1
|
Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5:434-8. [PMID: 10202935 DOI: 10.1038/7434] [Citation(s) in RCA: 1366] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial progenitor cells (EPCs) have been isolated from circulating mononuclear cells in human peripheral blood and shown to be incorporated into foci of neovascularization, consistent with postnatal vasculogenesis. We determined whether endogenous stimuli (tissue ischemia) and exogenous cytokine therapy (granulocyte macrophage-colony stimulating factor, GM-CSF) mobilize EPCs and thereby contribute to neovascularization of ischemic tissues. The development of regional ischemia in both mice and rabbits increased the frequency of circulating EPCs. In mice, the effect of ischemia-induced EPC mobilization was demonstrated by enhanced ocular neovascularization after cornea micropocket surgery in mice with hindlimb ischemia compared with that in non-ischemic control mice. In rabbits with hindlimb ischemia, circulating EPCs were further augmented after pretreatment with GM-CSF, with a corresponding improvement in hindlimb neovascularization. There was direct evidence that EPCs that contributed to enhanced corneal neovascularization were specifically mobilized from the bone marrow in response to ischemia and GM-CSF in mice transplanted with bone marrow from transgenic donors expressing beta-galactosidase transcriptionally regulated by the endothelial cell-specific Tie-2 promoter. These findings indicate that circulating EPCs are mobilized endogenously in response to tissue ischemia or exogenously by cytokine therapy and thereby augment neovascularization of ischemic tissues.
Collapse
|
|
26 |
1366 |
2
|
Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000; 97:3422-7. [PMID: 10725398 PMCID: PMC16255 DOI: 10.1073/pnas.97.7.3422] [Citation(s) in RCA: 1099] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Animal studies and preliminary results in humans suggest that lower extremity and myocardial ischemia can be attenuated by treatment with angiogenic cytokines. The resident population of endothelial cells that is competent to respond to an available level of angiogenic growth factors, however, may potentially limit the extent to which cytokine supplementation enhances tissue neovascularization. Accordingly, we transplanted human endothelial progenitor cells (hEPCs) to athymic nude mice with hindlimb ischemia. Blood flow recovery and capillary density in the ischemic hindlimb were markedly improved, and the rate of limb loss was significantly reduced. Ex vivo expanded hEPCs may thus have utility as a "supply-side" strategy for therapeutic neovascularization.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
25 |
1099 |
3
|
Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 1998; 101:2567-78. [PMID: 9616228 PMCID: PMC508846 DOI: 10.1172/jci1560] [Citation(s) in RCA: 925] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.
Collapse
|
research-article |
27 |
925 |
4
|
Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994; 93:662-70. [PMID: 7509344 PMCID: PMC293894 DOI: 10.1172/jci117018] [Citation(s) in RCA: 772] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a heparin-binding, endothelial cell-specific mitogen. Previous studies have suggested that VEGF is a regulator of naturally occurring physiologic and pathologic angiogenesis. In this study we investigated the hypothesis that the angiogenic potential of VEGF is sufficient to constitute a therapeutic effect. The soluble 165-amino acid isoform of VEGF was administered as a single intra-arterial bolus to the internal iliac artery of rabbits in which the ipsilateral femoral artery was excised to induce severe, unilateral hind limb ischemia. Doses of 500-1,000 micrograms of VEGF produced statistically significant augmentation of collateral vessel development by angiography as well as the number of capillaries by histology; consequent amelioration of the hemodynamic deficit in the ischemic limb was significantly greater in animals receiving VEGF than in nontreated controls (calf blood pressure ratio, 0.75 +/- 0.14 vs. 0.48 +/- 0.19, P < 0.05). Serial angiograms disclosed progressive linear extension of the collateral artery of origin (stem artery) to the distal point of parent vessel (reentry artery) reconstitution in seven of nine VEGF-treated animals. These findings establish proof of principle for the concept that the angiogenic activity of VEGF is sufficiently potent to achieve therapeutic benefit. Such a strategy might ultimately be applicable to patients with severe limb ischemia secondary to arterial occlusive disease.
