1
|
Combadière C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 2008; 117:1649-57. [PMID: 18347211 DOI: 10.1161/circulationaha.107.745091] [Citation(s) in RCA: 544] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Monocytes are critical mediators of atherogenesis. Deletion of individual chemokines or chemokine receptors leads to significant but only partial inhibition of lesion development, whereas deficiency in other signals such as CXCL16 or CCR1 accelerates atherosclerosis. Evidence that particular chemokine pathways may cooperate to promote monocyte accumulation into inflamed tissues, particularly atherosclerotic arteries, is still lacking. METHODS AND RESULTS Here, we show that chemokine-mediated signals critically determine the frequency of monocytes in the blood and bone marrow under both noninflammatory and atherosclerotic conditions. Particularly, CCL2-, CX3CR1-, and CCR5-dependent signals differentially alter CD11b(+) Ly6G(-) 7/4(hi) (also known as Ly6C(hi)) and CD11b(+) Ly6G(-) 7/4(lo) (Ly6C(lo)) monocytosis. Combined inhibition of CCL2, CX3CR1, and CCR5 in hypercholesterolemic, atherosclerosis-susceptible apolipoprotein E-deficient mice leads to abrogation of bone marrow monocytosis and to additive reduction in circulating monocytes despite persistent hypercholesterolemia. These effects are associated with a marked and additive 90% reduction in atherosclerosis. Interestingly, lesion size highly correlates with the number of circulating monocytes, particularly the CD11b(+) Ly6G(-) 7/4(lo) subset. CONCLUSIONS CCL2, CX3CR1, and CCR5 play independent and additive roles in atherogenesis. Signals mediated through these pathways critically determine the frequency of circulating monocyte subsets and thereby account for almost all macrophage accumulation into atherosclerotic arteries.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
544 |
2
|
Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation: The type I interferonopathies, a conceptual overview. J Exp Med 2016; 213:2527-2538. [PMID: 27821552 PMCID: PMC5110029 DOI: 10.1084/jem.20161596] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Type I interferon is a potent substance. As such, the induction, transmission, and resolution of the type I interferon-mediated immune response are tightly regulated. As defined, the type I interferonopathies represent discrete examples of a disturbance of the homeostatic control of this system caused by Mendelian mutations. Considering the complexity of the interferon response, the identification of further monogenic diseases belonging to this disease grouping seems likely, with the recognition of type I interferonopathies becoming of increasing clinical importance as treatment options are developed based on an understanding of disease pathology and innate immune signaling. Definition of the type I interferonopathies indicates that autoinflammation can be both interferon and noninterferon related, and that a primary disturbance of the innate immune system can "spill over" into autoimmunity in some cases. Indeed, that several non-Mendelian disorders, most particularly systemic lupus erythematosus and dermatomyositis, are also characterized by an up-regulation of type I interferon signaling suggests the possibility that insights derived from this work will have relevance to a broader field of clinical medicine.
Collapse
|
Review |
9 |
310 |
3
|
Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI, Werneke S, McGlasson SL, Alyanakian MA, Bader-Meunier B, Barnerias C, Bellon N, Belot A, Bodemer C, Briggs TA, Desguerre I, Frémond ML, Hully M, van den Maagdenberg AM, Melki I, Meyts I, Musset L, Pelzer N, Quartier P, Terwindt GM, Wardlaw J, Wiseman S, Rieux-Laucat F, Rose Y, Neven B, Hertel C, Hayday A, Albert ML, Rozenberg F, Crow YJ, Duffy D. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med 2017; 214:1547-1555. [PMID: 28420733 PMCID: PMC5413335 DOI: 10.1084/jem.20161451] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/15/2016] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation.
Collapse
|
research-article |
8 |
268 |
4
|
Rodero MP, Tesser A, Bartok E, Rice GI, Della Mina E, Depp M, Beitz B, Bondet V, Cagnard N, Duffy D, Dussiot M, Frémond ML, Gattorno M, Guillem F, Kitabayashi N, Porcheray F, Rieux-Laucat F, Seabra L, Uggenti C, Volpi S, Zeef LAH, Alyanakian MA, Beltrand J, Bianco AM, Boddaert N, Brouzes C, Candon S, Caorsi R, Charbit M, Fabre M, Faletra F, Girard M, Harroche A, Hartmann E, Lasne D, Marcuzzi A, Neven B, Nitschke P, Pascreau T, Pastore S, Picard C, Picco P, Piscianz E, Polak M, Quartier P, Rabant M, Stocco G, Taddio A, Uettwiller F, Valencic E, Vozzi D, Hartmann G, Barchet W, Hermine O, Bader-Meunier B, Tommasini A, Crow YJ. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat Commun 2017; 8:2176. [PMID: 29259162 PMCID: PMC5736616 DOI: 10.1038/s41467-017-01932-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
Abstract
Microbial nucleic acid recognition serves as the major stimulus to an antiviral response, implying a requirement to limit the misrepresentation of self nucleic acids as non-self and the induction of autoinflammation. By systematic screening using a panel of interferon-stimulated genes we identify two siblings and a singleton variably demonstrating severe neonatal anemia, membranoproliferative glomerulonephritis, liver fibrosis, deforming arthropathy and increased anti-DNA antibodies. In both families we identify biallelic mutations in DNASE2, associated with a loss of DNase II endonuclease activity. We record increased interferon alpha protein levels using digital ELISA, enhanced interferon signaling by RNA-Seq analysis and constitutive upregulation of phosphorylated STAT1 and STAT3 in patient lymphocytes and monocytes. A hematological disease transcriptomic signature and increased numbers of erythroblasts are recorded in patient peripheral blood, suggesting that interferon might have a particular effect on hematopoiesis. These data define a type I interferonopathy due to DNase II deficiency in humans.
