1
|
Abstract
Significant advances have been made in our understanding of nociceptive modulation from RVM. Among the most useful conceptually has been the discovery that there are two classes of modulatory neurons in the RVM that are likely to have opposing actions on nociception: on-cells, which may facilitate nociceptive transmission, and off-cells, which probably have a net inhibitory effect on nociception. The similarity in response properties among the members of each class, their large, somatic "receptive fields," and the wide distribution of the terminal fields of axons of individual neurons to the trigeminal sensory complex and to multiple spinal segments indicate that these neurons exert a global influence over nociceptive responsiveness. Drug microinjections into the RVM presumably shift the balance between states of on- or off-cell firing and also produce measurable changes in the threshold for nocifensor reflexes. The meaningful unit of function in the RVM nociceptive modulatory system therefore probably consists of large ensembles of physiologically and pharmacologically similar neurons. The strong coordination of activity of the two classes of RVM neuron may depend largely upon intranuclear projections from RVM off-cells that excite other off-cells and inhibit on-cells. The off-cell pause is GABA-mediated, and it is likely that there is a subset of GABA-containing RVM on-cells that directly inhibit off-cells. Furthermore, the available evidence indicates that exogenous opiates activate off-cells by inhibiting GABAergic release. Presumably, enkephalinergic cells in the RVM disinhibit off-cells in a similar way. Although non-serotonin-containing off-cells certainly exist, we propose that some off-cells contain serotonin. Other possible connections are based on more limited data; however, ACh, neurotensin, NE, and EAAs are present in neurons that project to the RVM, and each of these compounds, when microinjected into the RVM, has a modulating effect on nociceptive transmission. The local circuits in the RVM that underlie these actions remain to be elucidated. At the level of the dorsal horn, there is good evidence for each of three inhibitory mechanisms: direct inhibition of nociceptive projection neurons, inhibition of excitatory relay interneurons, and excitation of an inhibitory interneuron. The relative contribution made by each of these circuits is unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Review |
34 |
713 |
2
|
Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. BRAIN RESEARCH REVIEWS 2009; 60:214-25. [PMID: 19146877 PMCID: PMC2894733 DOI: 10.1016/j.brainresrev.2008.12.009] [Citation(s) in RCA: 660] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/23/2022]
Abstract
The dorsal horn of the spinal cord is the location of the first synapse in pain pathways, and as such, offers a very powerful target for regulation of nociceptive transmission by both local segmental and supraspinal mechanisms. Descending control of spinal nociception originates from many brain regions and plays a critical role in determining the experience of both acute and chronic pain. The earlier concept of descending control as an "analgesia system" is now being replaced with a more nuanced model in which pain input is prioritized relative to other competing behavioral needs and homeostatic demands. Descending control arises from a number of supraspinal sites, including the midline periaqueductal gray-rostral ventromedial medulla (PAG-RVM) system, and the more lateral and caudal dorsal reticular nucleus (DRt) and ventrolateral medulla (VLM). Inhibitory control from the PAG-RVM system preferentially suppresses nociceptive inputs mediated by C-fibers, preserving sensory-discriminative information conveyed by more rapidly conducting A-fibers. Analysis of the circuitry within the RVM reveals that the neural basis for bidirectional control from the midline system is two populations of neurons, ON-cells and OFF-cells, that are differentially recruited by higher structures important in fear, illness and psychological stress to enhance or inhibit pain. Dynamic shifts in the balance between pain inhibiting and facilitating outflows from the brainstem play a role in setting the gain of nociceptive processing as dictated by behavioral priorities, but are also likely to contribute to pathological pain states.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
660 |
3
|
Darland T, Heinricher MM, Grandy DK. Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci 1998; 21:215-21. [PMID: 9610886 DOI: 10.1016/s0166-2236(97)01204-6] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The publication of the delta opioid receptor sequence led to the cloning of three homologous receptors: the mu and kappa opioid receptors, and a novel opioid-like orphan receptor. The orphan receptor's endogenous ligand, a 17-amino-acid peptide that resembles dynorphin, was named 'orphanin FQ' and 'nociceptin' (OFQ/N1-17). The OFQ/N1-17 receptor is expressed widely in the nervous system, and it is becoming clear that the peptide is likely to participate in a broad range of physiological and behavioral functions. At the cellular level, OFQ/N1-17 has much in common with the classical opioids; however, functional studies are now revealing distinct actions of this peptide. Identified only two years ago, OFQ/N1-17 has already attracted a great deal of attention. The number and diversity of papers focused on OFQ/N1-17 at the recent meeting of the Society for Neuroscience augur an exciting future for this new peptide.
