1
|
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10:593-601. [PMID: 18376396 DOI: 10.1038/ncb1722] [Citation(s) in RCA: 3050] [Impact Index Per Article: 179.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/10/2008] [Indexed: 11/09/2022]
Abstract
Epithelial to mesenchymal transition (EMT) facilitates tissue remodelling during embryonic development and is viewed as an essential early step in tumour metastasis. We found that all five members of the microRNA-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) and miR-205 were markedly downregulated in cells that had undergone EMT in response to transforming growth factor (TGF)-beta or to ectopic expression of the protein tyrosine phosphatase Pez. Enforced expression of the miR-200 family alone was sufficient to prevent TGF-beta-induced EMT. Together, these microRNAs cooperatively regulate expression of the E-cadherin transcriptional repressors ZEB1 (also known as deltaEF1) and SIP1 (also known as ZEB2), factors previously implicated in EMT and tumour metastasis. Inhibition of the microRNAs was sufficient to induce EMT in a process requiring upregulation of ZEB1 and/or SIP1. Conversely, ectopic expression of these microRNAs in mesenchymal cells initiated mesenchymal to epithelial transition (MET). Consistent with their role in regulating EMT, expression of these microRNAs was found to be lost in invasive breast cancer cell lines with mesenchymal phenotype. Expression of the miR-200 family was also lost in regions of metaplastic breast cancer specimens lacking E-cadherin. These data suggest that downregulation of the microRNAs may be an important step in tumour progression.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
3050 |
2
|
Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci U S A 1985; 82:8667-71. [PMID: 3866246 PMCID: PMC391497 DOI: 10.1073/pnas.82.24.8667] [Citation(s) in RCA: 753] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recombinant human tumor necrosis factor (TNF) was found to enhance the adherence of human peripheral blood neutrophils to human umbilical vein endothelial (HUVE) cell monolayers in vitro. The enhancement was due to the effects both on neutrophils and HUVE cells. The effect on neutrophils was maximally induced within 5 min and did not require protein or RNA synthesis. By contrast, maximal effects on HUVE cells took 4 hr to develop and required de novo protein and RNA synthesis; however, exposure of HUVE cells to TNF for as little as 5 min was sufficient to initiate changes leading to maximal adherence of neutrophils at 4 hr. Both the effect on neutrophils and that on HUVE cells were blocked by a monoclonal antibody against TNF. TNF also rapidly induced an increased surface expression of neutrophil antigens recognized by monoclonal antibodies directed against epitopes of a glycoprotein required for optimum adherence and for complement component C3bi receptor (CR3) function. Thus, the mechanism of action of TNF may involve the regulation of expression of cell surface molecules. Our observations show that TNF induces a process central to the development of all inflammatory reactions and that both blood neutrophils and endothelial cells are targets of TNF action. The regulation of inflammatory reactions by TNF or antagonists of TNF has wide-ranging clinical implications.
Collapse
|
research-article |
40 |
753 |
3
|
Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 1988; 167:219-24. [PMID: 2826636 PMCID: PMC2188822 DOI: 10.1084/jem.167.1.219] [Citation(s) in RCA: 672] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human rIL-5 was found to selectively stimulate morphological changes and the function of human eosinophils. This molecule is thus a prime candidate for the selective eosinophilia and eosinophil activation seen in disease.
Collapse
|
research-article |
37 |
672 |
4
|
Lopez AF, Williamson DJ, Gamble JR, Begley CG, Harlan JM, Klebanoff SJ, Waltersdorph A, Wong G, Clark SC, Vadas MA. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest 1986; 78:1220-8. [PMID: 3021817 PMCID: PMC423807 DOI: 10.1172/jci112705] [Citation(s) in RCA: 544] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A purified recombinant human granulocyte-macrophage colony stimulating factor (rH GM-CSF) was a powerful stimulator of mature human eosinophils and neutrophils. The purified rH GM-CSF enhanced the cytotoxic activity of neutrophils and eosinophils against antibody-coated targets, stimulated phagocytosis of serum-opsonized yeast by both cell types in a dose-dependent manner, and stimulated neutrophil-mediated iodination in the presence of zymosan. In addition, rH GM-CSF enhanced N-formylmethionylleucylphenylalanine(FMLP)-stimulated degranulation of Cytochalasin B pretreated neutrophils and FMLP-stimulated superoxide production. In contrast, rH GM-CSF did not promote adherence of granulocytes to endothelial cells or plastic surfaces. rH GM-CSF selectively enhanced the surface expression of granulocyte functional antigens 1 and 2, and the Mo1 antigen. rH GM-CSF induced morphological changes and enhanced the survival of both neutrophils and eosinophils by 6 and 9 h, respectively. These experiments show that granulocyte-macrophage colony stimulating factor can selectively stimulate mature granulocyte function.
