1
|
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest ARR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SPT, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schönbach C, Sekiguchi K, Semple CAM, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y. The transcriptional landscape of the mammalian genome. Science 2005; 309:1559-63. [PMID: 16141072 DOI: 10.1126/science.1112014] [Citation(s) in RCA: 2666] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
2666 |
2
|
Abstract
WNT signals are transduced to the canonical pathway for cell fate determination, and to the noncanonical pathway for control of cell movement and tissue polarity. Canonical WNT signals are transduced through Frizzled family receptors and LRP5/LRP6 coreceptor to the beta-catenin signaling cascade. Microtubule affinity-regulating kinase (PAR-1) family kinases, casein kinase I epsilon (CKI epsilon), and FRAT are positive regulators of the canonical WNT pathway, whereas APC, AXIN1, AXIN2, CKI alpha, NKD1, NKD2, beta TRCP1, beta TRCP2, ANKRD6, Nemo-like kinase (NLK), and peroxisome proliferator-activated receptor gamma (PPAR gamma) are negative regulators. Nuclear complex, consisting of T-cell factor/lymphoid enhancer factor, beta-catenin, BCL9/BCL9L, and PYGO, activates transcription of canonical WNT target genes such as FGF20, DKK1, WISP1, MYC, CCND1, and Glucagon (GCG). Noncanonical WNT signals are transduced through Frizzled family receptors and ROR2/RYK coreceptors to the Dishevelled-dependent (Rho family GTPases and c-jun NH(2)-terminal kinase) or the Ca(2+)-dependent (NLK and nuclear factor of activated T cells) signaling cascades. WNT signals are context-dependently transduced to both pathways based on the expression profile of WNT, SFRP, WIF, DKK, Frizzled receptors, coreceptors, and the activity of intracellular WNT signaling regulators. Epigenetic silencing and loss-of-function mutation of negative regulators of the canonical WNT pathway occur in a variety of human cancer. WNT, fibroblast growth factor (FGF), Notch, Hedgehog, and transforming growth factor beta/bone morphogenetic protein signaling network are implicated in the maintenance of tissue homeostasis by regulating self-renewal of normal stem cells as well as proliferation or differentiation of progenitor (transit-amplifying) cells. Breakage of the stem cell signaling network leads to carcinogenesis. Nonsteroidal anti-inflammatory drugs and PPAR gamma agonists with the potential to inhibit the canonical WNT signaling pathway are candidate agents for chemoprevention. ZTM000990 and PKF118-310 are lead compounds targeted to the canonical WNT signaling cascade. Anti-WNT1 and anti-WNT2 monoclonal antibodies show in vitro effects in cancer treatment. After the optimization, derivatives of small-molecule compound and human monoclonal antibody targeted to the WNT signaling pathway could be used in cancer medicine.
Collapse
|
Review |
18 |
592 |
3
|
Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M, Sasaki M. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 1995; 34:11211-6. [PMID: 7545436 DOI: 10.1021/bi00035a029] [Citation(s) in RCA: 555] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The thermodynamic parameters (delta H degree, delta S degree, and delta G degree 37) for 16 nearest-neighbor sets and one initiation factor are presented here in order to predict stability of RNA/DNA hybrid duplexes. To determine the nearest-neighbor parameters, thermodynamics for 68 different hybrid sequences (136 single-stranded oligonucleotides) with 5-13 nucleotide length including several duplexes with identical nearest-neighbors were measured by UV melting procedure. These sequences were selected to have many different combinations of nearest-neighbor pairs, and so that the number of the 16 nearest-neighbor sequences in the oligomers were as equal as possible. The structures of the hybrids were also investigated by measuring circular dichroism spectra. Comparing delta G degree 37 values of the hybrids with DNA/DNA and RNA/RNA parameters reported previously (Breslauer, K.J., Frank, R., Blöcker, H., & Marky, L.A. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3746-3750; Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., & Turner, D.H. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9373-9377), RNA/RNA double helix is the most stable of the three kinds of helixes with the same nearest-neighbor sequences. Which is more stable between DNA/DNA and RNA/DNA hybrid duplexes depends on its sequence. Calculated thermodynamic values of hybrid formation with the present parameters reproduce the experimental values within reasonable errors.
