS patients as compared to healthy controls. Such reductions were not seen in MS patients treated with natalizumab (anti-VLA-4 Ab). We found an additional loss of T-bet in RUNX3-expressing cells, which was associated with the presence of MS risk SNP rs6672420 (RUNX3). RUNX3+EOMES+T-bet− CD8+ memory T cells were enriched for the brain residency-associated markers CCR5, granzyme K, CD20 and CD69 and selectively dominated the MS CSF. In MS brain tissues, T-bet coexpression was recovered in CD20dim and CD69+ CD8+ T cells, and was accompanied by increased coproduction of granzyme K and B. These results indicate that coexpression of RUNX3 and EOMES, but not T-bet, defines CD8+ memory T cells with a pre-existing brain residency-associated phenotype such that they are prone to enter the CNS in MS.
Collapse
|
|
3 |
7 |