Collapse
|
research-article |
39 |
544 |
5
|
Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 1995; 15:1987-94. [PMID: 7583580 DOI: 10.1161/01.atv.15.11.1987] [Citation(s) in RCA: 543] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While an elevated plasma concentration of HDLs is protective against the development of atherosclerosis and ensuing coronary heart disease (CHD), the mechanism of this protection is unknown. One early cellular event in atherogenesis is the adhesion of mononuclear leukocytes to the endothelium. This event is mediated principally by vascular cell adhesion molecule-1 (VCAM-1) but also involves other molecules, such as intercellular adhesion molecule-1 (ICAM-1) and E-selectin. We have investigated the effect of isolated plasma HDLs and reconstituted HDLs on the expression of these molecules by endothelial cells. We show that physiological concentrations of HDLs inhibit tumor necrosis factor-alpha (TNF-alpha) or interleukin-1 (IL-1) induction of these leukocyte adhesion molecules in a concentration-dependent manner. Steady state mRNA levels of TNF-alpha-induced VCAM-1 and E-selectin are significantly reduced by physiological concentrations of HDLs. An an HDL concentration of 1 mg/mL apolipoprotein A-I, the protein expressions of VCAM-1, ICAM-1, and E-selectin were inhibited by 89.6 +/- 0.4% (mean +/-SD, n=4), 64.8 +/- 1.0%, and 79.2 +/- 0.4%, respectively. In contrast, HDLs have no effect on the expression of platelet endothelial cell adhesion molecule (PECAM) or on the expression of the p55 and p75 subunits of the TNF-alpha receptor. HDLs were effective when added from 16 hours before to 5 minutes after cytokine stimulation. HDLs had no effect on TNF-alpha-induced expression of ICAM-1 by human foreskin fibroblasts, suggesting that the effect is cell-type restricted.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
30 |
543 |
6
|
Pitson SM, Moretti PAB, Zebol JR, Lynn HE, Xia P, Vadas MA, Wattenberg BW. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 2004; 22:5491-500. [PMID: 14532121 PMCID: PMC213794 DOI: 10.1093/emboj/cdg540] [Citation(s) in RCA: 441] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sphingosine kinase 1 is an agonist-activated signalling enzyme that catalyses the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist-induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative. Furthermore, we show that phosphorylation of sphingosine kinase 1 at Ser225 results not only in an increase in enzyme activity, but is also necessary for translocation of the enzyme from the cytosol to the plasma membrane. Thus, these studies have elucidated the mechanism of agonist-mediated sphingosine kinase activation, and represent a key finding in understanding the regulation of sphingosine kinase/sphingosine 1-phosphate-controlled signalling pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
441 |
7
|
Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 2000; 87:603-7. [PMID: 11009566 DOI: 10.1161/01.res.87.7.603] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation is a basic pathological mechanism that underlies many diseases. An important component of the inflammatory response is the passage of plasma components and leukocytes from the blood vessel into the tissues. The endothelial monolayer lining blood vessels reacts to stimuli such as thrombin or vascular endothelial growth factor by changes in cell-cell junctions, an increase in permeability, and the leakage of plasma components into tissues. Other stimuli, such as tumor necrosis factor-alpha (TNF-alpha), are responsible for stimulating the transmigration of leukocytes. Here we show that angiopoietin-1, a cytokine essential in fetal angiogenesis, not only supports the localization of proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1) into junctions between endothelial cells and decreases the phosphorylation of PECAM-1 and vascular endothelial cadherin, but it also strengthens these junctions, as evidenced by a decrease in basal permeability and inhibition of permeability responses to thrombin and vascular endothelial growth factor. Furthermore, angiopoietin-1 inhibits TNF-alpha-stimulated leukocyte transmigration. Angiopoietin-1 may thus have a major role in maintaining the integrity of endothelial monolayers.