Collapse
|
Review |
27 |
256 |
4
|
Fields HL, Heinricher MM. Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond B Biol Sci 1985; 308:361-74. [PMID: 2858889 DOI: 10.1098/rstb.1985.0037] [Citation(s) in RCA: 212] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although efferent control of sensory transmission is a well-established concept, a specific network for nociceptive modulation has only recently been discovered. This network includes interconnected components at midbrain, medullary and spinal levels. At the midbrain level, electrical stimulation of the periaqueductal grey (p.a.g.) inhibits spinal neurons that respond to noxious stimuli as well as nociceptor-induced reflexes and escape behaviour in a variety of species. Midbrain stimulation also produces analgesia in patients with clinically significant pain. The rostral ventral medulla (r.v.m.) has similar behavioural and physiological effects and mediates midbrain antinociceptive actions at the level of the spinal cord. Endorphins are present at all levels of this nociceptive modulating network. Opiate microinjections at p.a.g., r.v.m. or spinal levels produce analgesia, presumably by mimicking the actions of the endorphins. The nociceptive modulatory system is diffusely organized, highly interconnected and appears to act as a unit whether activated by opiates or electrical stimulation. There are two classes of r.v.m. neurons the activity of which is correlated with the occurrence of reflexes induced by noxious stimulation. One class (the on-cell) accelerates, the other class (the off-cell) pauses just before tail flick. Both classes project to the spinal cord and are excited by electrical stimulation of the midbrain. However, when morphine is injected either systemically or into the p.a.g., the off-cell is excited and the on-cell stops firing. The off-cell is probably the r.v.m. output cell that inhibits nociceptive transmission at the level of the spinal cord. The function of the on-cell is not clear. The nociceptive modulatory system can be activated by a variety of stressful environmental factors, which are often, but not necessarily, noxious. The idea that the system acts as a simple negative feedback circuit is not consistent with its known properties.
Collapse
|
Comparative Study |
40 |
212 |
5
|
Heinricher MM, Morgan MM, Tortorici V, Fields HL. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 1994; 63:279-88. [PMID: 7898652 DOI: 10.1016/0306-4522(94)90022-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activation of neurons in the rostral ventral medulla, by electrical stimulation or microinjection of glutamate, produces antinociception. Microinjection of opioid compounds in this region also has an antinociceptive effect, indicating that opioids activate a medullary output neuron that exerts a net inhibitory effect on nociception. When given systemically in doses sufficient to produce antinociception, morphine produces distinct, opposing responses in two physiologically identifiable classes of rostral medullary neurons. "Off-cells" are activated, and have been proposed to inhibit nociceptive transmission. "On-cells" are invariably depressed, and may have a pro-nociceptive role. Although on-cell firing is also depressed by iontophoretically applied morphine, off-cells do not respond to morphine applied in this manner. The present study used local infusion of the mu-selective opioid peptide Tyr-D-Ala-Gly-MePhe-Gly-ol-enkephalin (DAMGO) within the rostral medulla to determine whether off-cells are activated by an opioid action within this region that is sufficient to produce a behaviorally measurable antinociception. Activity of on- and off-cells was recorded before and after local infusion of DAMGO noxious heat-evoked tail flick reflex was inhibited in 17 of 28 cases. On-cell firing was profoundly depressed, and this occurred irrespective of the antinociceptive effectiveness of the injection. Off-cells were activated following DAMGO microinjections, but only in experiments in which the tail flick reflex was inhibited. Both reflex inhibition and neuronal effects were reversed following systemic administration of naloxone. These observations thus confirm the role of the on-cell as the focus of direct opioid action within the rostral medulla, and strongly support the proposal that disinhibition of off-cells is central to the antinociception actions of opioids within this region.
Collapse
|
|
31 |
194 |
6
|
Heinricher MM, Morgan MM, Fields HL. Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 1992; 48:533-43. [PMID: 1603332 DOI: 10.1016/0306-4522(92)90400-v] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rostral ventromedial medulla is part of a neural network through which systemically administered morphine produces antinociception. Two physiologically characterized classes of presumed nociceptive modulating neurons that respond differentially to systemically administered morphine have been identified in this region: the firing of "on-cells" is depressed, whereas "off-cells" become continuously active. On-cells have been proposed to permit or facilitate, and off-cells to inhibit, nociceptive transmission. Because local application of morphine in the rostral ventromedial medulla itself is sufficient to produce antinociception, it is important to determine whether systemically administered morphine exerts its effects on neurons in this region by a direct action. Thus, activity of physiologically characterized neurons was studied before, during and after ionotophoretic administration of morphine. As with systemic administration, iontophoretic application of morphine depresses the activity of on-cells, an effect that is reversed by iontophoretic as well as by systemic administration of naloxone. In contrast, no reliable changes in the firing of off-cells are produced by iontophoretic administration of morphine. Cells of a third class, "neutral cells", are not affected by systemic morphine administration, nor do they respond to iontophoretic application of the drug. The present experiments demonstrate that direct opioid responsiveness in the rostral ventromedial medulla is limited to a single physiologically characterized class of presumed nociceptive modulatory neuron, the on-cell. This implies that the antinociceptive effect exerted by systemically administered morphine involves at least two components within the rostral ventromedial medulla: a direct inhibition of on-cells, and an indirect activation of off-cells. Each of these actions is likely to have a net hypoalgesic effect.