Collapse
|
Comparative Study |
30 |
555 |
4
|
Abstract
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.
Collapse
|
Review |
12 |
424 |
5
|
Katoh Y, Katoh M. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 2010; 9:873-86. [PMID: 19860666 DOI: 10.2174/156652409789105570] [Citation(s) in RCA: 421] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.
Collapse
|
Review |
15 |
421 |
6
|
Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M, Watanabe T, Sekimoto M, Shibui K, Kim K, Kudo Y, Ozeki Y, Sugishita M, Toyoshima R, Inoue Y, Yamada N, Nagase T, Ozaki N, Ohara O, Ishida N, Okawa M, Takahashi K, Yamauchi T. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2001; 2:342-6. [PMID: 11306557 PMCID: PMC1083867 DOI: 10.1093/embo-reports/kve070] [Citation(s) in RCA: 344] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent progress in biological clock research has facilitated genetic analysis of circadian rhythm sleep disorders, such as delayed sleep phase syndrome (DSPS) and non-24-h sleep-wake syndrome (N-24). We analyzed the human period3 (hPer3) gene, one of the human homologs of the Drosophila clock-gene period (Per), as a possible candidate for rhythm disorder susceptibility. All of the coding exons in the hPer3 gene were screened for polymorphisms by a PCR-based strategy using genomic DNA samples from sleep disorder patients and control subjects. We identified six sequence variations with amino acid changes, of which five were common and predicted four haplotypes of the hPer3 gene. One of the haplotypes was significantly associated with DSPS (Bonferroni's corrected P = 0.037; odds ratio = 7.79; 95% CI 1.59-38.3) in our study population. Our results suggest that structural polymorphisms in the hPer3 gene may be implicated in the pathogenesis of DSPS.
Collapse
|
other |
24 |
344 |
7
|
Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol 2017; 51:1357-1369. [PMID: 29048660 PMCID: PMC5642388 DOI: 10.3892/ijo.2017.4129] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers with immune evasion, although the context-dependent effects of WNT signaling on immunity should be carefully assessed. Omics monitoring, such as genome sequencing and transcriptome tests, immunohistochemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 and nuclear β-catenin and organoid-based drug screening, is necessary to determine the appropriate WNT signaling-targeted therapeutics for cancer patients.
Collapse
|
Review |
8 |
320 |
8
|
Katoh M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med 2016; 38:3-15. [PMID: 27245147 PMCID: PMC4899036 DOI: 10.3892/ijmm.2016.2620] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.
Collapse
|
Review |
9 |
303 |
9
|
Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 2018; 16:105-122. [DOI: 10.1038/s41571-018-0115-y] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
7 |
244 |
10
|
Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. ACTA ACUST UNITED AC 2007; 3:30-8. [PMID: 17873379 DOI: 10.1007/s12015-007-0006-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/07/2023]
Abstract
The biological functions of some orthologs within the human genome and model-animal genomes are evolutionarily conserved, but those of others are divergent due to protein evolution and promoter evolution. Because WNT signaling molecules play key roles during embryogenesis, tissue regeneration and carcinogenesis, the author's group has carried out a human WNT-ome project for the comprehensive characterization of human genes encoding WNT signaling molecules. From 1996 to 2002, we cloned and characterized WNT2B/WNT13, WNT3, WNT3A, WNT5B, WNT6, WNT7B, WNT8A, WNT8B, WNT9A/WNT14, WNT9B/WNT14B, WNT10A, WNT10B, WNT11, FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD10, FRAT1, FRAT2, NKD1, NKD2, VANGL1, RHOU/ARHU, RHOV/ARHV, GIPC2, GIPC3, FBXW11/betaTRCP2, SOX17, TCF7L1/TCF3, and established a cDNA-PCR system for snap-shot and dynamic analyses on the WNT-transcriptome. In 2003, we identified and characterized PRICKLE1, PRICKLE2, DACT1/DAPPER1, DACT2/DAPPER2, DAAM2, and BCL9L. After completion of the human WNT-ome project, we have been working on the stem cell signaling network. WNT signals are transduced to beta-catenin, NLK, NFAT, PKC, JNK and RhoA signaling cascades. FGF20, JAG1 and DKK1 are target genes of the WNT-beta-catenin signaling cascade. Cross-talk of WNT and FGF signaling pathways potentiates beta-catenin and NFAT signaling cascades. BMP signals induce IHH upregulation in co-operation with RUNX. Hedgehog signals induce upregulation of SFRP1, JAG2 and FOXL1, and then FOXL1 induces BMP4 upregulation. The balance between WNT-FGF-Notch and BMP-Hedgehog signaling networks is important for the maintenance of homoestasis among stem and progenitor cells. Disruption of the stem cell signaling network results in pathological conditions, such as congenital diseases and cancer.