Collapse
|
|
25 |
358 |
8
|
Xia P, Gamble JR, Rye KA, Wang L, Hii CS, Cockerill P, Khew-Goodall Y, Bert AG, Barter PJ, Vadas MA. Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci U S A 1998; 95:14196-201. [PMID: 9826677 PMCID: PMC24350 DOI: 10.1073/pnas.95.24.14196] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The signaling pathways that couple tumor necrosis factor-alpha (TNFalpha) receptors to functional, especially inflammatory, responses have remained elusive. We report here that TNFalpha induces endothelial cell activation, as measured by the expression of adhesion protein E-selectin and vascular adhesion molecule-1, through the sphingosine kinase (SKase) signaling pathway. Treatment of human umbilical vein endothelial cells with TNFalpha resulted in a rapid SKase activation and sphingosine 1-phosphate (S1P) generation. S1P, but not ceramide or sphingosine, was a potent dose-dependent stimulator of adhesion protein expression. S1P was able to mimic the effect of TNFalpha on endothelial cells leading to extracellular signal-regulated kinases and NF-kappaB activation, whereas ceramide or sphingosine was not. Furthermore, N, N-dimethylsphingosine, an inhibitor of SKase, profoundly inhibited TNFalpha-induced extracellular signal-regulated kinases and NF-kappaB activation and adhesion protein expression. Thus we demonstrate that the SKase pathway through the generation of S1P is critically involved in mediating TNFalpha-induced endothelial cell activation.
Collapse
|
research-article |
27 |
339 |
9
|
Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW, D'Andrea RJ, Vadas MA. An oncogenic role of sphingosine kinase. Curr Biol 2000; 10:1527-30. [PMID: 11114522 DOI: 10.1016/s0960-9822(00)00834-4] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingosine kinase (SphK) is a highly conserved lipid kinase that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). S1P/SphK has been implicated as a signalling pathway to regulate diverse cellular functions [1-3], including cell growth, proliferation and survival [4-8]. We report that cells overexpressing SphK have increased enzymatic activity and acquire the transformed phenotype, as determined by focus formation, colony growth in soft agar and the ability to form tumours in NOD/SCID mice. This is the first demonstration that a wild-type lipid kinase gene acts as an oncogene. Using a chemical inhibitor of SphK, or an SphK mutant that inhibits enzyme activation, we found that SphK activity is involved in oncogenic H-Ras-mediated transformation, suggesting a novel signalling pathway for Ras activation. The findings not only point to a new signalling pathway in transformation but also to the potential of SphK inhibitors in cancer therapy.
Collapse
|
|
25 |
318 |
10
|
Xia P, Wang L, Moretti PAB, Albanese N, Chai F, Pitson SM, D'Andrea RJ, Gamble JR, Vadas MA. Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem 2002; 277:7996-8003. [PMID: 11777919 DOI: 10.1074/jbc.m111423200] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF) receptor-associated factor 2 (TRAF2) is one of the major mediators of TNF receptor superfamily transducing TNF signaling to various functional targets, including activation of NF-kappa B, JNK, and antiapoptosis. We investigated how TRAF2 mediates differentially the distinct downstream signals. We now report a novel mechanism of TRAF2-mediated signal transduction revealed by an association of TRAF2 with sphingosine kinase (SphK), a lipid kinase that is responsible for the production of sphingosine 1-phosphate. We identified a TRAF2-binding motif of SphK that mediated the interaction between TRAF2 and SphK resulting in the activation of the enzyme, which in turn is required for TRAF2-mediated activation of NF-kappa B but not JNK. In addition, by using a kinase inactive dominant-negative SphK and a mutant SphK that lacks TRAF2-binding motif we show that the interaction of TRAF2 with SphK and subsequent activation of SphK are critical for prevention of apoptosis during TNF stimulation. These findings show a role for SphK in the signal transduction by TRAF2 specifically leading to activation of NF-kappa B and antiapoptosis.