Collapse
|
Case Reports |
8 |
167 |
5
|
Hernandez N, Melki I, Jing H, Habib T, Huang SSY, Danielson J, Kula T, Drutman S, Belkaya S, Rattina V, Lorenzo-Diaz L, Boulai A, Rose Y, Kitabayashi N, Rodero MP, Dumaine C, Blanche S, Lebras MN, Leung MC, Mathew LS, Boisson B, Zhang SY, Boisson-Dupuis S, Giliani S, Chaussabel D, Notarangelo LD, Elledge SJ, Ciancanelli MJ, Abel L, Zhang Q, Marr N, Crow YJ, Su HC, Casanova JL. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 2018; 215:2567-2585. [PMID: 30143481 PMCID: PMC6170168 DOI: 10.1084/jem.20180628] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/10/2023] Open
Abstract
Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.
Collapse
|
Case Reports |
7 |
156 |
6
|
Ladislau L, Suárez-Calvet X, Toquet S, Landon-Cardinal O, Amelin D, Depp M, Rodero MP, Hathazi D, Duffy D, Bondet V, Preusse C, Bienvenu B, Rozenberg F, Roos A, Benjamim CF, Gallardo E, Illa I, Mouly V, Stenzel W, Butler-Browne G, Benveniste O, Allenbach Y. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain 2018; 141:1609-1621. [DOI: 10.1093/brain/awy105] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/17/2018] [Indexed: 12/17/2022] Open
|
|
7 |
125 |
7
|
Uggenti C, Lepelley A, Depp M, Badrock AP, Rodero MP, El-Daher MT, Rice GI, Dhir S, Wheeler AP, Dhir A, Albawardi W, Frémond ML, Seabra L, Doig J, Blair N, Martin-Niclos MJ, Della Mina E, Rubio-Roldán A, García-Pérez JL, Sproul D, Rehwinkel J, Hertzog J, Boland-Auge A, Olaso R, Deleuze JF, Baruteau J, Brochard K, Buckley J, Cavallera V, Cereda C, De Waele LMH, Dobbie A, Doummar D, Elmslie F, Koch-Hogrebe M, Kumar R, Lamb K, Livingston JH, Majumdar A, Lorenço CM, Orcesi S, Peudenier S, Rostasy K, Salmon CA, Scott C, Tonduti D, Touati G, Valente M, van der Linden H, Van Esch H, Vermelle M, Webb K, Jackson AP, Reijns MAM, Gilbert N, Crow YJ. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat Genet 2020; 52:1364-1372. [PMID: 33230297 DOI: 10.1038/s41588-020-00737-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
Inappropriate stimulation or defective negative regulation of the type I interferon response can lead to autoinflammation. In genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, we identified biallelic mutations in LSM11 and RNU7-1, which encode components of the replication-dependent histone pre-mRNA-processing complex. Mutations were associated with the misprocessing of canonical histone transcripts and a disturbance of linker histone stoichiometry. Additionally, we observed an altered distribution of nuclear cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and enhanced interferon signaling mediated by the cGAS-stimulator of interferon genes (STING) pathway in patient-derived fibroblasts. Finally, we established that chromatin without linker histone stimulates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) production in vitro more efficiently. We conclude that nuclear histones, as key constituents of chromatin, are essential in suppressing the immunogenicity of self-DNA.