Collapse
|
Review |
18 |
224 |
11
|
Katoh M, Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 2006; 5:1059-64. [PMID: 16940750 DOI: 10.4161/cbt.5.9.3151] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
WNT and FGF signaling pathways cross-talk during a variety of cellular processes, such as human colorectal carcinogenesis, mouse mammary tumor virus (MMTV)-induced carcinogenesis, E2A-Pbx-induced leukemogenesis, early embryogenesis, body-axis formation, limb-bud formation, and neurogenesis. Canonical WNT signals are transduced through Frizzled receptor and LRP5/6 coreceptor to downregulate GSK3beta (GSK3B) activity not depending on Ser 9 phosphorylation. FGF signals are transduced through FGF receptor to the FRS2-GRB2-GAB1-PI3K-AKT signaling cascade to downregulate GSK3beta activity depending on Ser 9 phosphorylation. Because GSK3beta-dependent phosphorylation of beta-catenin and SNAIL leads to FBXW1 (betaTRCP)-mediated ubiquitination and degradation, GSK3beta downregulation results in the stabilization and the nuclear accumulation of beta-catenin and SNAIL. Nuclear beta-catenin is complexed with TCF/LEF, Legless (BCL9 or BCL9L) and PYGO (PYGO1 or PYGO2) to activate transcription of CCND1, MYC, FGF18 and FGF20 genes for the cell-fate determination. Nuclear SNAIL represses transcription of CDH1 gene, encoding E-cadherin, to induce the epithelial-mesenchymal transition (EMT). Mammary carcinogenesis in MMTV-Wnt1 transgenic mice is accelerated by MMTV infection due to MMTV integration around Fgf3-Fgf4 or Fgf8 loci, and mammary carcinogenesis in MMTV-Fgf3 transgenic mice due to MMTV integration around Wnt1-Wnt10b locus. Coactivation of WNT and FGF signaling pathways in tumors leads to more malignant phenotypes. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of WNT and FGF signaling molecules could be utilized as screening method of cancer predisposition. cDNA-PCR, microarray or ELISA reflecting aberrant activation of WNT and FGF signaling pathways could be developed as novel cancer-related biomarkers for diagnosis, prognosis, and therapy. Cocktail therapy using WNT and FGF inhibitors, such as small-molecule compounds and human neutralizing antibodies, should be developed to increase the efficacy of chemotherapy through the inhibition of recurrence by destructing cancer stem cells.
Collapse
|
Review |
19 |
200 |
12
|
Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T. cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 2000; 274:350-4. [PMID: 10913342 DOI: 10.1006/bbrc.2000.3134] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1), a cold-inducible coactivator of nuclear receptors, stimulates mitochondrial biogenesis and respiration in muscle cells. In the present study, we first cloned a rat PGC-1 gene from a brown adipose tissue cDNA library which encodes a predicted 796-amino-acid protein and exhibits respectively 98% and 95% identity with the mouse and human homologues. Next, we examined the effect of swimming exercise training on the level of expression of the PGC-1 gene in rat epitrochlearis (Epi) muscle. PGC-1 mRNA level in Epi muscle in rats that swam 2 h a day for 3 and 7 days increased dramatically by 154% and 163%, respectively, compared to the non-exercised control group. PGC-1 mRNA up-regulation was not observed in an immersion group treated at 35 degrees C during the training program but without swimming exercise. These results demonstrate that expression of the PGC-1 gene in Epi muscle is induced not only by cold exposure but also by prolonged low-intensity physical exercise.