Collapse
|
|
33 |
180 |
7
|
Chiang MC, Bowen A, Schier LA, Tupone D, Uddin O, Heinricher MM. Parabrachial Complex: A Hub for Pain and Aversion. J Neurosci 2019; 39:8225-8230. [PMID: 31619491 PMCID: PMC6794922 DOI: 10.1523/jneurosci.1162-19.2019] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023] Open
Abstract
The parabrachial nucleus (PBN) has long been recognized as a sensory relay receiving an array of interoceptive and exteroceptive inputs relevant to taste and ingestive behavior, pain, and multiple aspects of autonomic control, including respiration, blood pressure, water balance, and thermoregulation. Outputs are known to be similarly widespread and complex. How sensory information is handled in PBN and used to inform different outputs to maintain homeostasis and promote survival is only now being elucidated. With a focus on taste and ingestive behaviors, pain, and thermoregulation, this review is intended to provide a context for analysis of PBN circuits involved in aversion and avoidance, and consider how information of various modalities, interoceptive and exteroceptive, is processed within PBN and transmitted to distinct targets to signal challenge, and to engage appropriate behavioral and physiological responses to maintain homeostasis.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
167 |
8
|
Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti B, De Felice M, Chichorro JG, Ossipov MH, King T, Lai J, Kori SH, Nelsen AC, Cannon KE, Heinricher MM, Porreca F. Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol 2009; 65:184-93. [PMID: 19259966 DOI: 10.1002/ana.21537] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To develop and validate a model of cutaneous allodynia triggered by dural inflammation for pain associated with headaches. To explore neural mechanisms underlying cephalic and extracephalic allodynia. METHODS Inflammatory mediators (IM) were applied to the dura of unanesthetized rats via previously implanted cannulas, and sensory thresholds of the face and hind-paws were characterized. RESULTS IM elicited robust facial and hind-paw allodynia, which peaked within 3 hours. These effects were reminiscent of cutaneous allodynia seen in patients with migraine or other primary headache conditions, and were reversed by agents used clinically in the treatment of migraine, including sumatriptan, naproxen, and a calcitonin gene-related peptide antagonist. Consistent with clinical observations, the allodynia was unaffected by a neurokinin-1 antagonist. Having established facial and hind-paw allodynia as a useful animal surrogate of headache-associated allodynia, we next showed that blocking pain-facilitating processes in the rostral ventromedial medulla (RVM) interfered with its expression. Bupivacaine, destruction of putative pain-facilitating neurons, or block of cholecystokinin receptors prevented or significantly attenuated IM-induced allodynia. Electrophysiological studies confirmed activation of pain-facilitating RVM "on" cells and transient suppression of RVM "off" cells after IM. INTERPRETATION Facial and hind-paw allodynia associated with dural stimulation is a useful surrogate of pain associated with primary headache including migraine and may be exploited mechanistically for development of novel therapeutic strategies for headache pain. The data also demonstrate the requirement for activation of descending facilitation from the RVM for the expression of cranial and extracranial cutaneous allodynia, and are consistent with a brainstem generator of allodynia associated with headache disorders.
Collapse
|
Validation Study |
16 |
161 |
9
|
Heinricher MM, Barbaro NM, Fields HL. Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: firing of on- and off-cells is related to nociceptive responsiveness. Somatosens Mot Res 1989; 6:427-39. [PMID: 2547275 DOI: 10.3109/08990228909144685] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the unstimulated, lightly anesthetized rat, both on- and off-cells exhibit alternating periods of silence and activity lasting from several seconds to a few minutes. In the preceding paper, we showed that the active periods of all cells of the same class are always in phase, whereas the firing of cells of different classes is invariably out of phase. Thus, the pattern of firing of any single on- or off-cell provides a useful indication of the excitability of all on- and off-cells in the rostral ventromedial medulla (RVM). In this study, we measured the latency of the tail flick response (TF) at set intervals while recording from TF-related neurons in RVM, and were able to demonstrate a significant relationship between the spontaneous firing of both on- and off-cells and the latency of the TF response. If noxious heat is applied at a time when an off-cell is spontaneously active (or an on-cell is silent), the TF latency is longer than if the TF trial falls during a period in which the off-cell is silent (or the on-cell is active). This correlation between on- and off-cell firing and changes in TF latency is consistent with a nociceptive modulatory role for either or both cell classes. These findings support the hypothesis that off-cells inhibit and on-cells facilitate spinal nociceptive transmission and reflexes.