Collapse
|
|
5 |
117 |
8
|
Rice GI, Meyzer C, Bouazza N, Hully M, Boddaert N, Semeraro M, Zeef LAH, Rozenberg F, Bondet V, Duffy D, Llibre A, Baek J, Sambe MN, Henry E, Jolaine V, Barnerias C, Barth M, Belot A, Cances C, Debray FG, Doummar D, Frémond ML, Kitabayashi N, Lepelley A, Levrat V, Melki I, Meyer P, Nougues MC, Renaldo F, Rodero MP, Rodriguez D, Roubertie A, Seabra L, Uggenti C, Abdoul H, Treluyer JM, Desguerre I, Blanche S, Crow YJ. Reverse-Transcriptase Inhibitors in the Aicardi–Goutières Syndrome. N Engl J Med 2018; 379:2275-7. [PMID: 30566312 DOI: 10.1056/nejmc1810983] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
Letter |
7 |
115 |
9
|
Jenkinson EM, Rodero MP, Kasher PR, Uggenti C, Oojageer A, Goosey LC, Rose Y, Kershaw CJ, Urquhart JE, Williams SG, Bhaskar SS, O’Sullivan J, Baerlocher GM, Haubitz M, Aubert G, Barañano KW, Barnicoat AJ, Battini R, Berger A, Blair EM, Brunstrom-Hernandez JE, Buckard JA, Cassiman DM, Caumes R, Cordelli DM, De Waele LM, Fay AJ, Ferreira P, Fletcher NA, Fryer AE, Goel H, Hemingway CA, Henneke M, Hughes I, Jefferson RJ, Kumar R, Lagae L, Landrieu PG, Lourenço CM, Malpas TJ, Mehta SG, Metz I, Naidu S, Õunap K, Panzer A, Prabhakar P, Quaghebeur G, Schiffmann R, Sherr EH, Sinnathuray KR, Soh C, Stewart HS, Stone J, Van Esch H, Van Mol CE, Vanderver A, Wakeling EL, Whitney A, Pavitt GD, Griffiths-Jones S, Rice GI, Revy P, van der Knaap MS, Livingston JH, O’Keefe RT, Crow YJ. Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat Genet 2016; 48:1185-92. [PMID: 27571260 PMCID: PMC5045717 DOI: 10.1038/ng.3661] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 08/05/2016] [Indexed: 12/15/2022]
Abstract
Although ribosomes are ubiquitous and essential for life, recent data indicate that monogenic causes of ribosomal dysfunction can confer a remarkable degree of specificity in terms of human disease phenotype. Box C/D small nucleolar RNAs (snoRNAs) are evolutionarily conserved non-protein-coding RNAs involved in ribosome biogenesis. Here we show that biallelic mutations in the gene SNORD118, encoding the box C/D snoRNA U8, cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts (LCC), presenting at any age from early childhood to late adulthood. These mutations affect U8 expression, processing and protein binding and thus implicate U8 as essential in cerebral vascular homeostasis.
Collapse
|
research-article |
9 |
103 |
10
|
Patel J, Seppanen EJ, Rodero MP, Wong HY, Donovan P, Neufeld Z, Fisk NM, Francois M, Khosrotehrani K. Functional Definition of Progenitors Versus Mature Endothelial Cells Reveals Key SoxF-Dependent Differentiation Process. Circulation 2016; 135:786-805. [PMID: 27899395 DOI: 10.1161/circulationaha.116.024754] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND During adult life, blood vessel formation is thought to occur via angiogenic processes involving branching from existing vessels. An alternate proposal suggests that neovessels form from endothelial progenitors able to assemble the intimal layers. We here aimed to define vessel-resident endothelial progenitors in vivo in a variety of tissues in physiological and pathological situations such as normal aorta, lungs, and wound healing, tumors, and placenta, as well. METHODS Based on protein expression levels of common endothelial markers using flow cytometry, 3 subpopulations of endothelial cells could be identified among VE-Cadherin+ and CD45- cells. RESULTS Lineage tracing by using Cdh5creERt2/Rosa-YFP reporter strategy demonstrated that the CD31-/loVEGFR2lo/intracellular endothelial population was indeed an endovascular progenitor (EVP) of an intermediate CD31intVEGFR2lo/intracellular transit amplifying (TA) and a definitive differentiated (D) CD31hiVEGFR2hi/extracellular population. EVP cells arose from vascular-resident beds that could not be transferred by bone marrow transplantation. Furthermore, EVP displayed progenitor-like status with a high proportion of cells in a quiescent cell cycle phase as assessed in wounds, tumors, and aorta. Only EVP cells and not TA and D cells had self-renewal capacity as demonstrated by colony-forming capacity in limiting dilution and by transplantation in Matrigel plugs in recipient mice. RNA sequencing revealed prominent gene expression differences between EVP and D cells. In particular, EVP cells highly expressed genes related to progenitor function including Sox9, Il33, Egfr, and Pdfgrα. Conversely, D cells highly expressed genes related to differentiated endothelium including Ets1&2, Gata2, Cd31, Vwf, and Notch. The RNA sequencing also pointed to an essential role of the Sox18 transcription factor. The role of SOX18 in the differentiation process was validated by using lineage-tracing experiments based on Sox18CreERt2/Rosa-YFP mice. Besides, in the absence of functional SOX18/SOXF, EVP progenitors were still present, but TA and D populations were significantly reduced. CONCLUSIONS Our findings support an entirely novel endothelial hierarchy, from EVP to TA to D, as defined by self-renewal, differentiation, and molecular profiling of an endothelial progenitor. This paradigm shift in our understanding of vascular-resident endothelial progenitors in tissue regeneration opens new avenues for better understanding of cardiovascular biology.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
99 |
11
|
Gratia M, Rodero MP, Conrad C, Bou Samra E, Maurin M, Rice GI, Duffy D, Revy P, Petit F, Dale RC, Crow YJ, Amor-Gueret M, Manel N. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. J Exp Med 2019; 216:1199-1213. [PMID: 30936263 PMCID: PMC6504208 DOI: 10.1084/jem.20181329] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/25/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Cellular innate immune sensors of DNA are essential for host defense against invading pathogens. However, the presence of self-DNA inside cells poses a risk of triggering unchecked immune responses. The mechanisms limiting induction of inflammation by self-DNA are poorly understood. BLM RecQ-like helicase is essential for genome integrity and is deficient in Bloom syndrome (BS), a rare genetic disease characterized by genome instability, accumulation of micronuclei, susceptibility to cancer, and immunodeficiency. Here, we show that BLM-deficient fibroblasts show constitutive up-regulation of inflammatory interferon-stimulated gene (ISG) expression, which is mediated by the cGAS-STING-IRF3 cytosolic DNA-sensing pathway. Increased DNA damage or down-regulation of the cytoplasmic exonuclease TREX1 enhances ISG expression in BLM-deficient fibroblasts. cGAS-containing cytoplasmic micronuclei are increased in BS cells. Finally, BS patients demonstrate elevated ISG expression in peripheral blood. These results reveal that BLM limits ISG induction, thus connecting DNA damage to cellular innate immune response, which may contribute to human pathogenesis.