Collapse
|
|
25 |
195 |
13
|
Becker M, Bilke E, Kühl H, Katoh M, Kramann R, Franke A, Bücker A, Hanrath P, Hoffmann R. Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart 2005; 92:1102-8. [PMID: 16387826 PMCID: PMC1861114 DOI: 10.1136/hrt.2005.077107] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To evaluate whether myocardial strain and strain rate calculated from two dimensional echocardiography by automatic frame-by-frame tracking of natural acoustic markers enables objective description of regional left ventricular (LV) function. METHODS In 64 patients parasternal two dimensional echocardiographic views at the apical, mid-ventricular and basal levels were obtained. An automatic frame-by-frame tracking system of natural acoustic echocardiographic markers was used to calculate radial strain, circumferential strain, radial strain rate and circumferential strain rate for each LV segment in a 16 segment model. Cardiac magnetic resonance imaging (cMRI) was performed to define segmental LV function as normokinetic, hypokinetic or akinetic. RESULTS Image quality was sufficient for adequate strain and strain-rate analysis from two dimensional echocardiographic images obtained from parasternal views in 88% of segments. Obtained radial strain data were highly reproducible and analysis was affected by only small intraobserver (mean 4.4 (SD 1.6)%) and interobserver variabilities (7.3 (2.5)%). Each of the analysed strain and strain-rate parameters was significantly different between segments defined as normokinetic, hypokinetic or akinetic by cMRI (radial strain 36.8 (10.5)%, 24.1 (7.5)% and 13.4 (4.8)%, respectively, p < 0.001). Peak systolic radial strain enabled detection of hypokinesis or akinesis with a sensitivity of 83.5% and a specificity of 83.5% (cut off value 29.1%, receiver operating characteristic (ROC) curve area 0.905, 95% CI 0.883 to 0.923). Peak systolic radial strain analysis also enabled detection of akinesis versus hypokinesis with a sensitivity of 82.7% and a specificity of 94.5% (cut off value 21.0%, ROC curve area 0.946). Peak systolic radial strain-rate analysis was less accurate than peak systolic radial strain analysis to detect cMRI-defined segmental function abnormalities. The accuracy of peak systolic circumferential strain and strain rate was similar to that of corresponding radial parameters. CONCLUSIONS Frame-by-frame tracking of acoustic markers in two dimensional echocardiographic images enables accurate analysis of regional systolic LV function.
Collapse
|
Journal Article |
20 |
179 |
14
|
Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S, Nakano S, Katoh M, Ito H, Oshimura M. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 2006; 26:945-57. [PMID: 16909107 DOI: 10.1038/sj.onc.1209857] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously identified SIRT2, an nicotinamide adenine dinucleotide (NAD)-dependent tubulin deacetylase, as a protein downregulated in gliomas and glioma cell lines, which are characterized by aneuploidy. Other studies reported SIRT2 to be involved in mitotic progression in the normal cell cycle. We herein investigated whether SIRT2 functions in the mitotic checkpoint in response to mitotic stress caused by microtubule poisons. By monitoring chromosome condensation, the exogenously expressed SIRT2 was found to block the entry to chromosome condensation and subsequent hyperploid cell formation in glioma cell lines with a persistence of the cyclin B/cdc2 activity in response to mitotic stress. SIRT2 is thus a novel mitotic checkpoint protein that functions in the early metaphase to prevent chromosomal instability (CIN), characteristics previously reported for the CHFR protein. We further found that histone deacetylation, but not the aberrant DNA methylation of SIRT2 5'untranslated region is involved in the downregulation of SIRT2. Although SIRT2 is normally exclusively located in the cytoplasm, the rapid accumulation of SIRT2 in the nucleus was observed after treatment with a nuclear export inhibitor, leptomycin B and ionizing radiation in normal human fibroblasts, suggesting that nucleo-cytoplasmic shuttling regulates the SIRT2 function. Collectively, our results suggest that the further study of SIRT2 may thus provide new insights into the relationships among CIN, epigenetic regulation and tumorigenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