Collapse
|
|
36 |
134 |
10
|
Barbaro NM, Heinricher MM, Fields HL. Putative pain modulating neurons in the rostral ventral medulla: reflex-related activity predicts effects of morphine. Brain Res 1986; 366:203-10. [PMID: 3697678 DOI: 10.1016/0006-8993(86)91296-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three physiologically-defined classes of neurons are found in the rostral ventromedial medulla (RVM), a region which contributes to the antinociceptive action of opiates. The off-cell exhibits an abrupt pause just prior to the occurrence of the tail flick reflex (TF). The on-cell shows a burst of activity beginning just prior to the occurrence of the TF. Neutral cell firing does not change in relation to the TF. Systemic administration of morphine has been shown to produce a consistent increase in the activity of off-cells. In the present studies, the effects of systemically-administered morphine on spontaneous and TF-related activity of on-cells and neutral cells were examined in lightly-anesthetized rats. Measures of spontaneous activity were obtained before and after morphine (1.25-2.5 mg/kg, i.v.). On-cells exhibited an irregular cyclic rate of spontaneous discharge similar to that previously reported for off-cells. In contrast, neutral cells had a nearly constant level of spontaneous activity. After administration of morphine, spontaneous activity ceased for 8 of 8 on-cells, and heat-related activity was eliminated. Administration of naloxone resulted in a return of the periodic firing pattern and the burst associated with the TF. Seven of 8 neutral cells showed no change in firing rate and one showed a decrease rate after morphine administration. These results show that the effect of systemic opiates on an RVM neuron can be predicted based on whether a cell increases or decreases its firing just prior to the occurrence of a nocifensive reflex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
39 |
129 |
11
|
Cheng ZF, Fields HL, Heinricher MM. Morphine microinjected into the periaqueductal gray has differential effects on 3 classes of medullary neurons. Brain Res 1986; 375:57-65. [PMID: 3719359 DOI: 10.1016/0006-8993(86)90958-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects of microinjection of 5-10 micrograms of morphine into the midbrain periaqueductal gray (PAG) on the activity of neurons in the rostral ventral medulla (RVM) were studied in lightly anesthetized rats. Based on the relationship between changes in neuronal activity and the occurrence of the tail-flick reflex (TF), RVM neurons were divided into 3 groups: off-cells, on-cells and neutral cells. The off-cells exhibited an abrupt pause and the on-cells an acceleration beginning just prior to the occurrence of the TF. Neutral cell firing did not change at the time of the TF. Microinjections of morphine into the PAG which inhibited the TF had differential effects on the spontaneous activity of the 3 groups of neurons in RVM. Off-cells showed an increase and on-cells a decrease in spontaneous activity which preceded the inhibition of the TF. These microinjections also reduced the TF-related responses of off- and on-cells. The effects on cell activity were reversed by systemically administered naloxone and were not seen following microinjections which failed to block the TF. Neutral cell activity was unchanged following microinjection of morphine into the PAG. These results support the hypothesis that off- and on-cells in the RVM mediate the effects of microinjection of morphine into the PAG on spinal nociceptive reflexes.
Collapse
|
|
39 |
124 |
12
|
Heinricher MM, Neubert MJ. Neural Basis for the Hyperalgesic Action of Cholecystokinin in the Rostral Ventromedial Medulla. J Neurophysiol 2004; 92:1982-9. [PMID: 15152023 DOI: 10.1152/jn.00411.2004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The analgesic actions of opioids can be modified by endogenous “anti-opioid” peptides, among them cholecystokinin (CCK). CCK is now thought to have a broader, pronociceptive role, and contributes to hyperalgesia in inflammatory and neuropathic pain states. The aim of this study was to determine whether anti-opioid and pronociceptive actions of CCK have a common underlying mechanism. We showed previously that a low dose of CCK microinjected into the rostral ventromedial medulla (RVM) blocked the analgesic effect of systemically administered morphine by preventing activation of off-cells, which are the antinociceptive output of this well characterized pain-modulating region. At this anti-opioid dose, CCK had no effect on the spontaneous activity of these neurons or on the activity of on-cells (hypothesized to facilitate nociception) or “neutral cells” (which have no known role in pain modulation). In this study, we used microinjection of a higher dose of CCK into the RVM to test whether activation of on-cells could explain the pronociceptive action of this peptide. Paw withdrawal latencies to noxious heat and the activity of a characterized RVM neuron were recorded in rats lightly anesthetized with methohexital. CCK (30 ng/200 nl) activated on-cells selectively and produced behavioral hyperalgesia. Firing of off-cells and neutral cells was unaffected. These data show that direct, selective activation of RVM on-cells by CCK is sufficient to produce thermal hyperalgesia and indicate that the anti-opioid and pronociceptive effects of this peptide are mediated by actions on different RVM cell classes.
Collapse
|
|
21 |
117 |
13
|
Heinricher MM, Tortorici V. Interference with GABA transmission in the rostral ventromedial medulla: disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience 1994; 63:533-46. [PMID: 7891863 DOI: 10.1016/0306-4522(94)90548-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Blockade of GABA-mediated synaptic transmission in the rostral ventromedial medulla by local application of GABAA receptor antagonists produces antinociception, indicating that a GABA-mediated inhibition of some population of neurons in this region is normally required if nociceptive information is to be transmitted. The aim of the present study was to elucidate the medullary circuitry mediating this antinociception by recording the activity of putative nociceptive modulating neurons in the rostral ventromedial medulla before and after local infusion of the GABAA receptor antagonist bicuculline methiodide. It was thus possible to correlate changes in the activity of cells of different classes with the ability of the infusion to produce a behaviorally measurable antinociception. One class of medullary neurons, "off-cells," is identified by a pause in firing associated with the occurrence of nocifensor reflexes such as the tail flick evoked by noxious heat. These neurons are uniformly activated following systemic administration of morphine, and are thought to have a net inhibitory effect on nociception. Following local bicuculline administration, off-cells enter a prolonged period of continuous firing that is temporally linked with the period of tail flick inhibition. A second class of neurons, "on-cells," is identified by a burst of activity beginning just before the tail flick, and is directly inhibited by opioids. Unlike off-cells, cells of this class do not show a consistent change in activity associated with inhibition of the tail flick following bicuculline. These data indicate that alterations in the discharges of on-cells would not be able to explain the antinociceptive effect of bicuculline, and therefore point to disinhibition of off-cells as a sufficient basis for antinociception originating within the rostral ventromedial medulla.