Collapse
|
research-article |
6 |
87 |
12
|
Rodero MP, Poupel L, Loyher PL, Hamon P, Licata F, Pessel C, Hume DA, Combadière C, Boissonnas A. Immune surveillance of the lung by migrating tissue monocytes. eLife 2015; 4:e07847. [PMID: 26167653 PMCID: PMC4521583 DOI: 10.7554/elife.07847] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022] Open
Abstract
Monocytes are phagocytic effector cells in the blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells (DC). ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and DC, without differentiating into macrophages. DOI:http://dx.doi.org/10.7554/eLife.07847.001 White blood cells form part of the immune system, which protects the body against infectious diseases and other harmful agents. Some of these cells, including ‘mononuclear phagocytes’, can reside within different tissues of the body, such as the lungs. Other less specialized cells, called monocytes, circulate in the bloodstream. It had long been thought that once these monocytes had taken up residence in a tissue, they could only develop into tissue-resident phagocytes. Several researchers, however, recently reported that monocytes can also reside within tissues without becoming more specialized. Nevertheless, it remained unclear what these cells did when they were in these tissues. Rodero, Poupel, Loyher et al. investigated the activities of tissue-resident monocytes found in the lungs of mice. First, mice were genetically engineered to produce fluorescent markers that meant that their monocytes could be easily distinguished from the mononuclear phagocytes in their lungs when viewed under a microscope. Rodero, Poupel, Loyher et al. then showed that the monocytes and the other mononuclear phagocytes localized to different regions of the lung. Further experiments showed that these two groups of cells also moved around the lungs in different ways. The tissue-resident monocytes surveyed both the blood vessels and airways, while the other tissue-resident mononuclear phagocytes only surveyed the airways. These findings show that lung-resident monocytes perform a different role to those found in the bloodstream. The findings also open the way to improving our understanding of what tissue-resident monocytes do in other organs, and in healthy or diseased animals. DOI:http://dx.doi.org/10.7554/eLife.07847.002
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
83 |
13
|
Amsellem V, Abid S, Poupel L, Parpaleix A, Rodero M, Gary-Bobo G, Latiri M, Dubois-Rande JL, Lipskaia L, Combadiere C, Adnot S. Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine Systems in Hypoxic Pulmonary Hypertension. Am J Respir Cell Mol Biol 2017; 56:597-608. [PMID: 28125278 DOI: 10.1165/rcmb.2016-0201oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monocytes/macrophages are major effectors of lung inflammation associated with various forms of pulmonary hypertension (PH). Interactions between the CCL2/CCR2 and CX3CL1/CX3CR1 chemokine systems that guide phagocyte infiltration are incompletely understood. Our objective was to explore the individual and combined actions of CCL2/CCR2 and CX3CL1/CX3CR1 in hypoxia-induced PH in mice; particularly their roles in monocyte trafficking, macrophage polarization, and pulmonary vascular remodeling. The development of hypoxia-induced PH was associated with marked increases in lung levels of CX3CR1, CCR2, and their respective ligands, CX3CL1 and CCL2. Flow cytometry revealed that both inflammatory Ly6Chi and resident Ly6Clo monocyte subsets exhibited sustained increases in blood and a transient peak in lung tissue, and that lung perivascular and alveolar macrophage counts showed sustained elevations. CX3CR1-/- mice were protected against hypoxic PH compared with wild-type mice, whereas CCL2-/- mice and double CX3CR1-/-/CCL2-/- mice exhibited similar PH severity, as did wild-type mice. The protective effects of CX3CR1 deficiency occurred concomitantly with increases in lung monocyte and macrophage counts and with a change from M2 to M1 macrophage polarization that markedly diminished the ability of conditioned media to induce pulmonary artery smooth muscle cell (PA-SMC) proliferation, which was partly dependent on CX3CL1 secretion. Results in mice given the CX3CR1 inhibitor F1 were similar to those in CX3CR1-/- mice. In conclusion, CX3CR1 deficiency protects against hypoxia-induced PH by modulating monocyte recruitment, macrophage polarization, and PA-SMC cell proliferation. Targeting CX3CR1 may hold promise for treating PH.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
81 |