177 |
15
|
Nohmi T, Katoh M, Suzuki H, Matsui M, Yamada M, Watanabe M, Suzuki M, Horiya N, Ueda O, Shibuya T, Ikeda H, Sofuni T. A new transgenic mouse mutagenesis test system using Spi- and 6-thioguanine selections. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1996; 28:465-470. [PMID: 8991079 DOI: 10.1002/(sici)1098-2280(1996)28:4<465::aid-em24>3.0.co;2-c] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A new transgenic mouse mutagenesis test system has been developed for the efficient detection of point mutations and deletion mutations in vivo. The mice carry lambda EG10 DNA as a transgene. When the rescued phages are infected into Escherichia coli YG6020-expressing Cre recombinase, the phage DNA is converted into plasmid pYG142 carrying the chloramphenicol-resistance gene and the gpt gene of E. coli. The gpt mutants can be positively detected as colonies arising on plates containing chloramphenicol and 6-thioguanine. The EG10 DNA carries a chi site along with the red and gam genes so that the wild-type phages display Spi- (sensitive to P2 interference) phenotype. Mutant phages lacking both red and gam genes can be positively detected as plaques that grow in P2 lysogens of E. coli. These mutant phages are called lambda Spi-. The spontaneous gpt mutation frequencies of five independent transgenic lines were 1.7 to 3.3 x 10(-5) in bone marrow. When the mice were treated with ethylnitrosourea (single i.p. treatments with 150 mg/kg body weight; killed 7 days after the treatments), mutation frequencies were increased four- to sevenfold over the background in bone marrow. The average rescue efficiencies were more than 200,000 chloramphenicol-resistant colonies per 7.5 micrograms bone marrow DNA per packaging reaction. In contrast to gpt mutation frequencies, spontaneous Spi- mutation frequencies were 1.4 x 10(-6) and 1.1 x 10(-6) in bone marrow and sperm, respectively. No spontaneous Spi- mutants have been detected so far in spleen, although 930,000 phages rescued from untreated mice were screened. In gamma-ray-treated animals, however, induction of Spi- mutations was clearly observed in spleen, at frequencies of 1.4 x 10(-5) (5 Gy), 1.2 x 10(-5) (10 Gy), and 2.0 x 10(-5) (5O Gy). These results suggest that the new transgenic mouse "gpt delta" could be useful for the efficient detection of point mutations and deletion mutations in vivo.
Collapse
|
|
29 |
175 |
16
|
Mitsuya K, Meguro M, Lee MP, Katoh M, Schulz TC, Kugoh H, Yoshida MA, Niikawa N, Feinberg AP, Oshimura M. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet 1999; 8:1209-17. [PMID: 10369866 DOI: 10.1093/hmg/8.7.1209] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian imprinted genes are frequently arranged in clusters on particular chromosomes. The imprinting cluster on human chromosome 11p15 is associated with Beckwith-Wiedemann syndrome (BWS) and a variety of human cancers. To clarify the genomic organization of the imprinted cluster, an extensive screen for differentially expressed transcripts in the 11p15 region was performed using monochromosomal hybrids with a paternal or maternal human chromosome 11. Here we describe an imprinted antisense transcript identified within the KvLQT1 locus, which is associated with multiple balanced chromosomal rearrangements in BWS and an additional breakpoint in embryonal rhabdoid tumors. The transcript, called LIT1 (long QT intronic transcript 1), was expressed preferentially from the paternal allele and produced in most human tissues. Methylation analysis revealed that an intronic CpG island was specifically methylated on the silent maternal allele and that four of 13 BWS patients showed complete loss of maternal methylation at the CpG island, suggesting that antisense regulation is involved in the development of human disease. In addition, we found that eight of eight Wilms' tumors exhibited normal imprinting of LIT1 and five of five tumors displayed normal differential methylation at the intronic CpG island. This contrasts with five of six tumors showing loss of imprinting of IGF2. We conclude that the imprinted gene domain at the KvLQT1 locus is discordantly regulated in cancer from the imprinted domain at the IGF2 locus. Thus, this positional approach using human monochromosomal hybrids could contribute to the efficient identification of imprinted loci in humans.