Collapse
|
|
31 |
114 |
14
|
Carlson JD, Maire JJ, Martenson ME, Heinricher MM. Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J Neurosci 2007; 27:13222-31. [PMID: 18045916 PMCID: PMC6673414 DOI: 10.1523/jneurosci.3715-07.2007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/01/2007] [Accepted: 10/24/2007] [Indexed: 12/13/2022] Open
Abstract
Nerve injury can lead to mechanical hypersensitivity in both humans and animal models, such that innocuous touch produces pain. Recent functional studies have demonstrated a critical role for descending pain-facilitating influences from the rostral ventromedial medulla (RVM) in neuropathic pain, but the underlying mechanisms and properties of the relevant neurons within the RVM are essentially unknown. We therefore characterized mechanical responsiveness of physiologically characterized neurons in the RVM after spinal nerve ligation, a model of neuropathic pain that produces robust mechanical hyperalgesia and allodynia. RVM neurons were studied 7-14 d after spinal nerve ligation, and classified as "on-cells," "off-cells," or "neutral cells" using standard criteria of changes in firing associated with heat-evoked reflexes. On-cells are known to promote nociception, and off-cells to suppress nociception, whereas the role of neutral cells in pain modulation remains an open question. Neuronal and behavioral responses to innocuous and noxious mechanical stimulation were tested using calibrated von Frey filaments (4-100 g) applied to the hindpaws ipsilateral and contralateral to the injury, and in sham-operated and unoperated control animals. On- and off-cells recorded in nerve-injured animals exhibited novel responses to innocuous mechanical stimulation, and enhanced responses to noxious mechanical stimulation. Neuronal hypersensitivity in the RVM was correlated with behavioral hypersensitivity. Neutral cells remained unresponsive to cutaneous stimulation after nerve injury. These data demonstrate that both on- and off-cells in the RVM are sensitized to innocuous and noxious mechanical stimuli after nerve injury. This sensitization likely contributes to allodynia and hyperalgesia of neuropathic pain states.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
108 |
15
|
Smith ML, Hostetler CM, Heinricher MM, Ryabinin AE. Social transfer of pain in mice. SCIENCE ADVANCES 2016; 2:e1600855. [PMID: 27774512 PMCID: PMC5072181 DOI: 10.1126/sciadv.1600855] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
A complex relationship exists between the psychosocial environment and the perception and experience of pain, and the mechanisms of the social communication of pain have yet to be elucidated. The present study examined the social communication of pain and demonstrates that "bystander" mice housed and tested in the same room as mice subjected to inflammatory pain or withdrawal from morphine or alcohol develop corresponding hyperalgesia. Olfactory cues mediate the transfer of hyperalgesia to the bystander mice, which can be measured using mechanical, thermal, and chemical tests. Hyperalgesia in bystanders does not co-occur with anxiety or changes in corticosterone and cannot be explained by visually dependent emotional contagion or stress-induced hyperalgesia. These experiments reveal the multifaceted relationship between the social environment and pain behavior and support the use of mice as a model system for investigating these factors. In addition, these experiments highlight the need for proper consideration of how experimental animals are housed and tested.
Collapse
|
research-article |
9 |
98 |
16
|
Martenson ME, Cetas JS, Heinricher MM. A possible neural basis for stress-induced hyperalgesia. Pain 2009; 142:236-244. [PMID: 19232470 DOI: 10.1016/j.pain.2009.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/30/2008] [Accepted: 01/09/2009] [Indexed: 12/26/2022]
Abstract
Intense stress and fear have long been known to give rise to a suppression of pain termed "stress-induced analgesia", mediated by brainstem pain-modulating circuitry, including pain-inhibiting neurons of the rostral ventromedial medulla. However, stress does not invariably suppress pain, and indeed, may exacerbate it. Although there is a growing support for the idea of "stress-induced hyperalgesia", the neurobiological basis for this effect remains almost entirely unknown. Using simultaneous single-cell recording and functional analysis, we show here that stimulation of the dorsomedial nucleus of the hypothalamus, known to be a critical component of central mechanisms mediating neuroendocrine, cardiovascular and thermogenic responses to mild or "emotional" stressors such as air puff, also triggers thermal hyperalgesia by recruiting pain-facilitating neurons, "ON-cells", in the rostral ventromedial medulla. Activity of identified RVM ON-cells, OFF-cells and NEUTRAL cells, nociceptive withdrawal thresholds, rectal temperature, and heart rate were recorded in lightly anesthetized rats. In addition to the expected increases in body temperature and heart rate, disinhibition of the DMH induced a robust activation of ON-cells, suppression of OFF-cell firing and behavioral hyperalgesia. Blocking ON-cell activation prevented hyperalgesia, but did not interfere with DMH-induced thermogenesis or tachycardia, pointing to differentiation of neural substrates for autonomic and nociceptive modulation within the RVM. These data demonstrate a top-down activation of brainstem pain-facilitating neurons, and suggest a possible neural circuit for stress-induced hyperalgesia.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
95 |
17
|