14
|
Rice GI, Park S, Gavazzi F, Adang LA, Ayuk LA, Van Eyck L, Seabra L, Barrea C, Battini R, Belot A, Berg S, Billette de Villemeur T, Bley AE, Blumkin L, Boespflug-Tanguy O, Briggs TA, Brimble E, Dale RC, Darin N, Debray FG, De Giorgis V, Denecke J, Doummar D, Drake Af Hagelsrum G, Eleftheriou D, Estienne M, Fazzi E, Feillet F, Galli J, Hartog N, Harvengt J, Heron B, Heron D, Kelly DA, Lev D, Levrat V, Livingston JH, Marti I, Mignot C, Mochel F, Nougues MC, Oppermann I, Pérez-Dueñas B, Popp B, Rodero MP, Rodriguez D, Saletti V, Sharpe C, Tonduti D, Vadlamani G, Van Haren K, Tomas Vila M, Vogt J, Wassmer E, Wiedemann A, Wilson CJ, Zerem A, Zweier C, Zuberi SM, Orcesi S, Vanderver AL, Hur S, Crow YJ. Genetic and phenotypic spectrum associated with IFIH1 gain-of-function. Hum Mutat 2020; 41:837-849. [PMID: 31898846 PMCID: PMC7457149 DOI: 10.1002/humu.23975] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 12/04/2022]
Abstract
IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi–Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
80 |
15
|
Rodero MP, Hodgson SS, Hollier B, Combadiere C, Khosrotehrani K. Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing. J Invest Dermatol 2012; 133:783-792. [PMID: 23235530 DOI: 10.1038/jid.2012.368] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macrophages are the main components of inflammation during skin wound healing. They are critical in wound closure and in excessive inflammation, resulting in defective healing observed in chronic wounds. Given the heterogeneity of macrophage phenotypes and functions, we here hypothesized that different subpopulations of macrophages would have different and sometimes opposing effects on wound healing. Using multimarker flow cytometry and RNA expression array analyses on macrophage subpopulations from wound granulation tissue, we identified a Ly6c(lo)MHCII(hi) "noninflammatory" subset that increased both in absolute number and proportion during normal wound healing and was missing in Ob/Ob and MYD88-/- models of delayed healing. We also identified IL17 as the main cytokine distinguishing this population from proinflammatory macrophages and demonstrated that inhibition of IL17 by blocking Ab or in IL17A-/- mice accelerated normal and delayed healing. These findings dissect the complexity of the role and activity of the macrophages during wound inflammation and may contribute to the development of therapeutic approaches to restore healing in chronic wounds.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
77 |
16
|
Dorgham K, Ghadiri A, Hermand P, Rodero M, Poupel L, Iga M, Hartley O, Gorochov G, Combadière C, Deterre P. An engineered CX3CR1 antagonist endowed with anti-inflammatory activity. J Leukoc Biol 2009; 86:903-11. [PMID: 19571253 DOI: 10.1189/jlb.0308158] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chemokines are mainly involved in the recruitment of leukocytes into tissues, a key feature of inflammation. Through its unique receptor CX3CR1, the chemokine CX3CL1 participates in diverse inflammatory processes including arterial atherosclerosis and cerebral or renal inflammation. Using a phage display strategy, we engineered a hCX3CL1 analog (named F1) with a modified N terminus. F1 bound specifically to cells expressing hCX3CR1 and had a K(d) value close to that of native CX3CL1. F1 was not a signaling molecule and did not induce chemotaxis, calcium flux, or CX3CR1 internalization. However, it potently inhibited the CX3CL1-induced calcium flux and chemotaxis in CX3CR1-expressing primary cells of human and murine origin with an IC(50) of 5-50 nM. It also efficiently inhibited the cell adhesion mediated by the CX3CL1-CX3CR1 axis. Finally, in a noninfectious murine model of peritonitis, F1 strongly inhibited macrophage accumulation. These data reveal a prototype molecule that is the first bona fide antagonist of hCX3CR1. This molecule could be used as a lead compound for the development of a novel class of anti-inflammatory substances that act by inhibiting CX3CR1.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
62 |
17
|