Collapse
|
|
26 |
160 |
17
|
Katoh M. Function and cancer genomics of FAT family genes (review). Int J Oncol 2012; 41:1913-8. [PMID: 23076869 PMCID: PMC3583642 DOI: 10.3892/ijo.2012.1669] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/11/2012] [Indexed: 02/06/2023] Open
Abstract
FAT1, FAT2, FAT3 and FAT4 are human homologs of Drosophila Fat, which is involved in tumor suppression and planar cell polarity (PCP). FAT1 and FAT4 undergo the first proteolytic cleavage by Furin and are predicted to undergo the second cleavage by γ-secretase to release intracellular domain (ICD). Ena/VAPS-binding to FAT1 induces actin polymerization at lamellipodia and filopodia to promote cell migration, while Scribble-binding to FAT1 induces phosphorylation and functional inhibition of YAP1 to suppress cell growth. FAT1 is repressed in oral cancer owing to homozygous deletion or epigenetic silencing and is preferentially downregulated in invasive breast cancer. On the other hand, FAT1 is upregulated in leukemia and prognosis of preB-ALL patients with FAT1 upregulation is poor. FAT4 directly interacts with MPDZ/MUPP1 to recruit membrane-associated guanylate kinase MPP5/PALS1. FAT4 is involved in the maintenance of PCP and inhibition of cell proliferation. FAT4 mRNA is repressed in breast cancer and lung cancer due to promoter hypermethylation. FAT4 gene is recurrently mutated in several types of human cancers, such as melanoma, pancreatic cancer, gastric cancer and hepatocellular carcinoma. FAT1 and FAT4 suppress tumor growth via activation of Hippo signaling, whereas FAT1 promotes tumor migration via induction of actin polymerization. FAT1 is tumor suppressive or oncogenic in a context-dependent manner, while FAT4 is tumor suppressive. Copy number aberration, translocation and point mutation of FAT1, FAT2, FAT3, FAT4, FRMD1, FRMD6, NF2, WWC1, WWC2, SAV1, STK3, STK4, MOB1A, MOB1B, LATS1, LATS2, YAP1 and WWTR1/TAZ genes should be comprehensively investigated in various types of human cancers to elucidate the mutation landscape of the FAT-Hippo signaling cascades. Because YAP1 and WWTR1 are located at the crossroads of adhesion, GPCR, RTK and stem-cell signaling network, cancer genomics of the FAT signaling cascades could be applied for diagnostics, prognostics and therapeutics in the era of personalized medicine.
Collapse
|
Review |
13 |
153 |
18
|
Maeda N, Kasukawa T, Oyama R, Gough J, Frith M, Engström PG, Lenhard B, Aturaliya RN, Batalov S, Beisel KW, Bult CJ, Fletcher CF, Forrest ARR, Furuno M, Hill D, Itoh M, Kanamori-Katayama M, Katayama S, Katoh M, Kawashima T, Quackenbush J, Ravasi T, Ring BZ, Shibata K, Sugiura K, Takenaka Y, Teasdale RD, Wells CA, Zhu Y, Kai C, Kawai J, Hume DA, Carninci P, Hayashizaki Y. Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2006; 2:e62. [PMID: 16683036 PMCID: PMC1449903 DOI: 10.1371/journal.pgen.0020062] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
147 |
19
|
Hirai SI, Katoh M, Terada M, Kyriakis JM, Zon LI, Rana A, Avruch J, Ohno S. MST/MLK2, a member of the mixed lineage kinase family, directly phosphorylates and activates SEK1, an activator of c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem 1997; 272:15167-73. [PMID: 9182538 DOI: 10.1074/jbc.272.24.15167] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
c-Jun N-terminal kinases/stress-activated protein kinases (JNKs/SAPKs) are mitogen-activated protein kinase (MAPK)-related protein kinases that are involved in several cellular events, including growth, differentiation, and apoptosis. Mixed lineage kinases (MLKs) form a family of protein kinases sharing two leucine zipper-like motifs and a kinase domain whose primary structure is similar to both the tyrosine-specific and the serine/threonine-specific kinase classes. We have reported that a member of the MLK family, MUK/DLK/ZPK, can activate JNK/SAPK in vivo, and here we show that another member of the MLK family, MST/MLK2, activates JNK/SAPK. Both MUK/DLK/ZPK and MST/MLK2 cause a slight activation of p38/Mpk2 when overexpressed in COS-1 cells, whereas MST/MLK2, but not MUK/DLK/ZPK, activates extracellular response kinase (ERK) to a certain degree. The activity of SEK1/MKK4/JNKK, a MAPK kinase class protein kinase designated as a direct activator of JNK/SAPK, is also induced by MUK/DLK/ZPK or MST/MLK2 overexpression. Furthermore, recombinant MST/MLK2 produced in bacteria directly phosphorylates and activates SEK1/MKK4/JNKK in vitro, showing that MST/MLK2 acts like a MAPK kinase kinase. Taken together, these results suggest that MLK family members are MAPK kinase kinases preferentially acting on the JNK/SAPK pathway.