Morgan MM, Heinricher MM, Fields HL. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla. Neuroscience 1992; 47:863-71. [PMID: 1579215 DOI: 10.1016/0306-4522(92)90036-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interactions among opioid-sensitive nociceptive modulatory systems, which include the midbrain periaqueductal gray, rostral ventromedial medulla and spinal cord, are likely to play a central role in the potent antinociception that results when morphine is administered systemically. The aim of the present study was to investigate the mechanisms through which local application of morphine, either in the periaqueductal gray or at the lumbar spinal cord in the rat, influences the activity of one population of putative nociceptive modulatory neurons in rostral ventromedial medulla, i.e. "on-cells". Previous studies have shown that the spontaneous and tail-flick-related firing of on-cells is invariably depressed when morphine is given systemically in doses demonstrated to inhibit the tail-flick reflex, and that a similar depression of this activity is produced when morphine is applied directly in the periaqueductal gray or intrathecal space. In the present experiments, on-cells were activated pharmacologically using iontophoretically applied glutamate to provide an indication of whether morphine-induced suppression of on-cell firing reflected a postsynaptic inhibition or a disfacilitation resulting from blockade of an excitatory input to the on-cell. Microinjection of morphine into the periaqueductal gray blocked glutamate-evoked activity of on-cells in parallel with its suppression of the tail-flick reflex, suggesting activation of an inhibitory input to these cells. No change in glutamate-evoked activity occurred in rats in which morphine did not produce antinociception. Intrathecal administration of morphine did not alter the glutamate-evoked activity of these neurons despite blocking the tail-flick reflex, suggesting that morphine acting in the spinal cord removes an excitatory input to on-cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
33 |
94 |
18
|
Heinricher MM, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J Neurophysiol 2001; 85:280-6. [PMID: 11152727 DOI: 10.1152/jn.2001.85.1.280] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is now well established that the analgesic actions of opioids can be modified by "anti-analgesic" or "antiopioid" peptides, among them cholecystokinin (CCK). Although the focus of much recent work concerned with CCK-opioid interactions has been at the level of the spinal cord, CCK also acts within the brain to modify opioid analgesia. The aim of the present study was to characterize the actions of CCK in a brain region in which the circuitry mediating the analgesic actions of opioids is relatively well understood, the rostral ventromedial medulla (RVM). Single-cell recording was combined with local infusion of CCK in the RVM and systemic administration of morphine in lightly anesthetized rats. The tail-flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of RVM neurons with distinct responses to opioids have been identified. OFF cells are activated, indirectly, by morphine and mu-opioid agonists, and there is strong evidence that this activation is crucial to opioid antinociception. ON cells, thought to facilitate nociception, are directly inhibited by opioids. Cells of a third class, NEUTRAL cells, do not respond to opioids, and whether they have any role in nociceptive modulation is unknown. CCK microinjected into the RVM by itself had no effect on tail flick latency or the firing of any cell class but significantly attenuated opioid activation of OFF cells and inhibition of the tail flick. Opioid suppression of ON-cell firing was not significantly altered by CCK. Thus CCK acting within the RVM attenuates the analgesic effect of systemically administered morphine by preventing activation of the putative pain inhibiting output neurons of the RVM, the OFF cells. CCK thus differs from another antiopioid peptide, orphanin FQ/nociceptin, which interferes with opioid analgesia by potently suppressing all OFF-cell firing.
Collapse
|
|
24 |
92 |
19
|
Heinricher MM, McGaraughty S, Grandy DK. Circuitry underlying antiopioid actions of orphanin FQ in the rostral ventromedial medulla. J Neurophysiol 1997; 78:3351-8. [PMID: 9405549 DOI: 10.1152/jn.1997.78.6.3351] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several laboratories recently identified a 17 amino-acid peptide, termed "nociceptin" or "orphanin FQ (OFQ)", as the endogenous ligand for the LC132 (or "opioid receptor-like1") receptor. Taken together with the fact that the cellular effects of OFQ are to a large extent opioid-like, the close relationship between the LC132 receptor and known opioid receptors raised expectations that the behavioral effects of this peptide would resemble those of opioids. However studies of the role of OFQ in nociception have not provided a unified view. The aim of the present study was to use a combination of electrophysiological and pharmacological techniques to characterize the actions of OFQ in a brain region in which the circuitry mediating the analgesic actions of opioids has been relatively well characterized, the rostral ventromedial medulla (RVM). Single-cell recording was combined with opioid administration and local infusion of OFQ in the RVM of rats lightlyanesthetized with barbiturates. The tail flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of physiologically identifiable RVM neurons with distinct responses to opioids have been characterized. -cells are activated, although indirectly, by opioids, and there is strong evidence that this activation is crucial to opioid antinociception. -cells, thought to enable nociception, are directly inhibited by opioids. Cells of a third class, cells, do not respond to opioids and whether or not they have any role in nociceptive modulation remains an open question. OFQ infused within the RVM profoundly suppressed the firing of all classes of RVM neurons, blocking opioid-induced activation of -cells. The antinociceptive effects of a micro-opioid agonist infused at the same site were significantly attenuated in these animals. Those of systemically administered morphine, which can produce its antinociceptive effects by acting at a number of CNS sites, were not blocked by RVM OFQ. Inasmuch as activation of -cells can account for the antinociceptive action of opioids within the RVM, these results demonstrate that, at least within the medulla, OFQ can exert a functional "antiopioid" effect by suppressing firing of this cell class. However to the extent that antinociceptive and pronociceptive outflows from various brain regions involved in both transmission and modulation of nociception are active under different conditions, focal application of OFQ in different regions could potentially produce either hypalgesia or hyperalgesia.