Collapse
|
|
23 |
248 |
11
|
Pitson SM, Xia P, Leclercq TM, Moretti PAB, Zebol JR, Lynn HE, Wattenberg BW, Vadas MA. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. ACTA ACUST UNITED AC 2004; 201:49-54. [PMID: 15623571 PMCID: PMC2212769 DOI: 10.1084/jem.20040559] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sphingosine kinase (SK) 1 catalyzes the formation of the bioactive lipid sphingosine 1-phosphate, and has been implicated in several biological processes in mammalian cells, including enhanced proliferation, inhibition of apoptosis, and oncogenesis. Human SK (hSK) 1 possesses high instrinsic catalytic activity which can be further increased by a diverse array of cellular agonists. We have shown previously that this activation occurs as a direct consequence of extracellular signal-regulated kinase 1/2-mediated phosphorylation at Ser225, which not only increases catalytic activity, but is also necessary for agonist-induced translocation of hSK1 to the plasma membrane. In this study, we report that the oncogenic effects of overexpressed hSK1 are blocked by mutation of the phosphorylation site despite the phosphorylation-deficient form of the enzyme retaining full instrinsic catalytic activity. This indicates that oncogenic signaling by hSK1 relies on a phosphorylation-dependent function beyond increasing enzyme activity. We demonstrate, through constitutive localization of the phosphorylation-deficient form of hSK1 to the plasma membrane, that hSK1 translocation is the key effect of phosphorylation in oncogenic signaling by this enzyme. Thus, phosphorylation of hSK1 is essential for oncogenic signaling, and is brought about through phosphorylation-induced translocation of hSK1 to the plasma membrane, rather than from enhanced catalytic activity of this enzyme.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
223 |
12
|
Xia P, Wang L, Gamble JR, Vadas MA. Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J Biol Chem 1999; 274:34499-505. [PMID: 10567432 DOI: 10.1074/jbc.274.48.34499] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human umbilical vein endothelial cells (HUVEC), like most normal cells, are resistant to tumor necrosis factor-alpha (TNF)-induced apoptosis in spite of TNF activating sphingomyelinase and generating ceramide, a known inducer of apoptosis. Here we report that TNF activates another key enzyme, sphingosine kinase (SphK), in the sphingomyelin metabolic pathway resulting in production of sphingosine-1-phosphate (S1P) and that S1P is a potent antagonist of TNF-mediated apoptosis. The TNF-induced SphK activation is independent of sphingomyelinase and ceramidase activities, suggesting that TNF affects this enzyme directly other than through a mass effect on sphingomyelin degradation. In contrast to normal HUVEC, in a spontaneously transformed endothelial cell line (C11) TNF stimulation failed to activate SphK and induced apoptosis as characterized by morphological and biochemical criteria. Addition of exogenous S1P or increasing endogenous S1P by phorbol ester markedly protected C11 cell line from TNF-induced apoptosis. Conversely, N, N-dimethylsphingosine, an inhibitor of SphK, profoundly sensitized normal HUVEC to killing by TNF. Thus, we demonstrate that the activation of SphK by TNF is an important signaling for protection from the apoptotic effect of TNF in endothelial cells.
Collapse
|
Comparative Study |
26 |
217 |
13
|
Gamble JR, Skinner MP, Berndt MC, Vadas MA. Prevention of activated neutrophil adhesion to endothelium by soluble adhesion protein GMP140. Science 1990; 249:414-7. [PMID: 1696029 DOI: 10.1126/science.1696029] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neutrophils and monocytes, but not lymphocytes, adhered strongly to plastic surfaces coated with GMP140, a protein of endothelial cells and platelets. This adhesion of neutrophils was mediated by GMP140 and not by the CD18 integrin complex. By contrast, GMP140 in solution inhibited the CD18-dependent adhesion of tumor necrosis factor-alpha-activated neutrophils to plastic surfaces and resting endothelium, but not of resting neutrophils to tumor necrosis factor-alpha-activated endothelium. Thus, the binding of a soluble form of an adhesion protein selectively inhibited another set of adhesive events. Soluble GMP140 may be important in maintaining the nonadhesiveness of neutrophils in the circulation and may serve to limit inflammatory reactions.
Collapse
|
|
35 |
190 |
14
|
Dunlop LC, Skinner MP, Bendall LJ, Favaloro EJ, Castaldi PA, Gorman JJ, Gamble JR, Vadas MA, Berndt MC. Characterization of GMP-140 (P-selectin) as a circulating plasma protein. J Exp Med 1992; 175:1147-50. [PMID: 1372646 PMCID: PMC2119167 DOI: 10.1084/jem.175.4.1147] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
GMP-140 is a 140-kD granule membrane protein, found in the alpha granules of platelets and the Weibel-Palade bodies of endothelial cells, that is surface expressed on cell activation and mediates neutrophil attachment. Cloning data for GMP-140 from an endothelial library predict a soluble form of the protein, the transcription message for which is also found in platelets. In this study, we report the detection by enzyme-linked immunosorbent assay of soluble GMP-140 in plasma centrifuged for 3 h at 100,000 g (to remove platelet microparticles) and confirm its identity by purification from plasma. Plasma concentrations were found to be 0.251 +/- 0.043 micrograms/ml (means +/- SD, n = 10) in normal male controls and 0.175 +/- 0.063 micrograms/ml (means +/- SD, n = 10) in normal female controls. The purified protein had an identical molecular mass (nonreduced) to platelet membrane GMP-140 (approximately 3 kD lower, reduced) and was immunoblotted by polyclonal anti-GMP-140, and the anti-GMP-140 monoclonal antibodies AK4 and AK6. Analytical gel filtration studies indicated that the plasma GMP-140 eluted as a monomer whereas detergent- free, platelet membrane GMP-140 eluted as a tetramer consistent with plasma GMP-140 lacking a transmembrane domain. Purified plasma GMP-140 bound to the same neutrophil receptor as the membrane-bound form, and when immobilized on plastic, bound neutrophils equivalently to immobilized platelet membrane GMP-140. Since it has been shown that fluid-phase GMP-140 is antiinflammatory and downregulates CD18- dependent neutrophil adhesion and respiratory burst, its presence in plasma may be of major importance in preventing the inadvertent activation of neutrophils in the circulation.