Collapse
|
|
28 |
145 |
20
|
Katoh M, Katoh M. Transcriptional mechanisms of WNT5A based on NF-kappaB, Hedgehog, TGFbeta, and Notch signaling cascades. Int J Mol Med 2009; 23:763-9. [PMID: 19424602 DOI: 10.3892/ijmm_00000190] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
WNT5A is a cancer-associated gene involved in invasion and metastasis of melanoma, breast cancer, pancreatic cancer, and gastric cancer. WNT5A transduces signals through Frizzled, ROR1, ROR2 or RYK receptors to beta-catenin-TCF/LEF, DVL-RhoA-ROCK, DVL-RhoB-Rab4, DVL-Rac-JNK, DVL-aPKC, Calcineurin-NFAT, MAP3K7-NLK, MAP3K7-NF-kappaB, and DAG-PKC signaling cascades in a context-dependent manner. SNAI1 (Snail), CD44, G3BP2, and YAP1 are WNT5A target genes. We and other groups previously reported that IL6- or LIF-induced signaling through JAK-STAT3 signaling cascade is involved in WNT5A upregulation (STAT3-WNT5A signaling loop). Here, refined integrative genomic analyses of WNT5A were carried out to elucidate other mechanisms of WNT5A transcription. The WNT5A gene was found to encode two isoforms by using alternative first exons 1A and 1B. Quadruple Smad-binding elements (SBEs), single Sp1-binding site (GC-box), PPARgamma-binding site, C/EBP-binding site and bHLH-binding site within the promoter A region, 5'-adjacent to exon 1A, were conserved in human WNT5A, chimpanzee WNT5A, mouse Wnt5a, and rat Wnt5a. NF-kappaB-binding site, CUX1-binding site, double SBEs and double GC-boxes within the promoter B region, 5'-adjacent to exon 1B, were conserved in mammalian WNT5A orthologs. Quadruple FOX-binding sites and double SBEs within ultra-conserved intron 1 were also conserved in mammalian WNT5A orthologs. Conserved NF-kappaB-binding site within the WNT5A promoter B region elucidated the mechanisms that TNFalpha and toll-like receptor (TLR) signals upregulate WNT5A via MAP3K7. Quadruple FOX-binding sites rather than GLI-binding site revealed that Hedgehog signals induce WNT5A upregulation indirectly via FOX family members, such as FOXA2, FOXC2, FOXE1, FOXF1 and FOXL1. TGFbeta signals were found to upregulate WNT5A expression directly through the Smad complex, and also indirectly through Smad-induced CUX1 and MAP3K7-mediated NF-kappaB. Together these facts indicate that WNT5A is transcribed based on multiple mechanisms, such as NF-kappaB, Hedgehog, TGFbeta, and Notch signaling cascades.
Collapse
|
Journal Article |
16 |
138 |
21
|
Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A. Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 1998; 32:273-9. [PMID: 9719054 DOI: 10.1161/01.hyp.32.2.273] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that the chronic inhibition of nitric oxide (NO) synthesis increases cardiac tissue angiotensin-converting enzyme expression and causes cardiac fibrosis in rats. However, the mechanisms are not known. Transforming growth factor-beta (TGF-beta) is a key molecule that is responsible for tissue fibrosis. The present study investigated the role of TGF-beta in the pathogenesis of cardiac fibrosis. The development of cardiac fibrosis by oral administration of the NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) to normal rats was preceded by increases in mRNA levels of cardiac TGF-beta1 and extracellular matrix (ECM) proteins. TGF-beta immunoreactivity was increased in the areas of fibrosis. Treatment with a specific angiotensin II type 1 receptor antagonist, but not with hydralazine, completely prevented the L-NAME-induced increases in the gene expression of TGF-beta1 and ECM proteins and also prevented cardiac fibrosis. Intraperitoneal injection of neutralizing antibody against TGF-beta did not affect the L-NAME-induced increase in TGF-beta1 mRNA levels but prevented an increase in the mRNA levels of ECM protein. These results suggest that the early induction of TGF-beta1 via the angiotensin II type 1 receptor plays a major role in the development of cardiac fibrosis in this model.