Collapse
|
|
28 |
90 |
20
|
Neubert MJ, Kincaid W, Heinricher MM. Nociceptive facilitating neurons in the rostral ventromedial medulla. Pain 2004; 110:158-65. [PMID: 15275763 DOI: 10.1016/j.pain.2004.03.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/04/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
The role of the periaqueductal gray-rostral ventromedial medulla (RVM) system in descending inhibition of nociception has been studied for over 30 years. The neural basis for this antinociceptive action is reasonably well understood, with strong evidence that activation of a class of RVM neurons termed 'off-cells' exerts a net inhibitory effect on nociception. However, it has recently become clear that this system can facilitate, as well as inhibit pain. Although the mechanisms underlying the facilitation of nociception have not been conclusively identified, indirect evidence points to activation of a class of neurons termed 'on-cells' as mediating descending facilitation. Here we used focal infusion of the tridecapeptide neurotensin within the RVM in lightly anesthetized rats to activate on-cells selectively. Neurotensin has been shown in awake animals to produce a dose-related, bi-directional effect on nociception when applied within the RVM, with hyperalgesia at low doses, and analgesia at higher doses. Using a combination of single cell recording and behavioral testing, we now show that on-cells are activated selectively by low-dose neurotensin, and that the activation of on-cells by neurotensin results in enhanced nociceptive responding, as measured by the paw withdrawal reflex. Furthermore, higher neurotensin doses recruit off-cells in addition to on-cells, producing behavioral antinociception. Selective activation of on-cells is thus sufficient to produce hyperalgesia, confirming the role of these neurons in facilitating nociception. Activation of on-cells likely contributes to enhanced sensitivity to noxious stimulation or reduced sensitivity to analgesic drugs in a variety of conditions.
Collapse
|
|
21 |
87 |
21
|
McGaraughty S, Heinricher MM. Microinjection of morphine into various amygdaloid nuclei differentially affects nociceptive responsiveness and RVM neuronal activity. Pain 2002; 96:153-62. [PMID: 11932071 DOI: 10.1016/s0304-3959(01)00440-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The goal of the present study was to identify nuclei of the amygdala in which opioid-sensitive systems can act to recruit nociceptive modulatory circuitry in the rostral ventromedial medulla (RVM) and affect nociceptive responsiveness. In lightly anesthetized rats, 10 microg of morphine was bilaterally microinjected into basolateral, cortical, medial, central, and lateral nuclei of the amygdala to determine the relative influence on the activity of identified ON, OFF and NEUTRAL cells in the RVM and on the latency of the tail flick reflex evoked by noxious radiant heat. Infusions of morphine into the basolateral nuclei resulted in a substantial, naloxone-reversible increase in tail flick latency, and significantly increased ongoing firing of OFF cells and depressed that of ON cells. The reflex-related changes in cell firing were also attenuated. Morphine infusions into the cortical nuclei resulted in a small (approximately 1 s) but significant increase in tail flick latency. As with basolateral microinjections, ongoing activity of the OFF cells was increased, and although the ongoing firing of ON cells was not significantly changed, the reflex-related burst that characterizes these neurons was reduced. Microinjections in the medial nuclei again altered ongoing activity of both ON cells and OFF cells. However, the duration of the OFF cell pause and tail flick latency were unchanged. NEUTRAL cells were not affected by morphine at any site. Morphine applied within the central, medial lateral and dorsal lateral nuclei had no effect on RVM neurons or on the tail flick. Thus, focal application of morphine within the basolateral nucleus of the amygdala produced hypoalgesia and influenced RVM ON and OFF cells in a manner similar to that seen following systemic or RVM opioid administration. Opioid action within the medial and cortical nuclei also influenced RVM cell activity, but did not prevent the reflex-related OFF cell pause, and failed to alter the tail flick substantially. These observations, plus the lack of an opioid-activated influence from the central and lateral nuclei, demonstrate fundamental differences among systems linking the different amygdalar nuclei with the RVM. One way in which the modulatory circuitry of the RVM might be engaged physiologically in behaving animals is via opioid-mediated activation of the basolateral nucleus.
Collapse
|
|
23 |
85 |
22
|
Heinricher MM, Kaplan HJ. GABA-mediated inhibition in rostral ventromedial medulla: role in nociceptive modulation in the lightly anesthetized rat. Pain 1991; 47:105-113. [PMID: 1663224 DOI: 10.1016/0304-3959(91)90017-r] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Local microinjection of GABAA receptor agonists and antagonists was used to characterize the role of GABA-mediated inhibitory processes in the nociceptive modulatory functions of the rostral ventromedial medulla (RVM) in the lightly anesthetized rat. Microinjection of selective GABAA receptor antagonists bicuculline methiodide and SR95531 produced a significant increase in tail-flick (TF) latency. This antinociception was dose related, showed recovery and was attenuated by prior injection of the GABAA receptor agonist THIP at the same site. Microinjection of saline or the glycine receptor antagonist strychnine did not significantly affect TF latency. In contrast, administration of GABAA receptor agonists THIP and muscimol resulted in a significant decrease in TF latency. Microinjections at sites surrounding the RVM did not significantly affect TF latency. These results demonstrate that a GABA-mediated process within the RVM is crucial in permitting execution of the TF and, presumably, other spinal nociceptive reflexes.