Collapse
|
Research Support, Non-U.S. Gov't |
33 |
189 |
15
|
Xia P, Vadas MA, Rye KA, Barter PJ, Gamble JR. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. J Biol Chem 1999; 274:33143-7. [PMID: 10551885 DOI: 10.1074/jbc.274.46.33143] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of high density lipoproteins (HDL) to inhibit cytokine-induced adhesion molecule expression has been demonstrated in their protective function against the development of atherosclerosis and associated coronary heart disease. A key event in atherogenesis is endothelial activation induced by a variety of stimuli such as tumor necrosis factor-alpha (TNF), resulting in the expression of various adhesion proteins. We have recently reported that sphingosine 1-phosphate, generated by sphingosine kinase activation, is a key molecule in mediating TNF-induced adhesion protein expression. We now show that HDL profoundly inhibit TNF-stimulated sphingosine kinase activity in endothelial cells resulting in a decrease in sphingosine 1-phosphate production and adhesion protein expression. HDL also reduced TNF-mediated activation of extracellular signal-regulated kinases and NF-kappaB signaling cascades. Furthermore, HDL enhanced the cellular levels of ceramide which in turn inhibits endothelial activation. Thus, the regulation of sphingolipid signaling in endothelial cells by HDL provides a novel insight into the mechanism of protection against atherosclerosis.
Collapse
|
|
26 |
188 |
16
|
Vadas MA, Miller JF, McKenzie IF, Chism SE, Shen FW, Boyse EA, Gamble JR, Whitelaw AM. Ly and Ia antigen phenotypes of T cells involved in delayed-type hypersensitivity and in suppression. J Exp Med 1976; 144:10-9. [PMID: 1084399 PMCID: PMC2190350 DOI: 10.1084/jem.144.1.10] [Citation(s) in RCA: 180] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Ly and Ia phenotypes of T lymphocytes involved in different functions were characterized by the use of specific antisera. T cells responsible for delayed-type hypersensitivity (DTH) and for helper functions were found to be Ly-1+,2- in contrast to cytotoxic T cells and T cells responsible for suppression of antibody responses which were Ly-1-,2+. Unlike some primed helper cells, T cells involved in DTH were Ia-. Suppressor cells in the system were Ia+.
Collapse
|
research-article |
49 |
180 |
17
|
Gamble JR, Vadas MA. Endothelial adhesiveness for blood neutrophils is inhibited by transforming growth factor-beta. Science 1988; 242:97-9. [PMID: 3175638 DOI: 10.1126/science.3175638] [Citation(s) in RCA: 177] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adhesion of blood cells to endothelial cells is an essential component of all inflammatory responses. The capacity of the endothelium to support adhesion of neutrophils is increased by cytokines such as tumor necrosis factor-alpha, interleukin-1, and endotoxin. Another cytokine, transforming growth factor-beta (TGF-beta), was a strong inhibitor of basalneutrophil adhesion and also decreased the adhesive response of endothelial cells to tumor necrosis factor-alpha (TNF-alpha). The ability of cells to respond to TGF-beta was related to the duration of culture of endothelial cells after explantation from umbilical veins. TGF-beta is likely to serve an anti-inflammatory role at sites of blood vessel injury undergoing active endothelial regeneration.