Collapse
|
|
27 |
136 |
22
|
|
|
20 |
131 |
23
|
Matsumoto S, Kobayashi T, Katoh M, Saito S, Ikeda Y, Kobori M, Masuho Y, Watanabe T. Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: relationship to lesion development. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:109-19. [PMID: 9665471 PMCID: PMC1852935 DOI: 10.1016/s0002-9440(10)65551-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradation of extracellular matrix (ECM) proteins in the aorta is a critical step for the development of atherosclerosis. Expression of matrix metalloproteinase (MMP)-12 (macrophage elastase), an elastin-degrading proteinase in the MMP family, was investigated in the thoracic aorta of rabbits fed a 1% cholesterol-containing diet for 16 weeks. In the atherosclerotic lesions, MMP-12 was produced abundantly at both the mRNA and protein levels, whereas no expression was observed in the normal rabbit aortas. The principal source of MMP-12 was macrophage foam cells (MFCs) that had infiltrated the atherosclerotic intima; this was demonstrated in both in vitro culture studies of MFCs purified from atherosclerotic lesions and immunohistochemical studies of aortic lesions. Additional biochemical studies using recombinant rabbit MMP-12 revealed that MMP-12 digested elastin, type IV collagen, and fibronectin and also activated MMP-2 and MMP-3. Expression of MMP-12 by human macrophage cell lines was increased by stimulation with acetylated low-density lipoprotein, implying augmentation of MMP-12 production during foam cell formation. Increased expression of MMP-12 in atherosclerotic lesions, concomitant with foam cell generation, which triggers the acceleration of ECM breakdown, is likely to be a critical step in the initiation and progression of the atherosclerotic cascade.
Collapse
|
research-article |
27 |
130 |
24
|
Moriya H, Shimizu-Yoshida Y, Omori A, Iwashita S, Katoh M, Sakai A. Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev 2001; 15:1217-28. [PMID: 11358866 PMCID: PMC313799 DOI: 10.1101/gad.884001] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2001] [Accepted: 03/21/2001] [Indexed: 12/25/2022]
Abstract
POP2 protein of Saccharomyces cerevisiae is a component of a protein complex that regulates the transcription of many genes. We found that the 97th threonine residue (Thr 97) of Pop2p was phosphorylated upon glucose limitation. The Thr 97 phosphorylation occurred within 2 min after removing glucose and was reversed within 1 min after the readdition of glucose. The effects of hexokinase mutations and glucose analogs indicate that this phosphorylation is dependent on glucose phosphorylating activity. We purified a protein kinase that phosphorylates a peptide containing Thr 97 of Pop2p and identified it as Yak1p, a DYRK family kinase. Phosphorylation of Pop2p was barely detectable in a yak1Delta strain. We found that Yak1p interacted with Bmh1p and Bmh2p only in the presence of glucose. A GFP-Yak1p fusion protein shuttled rapidly between the nucleus and the cytoplasm in response to glucose. A strain with alanine substituted for Thr 97 in Pop2p showed overgrowth in the postdiauxic transition and failed to stop the cell cycle at G(1) phase in response to glucose deprivation. Thus, Yak1p and Pop2p are part of a novel glucose-sensing system in yeast that is involved in growth control in response to glucose availability.
Collapse
|
research-article |
24 |
127 |
25
|
Attur MG, Dave M, Akamatsu M, Katoh M, Amin AR. Osteoarthritis or osteoarthrosis: the definition of inflammation becomes a semantic issue in the genomic era of molecular medicine. Osteoarthritis Cartilage 2002; 10:1-4. [PMID: 11795977 DOI: 10.1053/joca.2001.0488] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
Editorial |
23 |
118 |