Rodero M, Marie Y, Coudert M, Blondet E, Mokhtari K, Rousseau A, Raoul W, Carpentier C, Sennlaub F, Deterre P, Delattre JY, Debré P, Sanson M, Combadière C. Polymorphism in the microglial cell-mobilizing CX3CR1 gene is associated with survival in patients with glioblastoma. J Clin Oncol 2008; 26:5957-64. [PMID: 19001328 DOI: 10.1200/jco.2008.17.2833] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Few reliable prognostic molecular markers have been characterized for glioblastoma multiforme (GBM), considered the deadliest of human cancers. We hypothesized that genetic polymorphisms in chemokines and their receptors, which together control microglial cell mobilization, may influence survival. METHODS Distributions of one polymorphism of the chemokine CCL2 (-2518A<G) and two polymorphisms of the chemokine receptor CX3CR1 (termed V249I and T280M) were determined in a prospective series of 230 patients with GBM and correlated with overall survival. The replication study used data from a retrospective series of 106 additional patients with GBM. The extent of microglial cell infiltration was assessed by immunochemistry in 102 tumor specimens. RESULTS Survival analysis showed that the common CX3CR1-I249 allele was an independent favorable prognostic factor in both groups, prospective and retrospective, with hazard ratios of 0.619 (95% CI, 0.451 to 0.850; P = .0031) and 0.354 (95% CI, 0.217 to 0.580; P < .0001), respectively. This beneficial effect was observed only in patients who underwent surgery. Patients with only this CX3CR1-I249 allele had a substantially longer mean survival (23.5 v 14.1 months; P < .0001). The CCL2-2518G allele was not associated with patient survival. Immunohistochemical analysis of primary tumor biopsies showed that the common CX3CR1 variant allele was associated with reduced microglial cell infiltration. CONCLUSION The common CX3CR1 allelic variant was associated with increased GBM survival and with reduced tumor infiltration by microglia. The CX3CR1 polymorphism does not seem to be a risk factor for GBM but may prove useful in predicting survival.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
60 |
18
|
Lepelley A, Della Mina E, Van Nieuwenhove E, Waumans L, Fraitag S, Rice GI, Dhir A, Frémond ML, Rodero MP, Seabra L, Carter E, Bodemer C, Buhas D, Callewaert B, de Lonlay P, De Somer L, Dyment DA, Faes F, Grove L, Holden S, Hully M, Kurian MA, McMillan HJ, Suetens K, Tyynismaa H, Chhun S, Wai T, Wouters C, Bader-Meunier B, Crow YJ. Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. J Exp Med 2021; 218:e20201560. [PMID: 34387651 PMCID: PMC8374862 DOI: 10.1084/jem.20201560] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) has been suggested to drive immune system activation, but the induction of interferon signaling by mtDNA has not been demonstrated in a Mendelian mitochondrial disease. We initially ascertained two patients, one with a purely neurological phenotype and one with features suggestive of systemic sclerosis in a syndromic context, and found them both to demonstrate enhanced interferon-stimulated gene (ISG) expression in blood. We determined each to harbor a previously described de novo dominant-negative heterozygous mutation in ATAD3A, encoding ATPase family AAA domain-containing protein 3A (ATAD3A). We identified five further patients with mutations in ATAD3A and recorded up-regulated ISG expression and interferon α protein in four of them. Knockdown of ATAD3A in THP-1 cells resulted in increased interferon signaling, mediated by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Enhanced interferon signaling was abrogated in THP-1 cells and patient fibroblasts depleted of mtDNA. Thus, mutations in the mitochondrial membrane protein ATAD3A define a novel type I interferonopathy.
Collapse
|
Case Reports |
4 |
59 |
19
|
Guedj M, Bourillon A, Combadières C, Rodero M, Dieudé P, Descamps V, Dupin N, Wolkenstein P, Aegerter P, Lebbe C, Basset-Seguin N, Prum B, Saiag P, Grandchamp B, Soufir N. Variants of the MATP/SLC45A2 gene are protective for melanoma in the French population. Hum Mutat 2008; 29:1154-60. [PMID: 18683857 DOI: 10.1002/humu.20823] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we investigated whether variants in three key pigmentation genes-MC1R, MATP/SLC45A2, and OCA2--were involved in melanoma predisposition. A cohort comprising 1,019 melanoma patients (MelanCohort) and 1,466 Caucasian controls without skin cancers were studied. A total of 10 polymorphisms, including five functional MC1R alleles (p.Asp84Glu, p.Arg142His, p.Arg151Cys, p.Arg160Trp, and p.Asp294His), two nonsynonymous SLC45A2 variants (p.Phe374Leu and p.Glu272Lys), and three intronic OCA2 variants previously shown to be strongly associated with eye color (rs7495174 T>C, rs4778241 G>T, and rs4778138 T>C) were genotyped. As expected, MC1R variants were closely associated with melanoma risk (P value <2.20.10(-16); odds ratio [OR]=2.29 [95% confidence interval, CI=1.85-2.82 and OR=3.3 [95% CI=2.00-5.45], for the presence of one or two variants, respectively). Interestingly, the SLC45A2 variant p.Phe374Leu was significantly and strongly protective for melanoma (P-value=2.12.10(-15); OR=0.35 [95% CI=0.26-0.46] and OR=0.32 [95% CI=0.24-0.43], considering the genotypes Phe/Leu and Leu/Leu, respectively). MC1R and SLC45A2 variants had additive effects on melanoma risk, and after adjusting for pigmentation characteristics, the risk was persistent, even though both genes had a strong impact on pigmentation. Future studies may show whether genetic information could provide a useful complement to physical examination in predicting melanoma risk.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