Collapse
|
|
37 |
177 |
18
|
Cooper D, Lindberg FP, Gamble JR, Brown EJ, Vadas MA. Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc Natl Acad Sci U S A 1995; 92:3978-82. [PMID: 7732016 PMCID: PMC42085 DOI: 10.1073/pnas.92.9.3978] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inflammation is a primary pathological process. The development of an inflammatory reaction involves the movement of white blood cells through the endothelial lining of blood vessels into tissues. This process of transendothelial cell migration of neutrophils has been shown to involve neutrophil beta 2 integrins (CD18) and endothelial cell platelet-endothelium cell adhesion molecules (PECAM-1; CD31). We now show that F(ab')2 fragments of the monoclonal antibody B6H12 against integrin-associated protein (IAP) blocks the transendothelial migration of neutrophils stimulated by an exogenous gradient of the chemokine interleukin 8 (IL-8; 60% inhibition), by the chemotactic peptide N-formyl-methionylleucylphenylalanine (FMLP; 76% inhibition), or by the activation of the endothelium by the cytokine tumor necrosis factor alpha (98% inhibition). The antibody has two mechanisms of action: on neutrophils it prevents the chemotactic response to IL-8 and FMLP, and on endothelium it prevents an unknown but IL-8-independent process. Blocking antibodies to IAP do not alter the expression of adhesion proteins or production of IL-8 by endothelial cells, and thus the inhibition of neutrophil transendothelial migration is selective. These data implicate IAP as the third molecule essential for neutrophil migration through endothelium into sites of inflammation.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/physiology
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/physiology
- CD47 Antigen
- Carrier Proteins/physiology
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/physiology
- Cells, Cultured
- Chemotaxis, Leukocyte
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Humans
- Immunoglobulin Fab Fragments/pharmacology
- In Vitro Techniques
- Inflammation/physiopathology
- Interleukin-8/analysis
- Interleukin-8/pharmacology
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Neutrophils/drug effects
- Neutrophils/physiology
- Platelet Endothelial Cell Adhesion Molecule-1
- Recombinant Proteins/pharmacology
- Tumor Necrosis Factor-alpha/pharmacology
- Umbilical Veins
Collapse
|
research-article |
30 |
169 |
19
|
Sukocheva O, Wadham C, Holmes A, Albanese N, Verrier E, Feng F, Bernal A, Derian CK, Ullrich A, Vadas MA, Xia P. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol 2006; 173:301-10. [PMID: 16636149 PMCID: PMC2063820 DOI: 10.1083/jcb.200506033] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The transactivation of enhanced growth factor receptor (EGFR) by G protein-coupled receptor (GPCR) ligands is recognized as an important signaling mechanism in the regulation of complex biological processes, such as cancer development. Estrogen (E2), which is a steroid hormone that is intimately implicated in breast cancer, has also been suggested to function via EGFR transactivation. In this study, we demonstrate that E2-induced EGFR transactivation in human breast cancer cells is driven via a novel signaling system controlled by the lipid kinase sphingosine kinase-1 (SphK1). We show that E2 stimulates SphK1 activation and the release of sphingosine 1-phosphate (S1P), by which E2 is capable of activating the S1P receptor Edg-3, resulting in the EGFR transactivation in a matrix metalloprotease-dependent manner. Thus, these findings reveal a key role for SphK1 in the coupling of the signals between three membrane-spanning events induced by E2, S1P, and EGF. They also suggest a new signal transduction model across three individual ligand-receptor systems, i.e., "criss-cross" transactivation.
Collapse
|
research-article |
19 |
164 |
20
|
Pitson SM, Moretti PA, Zebol JR, Xia P, Gamble JR, Vadas MA, D'Andrea RJ, Wattenberg BW. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J Biol Chem 2000; 275:33945-50. [PMID: 10944534 DOI: 10.1074/jbc.m006176200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sphingosine kinase (SK) catalyzes the formation of sphingosine 1-phosphate (S1P), a lipid messenger that plays an important role in a variety of mammalian cell processes, including inhibition of apoptosis and stimulation of cell proliferation. Basal levels of S1P in cells are generally low but can increase rapidly when cells are exposed to various agonists through rapid and transient activation of SK activity. To date, elucidation of the exact signaling pathways affected by these elevated S1P levels has relied on the use of SK inhibitors that are known to have direct effects on other enzymes in the cell. Furthermore, these inhibitors block basal SK activity, which is thought to have a housekeeping function in the cell. To produce a specific inhibitor of SK activation we sought to generate a catalytically inactive, dominant-negative SK. This was accomplished by site-directed mutagenesis of Gly(82) to Asp of the human SK, a residue identified through sequence similarity to the putative catalytic domain of diacylglycerol kinase. This mutant had no detectable SK activity when expressed at high levels in HEK293T cells. Activation of endogenous SK activity by tumor necrosis factor-alpha (TNFalpha), interleukin-1beta, and phorbol esters in HEK293T cells was blocked by expression of this inactive sphingosine kinase (hSK(G82D)). Basal SK activity was unaffected by expression of hSK(G82D). Expression of hSK(G82D) had no effect on TNFalpha-induced activation of protein kinase C and sphingomyelinase activities. Thus, hSK(G82D) acts as a specific dominant-negative SK to block SK activation. This discovery provides a powerful tool for the elucidation of the exact signaling pathways affected by elevated S1P levels following SK activation. To this end we have employed the dominant-negative SK to demonstrate that TNFalpha activation of extracellular signal-regulated kinases 1 and 2 (ERK1,2) is dependent on SK activation.