Collapse
|
research-article |
31 |
772 |
5
|
Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103:634-7. [PMID: 11156872 DOI: 10.1161/01.cir.103.5.634] [Citation(s) in RCA: 746] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We investigated the therapeutic potential of ex vivo expanded endothelial progenitor cells (EPCs) for myocardial neovascularization. METHODS AND RESULTS Peripheral blood mononuclear cells obtained from healthy human adults were cultured in EPC medium and harvested 7 days later. Myocardial ischemia was induced by ligating the left anterior descending coronary artery in male Hsd:RH-rnu (athymic nude) rats. A total of 10(6) EPCs labeled with 1,1'-dioctadecyl-1 to 3,3,3',3'-tetramethylindocarbocyanine perchlorate were injected intravenously 3 hours after the induction of myocardial ischemia. Seven days later, fluorescence-conjugated Bandeiraea simplicifolia lectin I was administered intravenously, and the rats were immediately killed. Fluorescence microscopy revealed that transplanted EPCs accumulated in the ischemic area and incorporated into foci of myocardial neovascularization. To determine the impact on left ventricular function, 5 rats (EPC group) were injected intravenously with 10(6) EPCs 3 hours after ischemia; 5 other rats (control group) received culture media. Echocardiography, performed just before and 28 days after ischemia, disclosed ventricular dimensions that were significantly smaller and fractional shortening that was significantly greater in the EPC group than in the control group by day 28. Regional wall motion was better preserved in the EPC group. After euthanization on day 28, necropsy examination disclosed that capillary density was significantly greater in the EPC group than in the control group. Moreover, the extent of left ventricular scarring was significantly less in rats receiving EPCs than in controls. Immunohistochemistry revealed capillaries that were positive for human-specific endothelial cells. CONCLUSIONS Ex vivo expanded EPCs incorporate into foci of myocardial neovascularization and have a favorable impact on the preservation of left ventricular function.
Collapse
|
|
24 |
746 |
6
|
Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998; 97:1114-23. [PMID: 9537336 DOI: 10.1161/01.cir.97.12.1114] [Citation(s) in RCA: 688] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preclinical studies have indicated that angiogenic growth factors can stimulate the development of collateral arteries, a concept called "therapeutic angiogenesis." The objectives of this phase 1 clinical trial were (1) to document the safety and feasibility of intramuscular gene transfer by use of naked plasmid DNA encoding an endothelial cell mitogen and (2) to analyze potential therapeutic benefits in patients with critical limb ischemia. METHODS AND RESULTS Gene transfer was performed in 10 limbs of 9 patients with nonhealing ischemic ulcers (n=7/10) and/or rest pain (n=10/10) due to peripheral arterial disease. A total dose of 4000 microg of naked plasmid DNA encoding the 165-amino-acid isoform of human vascular endothelial growth factor (phVEGF165) was injected directly into the muscles of the ischemic limb. Gene expression was documented by a transient increase in serum levels of VEGF monitored by ELISA. The ankle-brachial index improved significantly (0.33+/-0.05 to 0.48+/-0.03, P=.02); newly visible collateral blood vessels were directly documented by contrast angiography in 7 limbs; and magnetic resonance angiography showed qualitative evidence of improved distal flow in 8 limbs. Ischemic ulcers healed or markedly improved in 4 of 7 limbs, including successful limb salvage in 3 patients recommended for below-knee amputation. Tissue specimens obtained from an amputee 10 weeks after gene therapy showed foci of proliferating endothelial cells by immunohistochemistry. PCR and Southern blot analyses indicated persistence of small amounts of plasmid DNA. Complications were limited to transient lower-extremity edema in 6 patients, consistent with VEGF enhancement of vascular permeability. CONCLUSIONS These findings may be cautiously interpreted to indicate that intramuscular injection of naked plasmid DNA achieves constitutive overexpression of VEGF sufficient to induce therapeutic angiogenesis in selected patients with critical limb ischemia.