56 |
20
|
Voyer TL, Gitiaux C, Authier FJ, Bodemer C, Melki I, Quartier P, Aeschlimann F, Isapof A, Herbeuval JP, Bondet V, Charuel JL, Frémond ML, Duffy D, Rodero MP, Bader-Meunier B. JAK inhibitors are effective in a subset of patients with juvenile dermatomyositis: a monocentric retrospective study. Rheumatology (Oxford) 2021; 60:5801-5808. [PMID: 33576769 DOI: 10.1093/rheumatology/keab116] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of JAK inhibitors (JAKi) in juvenile dermatomyositis (JDM). METHODS We conducted a single-center retrospective study of patients with JDM treated by JAKi with a follow-up of at least 6 months. Proportion of clinically inactive disease (CID) within six months of JAKi initiation was evaluated using PRINTO criteria and skin Disease Activity Score. Serum IFN-α concentration was measured by SIMOA assay. RESULTS Nine refractory and one new-onset patients with JDM treated with ruxolitinib (n = 7) or baricitinib (n = 3) were included. The main indications for treatment were refractory muscle involvement (n = 8) and ulcerative skin disease (n = 2). CID was achieved in 5/10 patients (2/2 anti-MDA5, 3/4 anti-NXP2, 0/3 anti-TIF1γ positive patients) within six months of JAKi introduction. All responders could withdraw plasmatic exchange, immunoadsorption and other immunosuppressive drugs. The mean daily steroid dose decreased from 1.1 mg/Kg (range 0.35-2 mg/Kg/d) to 0.1 (range, 0-0.3, p= 0.008) in patients achieving CID, and was stopped in two. Serum IFN-α concentrations were elevated in all patients at the time of treatment initiation and normalized in both responder and non-responder. A muscle biopsy repeated in one patient 26 months after the initiation of JAKi, showed a complete restoration of muscle endomysial microvascular bed. Herpes zoster and skin abscesses developed in three and two patients, respectively. CONCLUSION JAKis resulted in a CID in a subset of new-onset or refractory patients with JDM and may dramatically reverse severe muscle vasculopathy. Overall tolerance was good except for a high rate of herpes zoster infection.
Collapse
|
Journal Article |
4 |
50 |
21
|
Uettwiller F, Sarrabay G, Rodero MP, Rice GI, Lagrue E, Marot Y, Deiva K, Touitou I, Crow YJ, Quartier P. ADA2 deficiency: case report of a new phenotype and novel mutation in two sisters. RMD Open 2016; 2:e000236. [PMID: 27252897 PMCID: PMC4879337 DOI: 10.1136/rmdopen-2015-000236] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 11/03/2022] Open
Abstract
The objective of this paper is to: describe the phenotype compound heterozygote for mutations in CECR1 in two children. We describe the clinical and immunological phenotype, including the assessment of ADA2 activity, cytokine expression, interferon-stimulated and neutrophil-stimulated gene signatures, and the results of CECR1 sequencing. The first patient presented with intermittent fever, cutaneous vasculitis, myalgia and muscle inflammation on MRI leading to a provisional diagnosis of periarteritis nodosa. Subsequently, two cerebral lacunar lesions were identified following a brain stroke. Clinical features improved on anti-tumour necrosis factor therapy. The first patient's sister demonstrated early-onset, long-lasting anaemia with mild biological inflammation; at the ages of 3 and 5 years, she had presented 2 acute, transient neurological events with lacunar lesions on MRI. CECR1 sequencing identified both sisters to be compound heterozygous for a p.Tyr453Cys mutation and a previously undescribed deletion of exon 7. ADA2 activity was reduced by 50%. Neutrophil-stimulated genes were not overexpressed, but interferon-stimulated genes were. The expression of a panel of other cytokine transcripts was not significantly altered. In conclusion, searching for CECR1 mutation or assessing ADA2 activity should be considered in patients with an atypical presentation of inflammatory disease.