Collapse
|
|
25 |
159 |
21
|
Gamble JR, Matthias LJ, Meyer G, Kaur P, Russ G, Faull R, Berndt MC, Vadas MA. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Biophys Biochem Cytol 1993; 121:931-43. [PMID: 8491784 PMCID: PMC2119791 DOI: 10.1083/jcb.121.4.931] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human endothelial cells are induced to form an anastomosing network of capillary tubes on a gel of collagen I in the presence of PMA. We show here that the addition of mAbs, AK7, or RMAC11 directed to the alpha chain of the major collagen receptor on endothelial cells, the integrin alpha 2 beta 1, enhance the number, length, and width of capillary tubes formed by endothelial cells derived from umbilical vein or neonatal foreskins. The anti-alpha 2 beta 1 antibodies maintained the endothelial cells in a rounded morphology and inhibited both their attachment to and proliferation on collagen but not on fibronectin, laminin, or gelatin matrices. Furthermore, RMAC11 promoted tube formation in collagen gels of increased density which in the absence of RMAC11 did not allow tube formation. Neither RMAC11 or AK7 enhanced capillary formation in the absence of PMA. Lumen structure and size were also altered by antibody RMAC11. In the absence of antibody the majority of lumina were formed intracellularly from single cells, but in the presence of RMAC11, multiple cells were involved and the lumen size was correspondingly increased. Endothelial cells were also induced to undergo capillary formation in fibrin gels after PMA stimulation. The addition of anti-alpha v beta 3 antibodies promoted tube formation in fibrin gels and inhibited EC adhesion to and proliferation on a fibrinogen matrix. The enhancement of capillary formation by the anti-integrin antibodies was matrix specific; that is, anti-alpha v beta 3 antibodies only enhanced tube formation on fibrin gels and not on collagen gels while anti-alpha v beta 1 antibodies only enhanced tubes on collagen and not on fibrin gels. Thus we postulate that changes in the adhesive nature of endothelial cells for their extracellular matrix can profoundly effect their function. Anti-integrin antibodies which inhibit cell-matrix interactions convert endothelial cells from a proliferative phenotype towards differentiation which results in enhanced capillary tube formation.
Collapse
|
research-article |
32 |
156 |
22
|
Cockerill PN, Shannon MF, Bert AG, Ryan GR, Vadas MA. The granulocyte-macrophage colony-stimulating factor/interleukin 3 locus is regulated by an inducible cyclosporin A-sensitive enhancer. Proc Natl Acad Sci U S A 1993; 90:2466-70. [PMID: 8460159 PMCID: PMC46108 DOI: 10.1073/pnas.90.6.2466] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3) are pleiotropic hemopoietic growth factors whose genes are closely linked and induced in T lymphocytes in a cyclosporin A (CsA)-sensitive fashion. Since we found that the human GM-CSF and IL-3 proximal promoters were not sufficient to account for the observed regulation of these genes, we mapped DNase I hypersensitive sites across the GM-CSF/IL-3 locus in the Jurkat human T-cell line to identify additional regulatory elements. We located an inducible DNase I hypersensitive site, 3 kb upstream of the GM-CSF gene, that functioned as a strong CsA-sensitive enhancer of both the GM-CSF and IL-3 promoters. Binding studies employing Jurkat cell nuclear extracts indicated that four sites within the enhancer associate with the inducible transcription factor AP1. Three of these AP1 elements lie within sequences that also associate with factors resembling the CsA-sensitive, T cell-specific transcription factor NFAT. We provide additional evidence suggesting that an AP1-like factor represents one of the components of NFAT. We propose that the intergenic enhancer described here is required for the correctly regulated activation of both GM-CSF and IL-3 gene expression in T cells and that it mediates the CsA sensitivity of the GM-CSF/IL-3 locus.