Collapse
|
|
27 |
688 |
7
|
Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM. Age-dependent impairment of angiogenesis. Circulation 1999; 99:111-20. [PMID: 9884387 DOI: 10.1161/01.cir.99.1.111] [Citation(s) in RCA: 503] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The effect of aging on angiogenesis in ischemic vascular disease has not been studied. Accordingly, we investigated the hypothesis that angiogenesis is impaired as a function of age. METHODS AND RESULTS Forty days after the resection of 1 femoral artery, collateral vessel development was significantly impaired in old (aged 4 to 5 years; n=7) versus young (aged 6 to 8 months; n=6) New Zealand White (NZW) rabbits on the basis of reduced hindlimb perfusion (ischemic: normal blood pressure ratio=0.58+/-0.05 versus 0.77+/-0.06; P<0.005), reduced number of angiographically visible vessels (angiographic score=0.48+/-0.05 versus 0.70+/-0.05; P<0.01), and lower capillary density in the ischemic limb (130.3+/-5.8/mm2 versus 171.4+/-9.5/mm2; P<0.001). Angiogenesis was also impaired in old (aged 2 years) versus young (aged 12 weeks) mice as shown by reduced hindlimb perfusion (measured by laser Doppler imaging) and lower capillary density (353.0+/-14.3/mm2 versus 713.3+/-63.4/mm2; P<0.01). Impaired angiogenesis in old animals was the result of impaired endothelial function (lower basal NO release and decreased vasodilation in response to acetylcholine) and a lower expression of vascular endothelial growth factor (VEGF) in ischemic tissues (by Northern blot, Western blot, and immunohistochemistry). When recombinant VEGF protein was administered to young and old rabbits, both groups exhibited a significant and similar increase in blood pressure ratio, angiographic score, and capillary density. CONCLUSIONS Angiogenesis responsible for collateral development in limb ischemia is impaired with aging; responsible mechanisms include age-related endothelial dysfunction and reduced VEGF expression. Advanced age, however, does not preclude augmentation of collateral vessel development in response to exogenous angiogenic cytokines.
Collapse
|
|
26 |
503 |
8
|
Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, Shapiro R, Taylor FR, Baker DP, Asahara T, Isner JM. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 2001; 7:706-11. [PMID: 11385508 DOI: 10.1038/89083] [Citation(s) in RCA: 475] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sonic hedgehog (Shh) is a prototypical morphogen known to regulate epithelial/mesenchymal interactions during embryonic development. We found that the hedgehog-signaling pathway is present in adult cardiovascular tissues and can be activated in vivo. Shh was able to induce robust angiogenesis, characterized by distinct large-diameter vessels. Shh also augmented blood-flow recovery and limb salvage following operatively induced hind-limb ischemia in aged mice. In vitro, Shh had no effect on endothelial-cell migration or proliferation; instead, it induced expression of two families of angiogenic cytokines, including all three vascular endothelial growth factor-1 isoforms and angiopoietins-1 and -2 from interstitial mesenchymal cells. These findings reveal a novel role for Shh as an indirect angiogenic factor regulating expression of multiple angiogenic cytokines and indicate that Shh might have potential therapeutic use for ischemic disorders.
Collapse
|
|
24 |
475 |
9
|
Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 1998; 83:233-40. [PMID: 9710115 DOI: 10.1161/01.res.83.3.233] [Citation(s) in RCA: 465] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Angiopoietin-1 (Ang1) has been recently identified as the major physiological ligand for the tyrosine kinase receptor Tie2 and assigned responsibility for recruiting and sustaining periendothelial support cells. Angiopoietin-2 (Ang2) was found to disrupt blood vessel formation in the developing embryo by antagonizing the effects of Ang1 and Tie2 and was thus considered to represent a natural Ang1/Tie2 inhibitor. In vivo effects of either angiopoietin on postnatal neovascularization, however, have not been previously described. Accordingly, we used the cornea micropocket assay of neovascularization to investigate the impact of angiopoietins on neovascularization in vivo. Neither Ang1 nor Ang2 alone promoted neovascularization. Pellets containing vascular endothelial growth factor (VEGF) alone induced corneal neovascularity extending from the limbus across the cornea. Addition of Ang 1 to VEGF (Ang1+VEGF) produced an increase in macroscopically evident perfusion of the corneal neovasculature without affecting macroscopic measurements of length (0.58+/-0.03 mm) or circumferential neovascularity (136+/-10 degrees). In contrast, pellets containing Ang2+VEGF promoted significantly longer (0.67+/-0.05 mm) and more circumferential (160+/-15degrees) neovascularity than VEGF alone or Ang1+VEGF (P<0.05). Excess soluble Tie2 receptor (sTie2-Fc) precluded modulation of VEGF-induced neovascularization by both Ang2 and Ang1. Fluorescent microscopic findings demonstrated enhanced capillary density (fluorescence intensity, 2.55+/-0.23 e+9 versus 1.23+/-0.17 e+9, P<0.01) and increased luminal diameter of the basal limbus artery (39.0+/-2.8 versus 27.9+/-1.3 microm, P<0.01) for Ang1+VEGF compared with VEGF alone. In contrast to Ang1+VEGF, Ang2+VEGF produced longer vessels and, at the tip of the developing capillaries, frequent isolated sprouting cells. In the case of Ang2+VEGF, however, luminal diameter of the basal limbus artery was not increased (26.7+/-1.9 versus 27.9+/-1.3, P=NS). These findings constitute what is to our knowledge the first direct demonstration of postnatal bioactivity associated with either angiopoietin. In particular, these results indicate that angiopoietins may potentiate the effects of other angiogenic cytokines. Moreover, these findings provide in vivo evidence that Ang1 promotes vascular network maturation, whereas Ang2 works to initiate neovascularization.