Collapse
|
|
34 |
85 |
23
|
Carlson JD, Cleary DR, Cetas JS, Heinricher MM, Burchiel KJ. Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson's patients. J Neurophysiol 2009; 103:962-7. [PMID: 19955287 DOI: 10.1152/jn.00363.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two broad hypotheses have been advanced to explain the clinical efficacy of deep brain stimulation (DBS) in the subthalamic nucleus (STN) for treatment of Parkinson's disease. One is that stimulation inactivates STN neurons, producing a functional lesion. The other is that electrical stimulation activates the STN output, thus "jamming" pathological activity in basal ganglia-corticothalamic circuits. Evidence consistent with both concepts has been adduced from modeling and animal studies, as well as from recordings in patients. However, the stimulation parameters used in many recording studies have not been well matched to those used clinically. In this study, we recorded STN activity in patients with Parkinson's disease during stimulation delivered through a clinical DBS electrode using standard therapeutic stimulus parameters. A microelectrode was used to record the firing of a single STN neuron during DBS (3-5 V, 80-200 Hz, 90- to 200-micros pulses; 33 neurons/11 patients). Firing rate was unchanged during the stimulus trains, and the recorded neurons did not show prolonged (s) changes in firing rate on termination of the stimulation. However, a brief (approximately 1 ms), short-latency (6 ms) postpulse inhibition was seen in 10 of 14 neurons analyzed. A subset of neurons displayed altered firing patterns, with a predominant shift toward random firing. These data do not support the idea that DBS inactivates the STN and are instead more consistent with the hypothesis that this stimulation provides a null signal to basal ganglia-corticothalamic circuitry that has been altered as part of Parkinson's disease.
Collapse
|
Journal Article |
16 |
70 |
24
|
Kincaid W, Neubert MJ, Xu M, Kim CJ, Heinricher MM. Role for Medullary Pain Facilitating Neurons in Secondary Thermal Hyperalgesia. J Neurophysiol 2006; 95:33-41. [PMID: 16192337 DOI: 10.1152/jn.00449.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rostral ventromedial medulla (RVM) has recently received considerable attention in efforts to understand mechanisms of hyperalgesia and persistent pain states. Three classes of neurons can be identified in the RVM based on responses associated with nocifensive reflexes: on cells, off cells, and neutral cells. There is now direct evidence that on cells exert a net facilitating effect on spinal nociception and that off cells depress nociception. These experiments tested whether the secondary hyperalgesia produced by topical application of mustard oil involves an activation of on cells in RVM. Firing of a characterized RVM neuron and the latencies of withdrawal reflexes evoked by noxious heat were recorded in lightly anesthetized rats before and after application of mustard oil to the shaved skin of the leg above the knee. Mineral oil was applied as a control. Mustard oil produced a significant increase in ongoing and reflex-related discharge of on cells, as well as a decrease in the activity of off cells. neutral cell firing was uniformly unchanged after application of mustard oil. The alterations in on and off cell firing were associated with a significant decrease in the latency to withdraw the paw of the treated limb from the heat stimulus, and this hyperalgesia was blocked by microinjection of lidocaine within the RVM. Withdrawals evoked by heating the contralateral hindpaw, forepaw, and tail were unchanged after mustard oil application. These experiments support a pronociceptive role for on cells and suggest that these neurons contribute to secondary hyperalgesia in inflammation.
Collapse
|
|
19 |
68 |
25
|
Heinricher MM, McGaraughty S, Farr DA. The role of excitatory amino acid transmission within the rostral ventromedial medulla in the antinociceptive actions of systemically administered morphine. Pain 1999; 81:57-65. [PMID: 10353493 DOI: 10.1016/s0304-3959(98)00271-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two classes of neurons with distinct responses to opioids have been identified in the rostral ventromedial medulla (RVM), a region with a well-documented role in nociceptive modulation. 'Off-cells' are activated, indirectly, by opioids, and are likely to exert a net inhibitory effect on nociceptive processing. 'On-cells' are directly inhibited by opioids, and there is evidence that these neurons can, under various conditions, facilitate nociception. We showed previously that excitatory amino acid (EAA) neurotransmission is crucial to the nocifensor reflex-related on-cell burst, but plays little role in maintaining the ongoing activity of off-cells. The aim of the present study was to determine whether EAA transmission contributes to the activation of off-cells and the concomitant behavioral antinociception that follow systemic opioid administration. The non-selective EAA receptor antagonist kynurenate was infused into the RVM (1 nmol/200 nl) of lightly anesthetized rats prior to administration of morphine (1.5 mg/kg i.v). Off-cell, on-cell and neutral cell firing, as well as, tail flick response (TF) latencies were recorded. Kynurenate, significantly attenuated the characteristic opioid activation of off-cells. As a group, off-cells in kynurenate-treated animals did not become continuously active, and continued to exhibit tail-flick related pauses in firing. On-cell and neutral cell responses to opioid administration were unchanged. Opioid inhibition of the TF was also reduced, although baseline TF latency was unaffected, by RVM kynurenate. EAA-mediated activation of off-cells, thus has an important role in opioid analgesia. The present observations underscore the importance of excitatory interactions among opioid-sensitive nociceptive modulatory circuits for systemic morphine analgesia, suggesting that such interactions are a critical factor in the synergistic relationships which have been demonstrated among these sites.
Collapse
|
|
26 |
67 |