Collapse
|
research-article |
32 |
153 |
23
|
Miller JF, Vadas MA, Whitelaw A, Gamble J. Role of major histocompatibility complex gene products in delayed-type hypersensitivity. Proc Natl Acad Sci U S A 1976; 73:2486-90. [PMID: 1084997 PMCID: PMC430618 DOI: 10.1073/pnas.73.7.2486] [Citation(s) in RCA: 152] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sensitized thymus-derived (T) lymphocytes can transfer delayed-type hypersensitivity (DTH) to naive mice only if there is identity at the major histocompatibility complex (MHC). The MHC region responsible differs according to the antigen used for sensitization. For transfer of DTH to fowl gamma globulin identity at I-A is necessary; for dinitrofluorobenzene, however, identity at either K, D, or I region is sufficient. T cells of one genotype, sensitized in a chimeric environment, transferred DTH to both parental strains even though these were MHC incompatible. However T cells from F1 hybrid mice, sensitized not in the F1 but in one parental strain, transferred DTH only to that parental strain, not to the other, in contrast to F1 T cells sensitized in the F1 which could transfer DTH to both parental strains. Macrophages pulsed with antigen in vitro could be used to sensitize syngeneic or semi-allogeneic mice for the transfer of DTH. Transfer was, however, successful only in the strain syngeneic to that from which the macrophages were derived. Evidence is also presented that genetically low-responder mice can be made to exhibit DTH provided they are pretreated with cyclophosphamide two days before sensitization. When considered in toto these results strongly argue in favor of the notion that there are receptors on activated T cells which recognize antigenic determinants and MHC gene products. The implications of these findings are discussed in relation to the role of macrophages in antigen presentation and to the possible parallel evolution of MHC gene products and of T cell receptors for antigen.
Collapse
|
research-article |
49 |
152 |
24
|
Limaye V, Li X, Hahn C, Xia P, Berndt MC, Vadas MA, Gamble JR. Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3K/Akt and regulation of Bcl-2 family members. Blood 2005; 105:3169-77. [PMID: 15632208 DOI: 10.1182/blood-2004-02-0452] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), the bioactive product of sphingosine kinase (SK) activation, is a survival factor for endothelial cells. The mechanism of SK-mediated survival was investigated in endothelial cells with moderately raised intracellular SK activity. Overexpression of SK mediated survival primarily through the activation of the phosphatidyl inositol 3-kinase (PI-3K)/protein kinase B (Akt/PKB) pathway and an associated up-regulation of the antiapoptotic protein B cell lymphoma gene 2 (Bcl-2) and down-regulation of the proapoptotic protein bisindolylmaleimide (Bcl-2 interacting mediator of cell death; Bim). In addition there was an up-regulation and dephosphorylation of the junctional molecule platelet endothelial cell adhesion molecule-1 (PECAM-1), which was obligatory for activation of the PI-3K/Akt pathway, for SK-induced cell survival, and for the changes in the apoptosis-related proteins. Thus, raised intracellular SK activity induced a molecule involved in cell-cell interactions to augment cell survival through a PI-3K/Akt-dependent pathway. This is distinct from the activation of both PI-3K/Akt and mitogen-activated protein kinase (MAPK) pathways seen with exogenously added S1P. Cells overexpressing SK showed enhanced survival under conditions of serum deprivation and absence of attachment to extracellular matrix, suggesting a role for SK in the regulation of vascular phenomena that occur under conditions of stress, such as angiogenesis and survival in unattached states, as would be required for a circulating endothelial cell.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
138 |
25
|
Miller JF, Vadas MA, Whitelaw A, Gamble J. H-2 gene complex restricts transfer of delayed-type hypersensitivity in mice. Proc Natl Acad Sci U S A 1975; 72:5095-8. [PMID: 1082137 PMCID: PMC388882 DOI: 10.1073/pnas.72.12.5095] [Citation(s) in RCA: 136] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sensitized lymphocytes can transfer a state of delayed-type hypersensitivity to soluble protein antigens to naive mice only if donor and recipient share the I-A region of the H-2 gene complex. Identity at the K or D region is not essential. The restriction is unlikely to result from ineffective homing of the injected cells or from their early destruction. It is thought to reflect a requirement for an Ir-gene controlled mechanism which governs effective interaction between sensitized T lymphocytes and antigen presented on the surface of macrophages.
Collapse
|
research-article |
50 |
136 |