Collapse
|
Journal Article |
9 |
46 |
22
|
Rodero MP, Licata F, Poupel L, Hamon P, Khosrotehrani K, Combadiere C, Boissonnas A. In vivo imaging reveals a pioneer wave of monocyte recruitment into mouse skin wounds. PLoS One 2014; 9:e108212. [PMID: 25272047 PMCID: PMC4182700 DOI: 10.1371/journal.pone.0108212] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/21/2014] [Indexed: 02/02/2023] Open
Abstract
The cells of the mononuclear phagocyte system are essential for the correct healing of adult skin wounds, but their specific functions remain ill-defined. The absence of granulation tissue immediately after skin injury makes it challenging to study the role of mononuclear phagocytes at the initiation of this inflammatory stage. To study their recruitment and migratory behavior within the wound bed, we developed a new model for real-time in vivo imaging of the wound, using transgenic mice that express green and cyan fluorescent proteins and specifically target monocytes. Within hours after the scalp injury, monocytes invaded the wound bed. The complete abrogation of this infiltration in monocyte-deficient CCR2−/− mice argues for the involvement of classical monocytes in this process. Monocyte infiltration unexpectedly occurred as early as neutrophil recruitment did and resulted from active release from the bloodstream toward the matrix through microhemorrhages rather than transendothelial migration. Monocytes randomly scouted around the wound bed, progressively slowed down, and stopped. Our approach identified and characterized a rapid and earlier than expected wave of monocyte infiltration and provides a novel framework for investigating the role of these cells during early stages of wound healing.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
43 |
23
|
Cuéllar C, Daschner A, Valls A, De Frutos C, Fernández-Fígares V, Anadón AM, Rodríguez E, Gárate T, Rodero M, Ubeira FM. Ani s 1 and Ani s 7 recombinant allergens are able to differentiate distinct Anisakis simplex-associated allergic clinical disorders. Arch Dermatol Res 2012; 304:283-8. [PMID: 22249742 DOI: 10.1007/s00403-012-1206-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/14/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
Diagnosis in gastro-allergic anisakiasis (GAA) is straightforward, when clinical history is combined with further allergological evaluation of specific IgE by means of skin prick test and serum specific IgE. In Anisakis simplex sensitisation associated chronic urticaria (CU+), clinical evaluation of possible previous parasitism is difficult, and positive serum specific IgE could be due to cross-reactivity or other unknown factors. In this study, we evaluated the association between IgE seropositivity to the recombinant allergens Ani s 1 and Ani s 7 and several A. simplex-associated allergic disorders. Twenty-eight patients with GAA and 40 patients with CU+ were studied and their IgE responses were compared with a control group composed of patients with chronic urticaria not sensitized to A. simplex (CU-) according to the skin prick test, as well as a group of 15 healthy subjects not referring urticaria or currently A. simplex associated symptoms. 82.1% of GAA patients and 42.5% of CU+ patients were positive for Ani s 1 (P < 0.001), while the Ani s 7 allergen was recognized by 92.9 and 92.5% of sera from patients with GAA and CU+, respectively. The combined positivity obtained for both allergens reached 100% in GAA, and 95% in CU+. IgE determinations to Ani s 1 and Ani s 7 allergens are useful to diagnose the Anisakis infections and to differentiate among several A. simplex-associated allergic disorders. The IgE responses to Ani s 1 are mainly associated with GAA, while this molecule cannot be considered a major allergen in CU+ patients.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
35 |
24
|
Smith N, Rodero MP, Bekaddour N, Bondet V, Ruiz-Blanco YB, Harms M, Mayer B, Bader-Meunier B, Quartier P, Bodemer C, Baudouin V, Dieudonné Y, Kirchhoff F, Sanchez Garcia E, Charbit B, Leboulanger N, Jahrsdörfer B, Richard Y, Korganow AS, Münch J, Nisole S, Duffy D, Herbeuval JP. Control of TLR7-mediated type I IFN signaling in pDCs through CXCR4 engagement-A new target for lupus treatment. SCIENCE ADVANCES 2019; 5:eaav9019. [PMID: 31309143 PMCID: PMC6620093 DOI: 10.1126/sciadv.aav9019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Type I interferons are highly potent cytokines essential for self-protection against tumors and infections. Deregulations of type I interferon signaling are associated with multiple diseases that require novel therapeutic options. Here, we identified the small molecule, IT1t, a previously described CXCR4 ligand, as a highly potent inhibitor of Toll-like receptor 7 (TLR7)-mediated inflammation. IT1t inhibits chemical (R848) and natural (HIV) TLR7-mediated inflammation in purified human plasmacytoid dendritic cells from blood and human tonsils. In a TLR7-dependent lupus-like model, in vivo treatment of mice with IT1t drives drastic reduction of both systemic inflammation and anti-double-stranded DNA autoantibodies and prevents glomerulonephritis. Furthermore, IT1t controls inflammation, including interferon α secretion, in resting and stimulated cells from patients with systemic lupus erythematosus. Our findings highlight a groundbreaking immunoregulatory property of CXCR4 signaling that opens new therapeutic perspectives in inflammatory settings and autoimmune diseases.
Collapse
|
research-article |
6 |
35 |
25
|
Gitiaux C, Latroche C, Weiss‐Gayet M, Rodero MP, Duffy D, Bader‐Meunier B, Glorion C, Nusbaum P, Bodemer C, Mouchiroud G, Chelly J, Germain S, Desguerre I, Chazaud B. Myogenic Progenitor Cells Exhibit Type I Interferon–Driven Proangiogenic Properties and Molecular Signature During Juvenile Dermatomyositis. Arthritis Rheumatol 2017; 70:134-145. [DOI: 10.1002/art.40328] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
|
|
8 |
34 |