Collapse
|
|
27 |
465 |
10
|
Abstract
BACKGROUND Apoptosis has been recognized in normal, including rapidly proliferating, cell populations and is inferred to be potentially responsible for the maintenance of stable cell numbers in tissues with various degrees of proliferative activity. Previous studies performed in rats indicated that despite the persistence of a relatively high level of injury-induced proliferative activity, total arterial smooth muscle content at 12 weeks remained unchanged from that measured at 2 weeks, suggesting that accrual of vascular smooth muscle cells is mitigated by cell death. The extent to which apoptosis may be observed in human atherosclerosis and/or restenosis, however, has not been previously established. METHODS AND RESULTS We performed immunohistochemical studies on 56 specimens retrieved from patients undergoing directional atherectomy for primary atherosclerotic lesions or recurrent arterial narrowing after percutaneous revascularization (restenosis). Immunohistochemical staining disclosed evidence of apoptosis in 35 (63%) of the 56 specimens studied. When present, immunohistochemical evidence of apoptosis was typically limited to < 2% of cells in the specimen. The finding of apoptosis, however, was not distributed equally among four groups of specimens studied. Specimens retrieved from patients with restenosis were more frequently observed to contain foci of apoptosis than specimens retrieved from patients with primary atherosclerotic lesions. Among 14 peripheral arterial specimens from patients with restenosis, 13 (93%) contained foci of apoptosis; in contrast, apoptosis was observed in only 6 (43%) of 14 peripheral specimens from patients with primary lesions (P = .0046). Among coronary arterial specimens, apoptosis was observed in 12 (86%) of 14 specimens from patients with restenosis versus 6 (29%) of 14 specimens from patients with primary obstructions (P < .0075). CONCLUSIONS Apoptosis is a feature of human vascular pathology, including restenotic lesions and, to a lesser extent, primary atherosclerotic lesions. The findings of the present study suggest that apoptosis may modulate the cellularity of lesions that produce human vascular obstruction, particularly those with evidence of more extensive proliferative activity.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis
- Arteriosclerosis/pathology
- Arteriosclerosis/physiopathology
- Arteriosclerosis/surgery
- Atherectomy
- Blood Vessels/chemistry
- Blood Vessels/pathology
- Blood Vessels/physiology
- Constriction, Pathologic/pathology
- Constriction, Pathologic/physiopathology
- Constriction, Pathologic/surgery
- Coronary Artery Disease/pathology
- Coronary Artery Disease/physiopathology
- Coronary Artery Disease/surgery
- Female
- GTP-Binding Proteins/analysis
- Humans
- Immunohistochemistry
- Male
- Microscopy, Electron
- Middle Aged
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- Proliferating Cell Nuclear Antigen/analysis
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins c-bcl-2
- Recurrence
- Tumor Suppressor Protein p53/analysis
Collapse
|
|
30 |
373 |
11
|
Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:355-63. [PMID: 10027394 PMCID: PMC1850015 DOI: 10.1016/s0002-9440(10)65282-0] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/1998] [Indexed: 11/19/2022]
Abstract
Diabetes is a major risk factor for coronary and peripheral artery diseases. Although diabetic patients often present with advanced forms of these diseases, it is not known whether the compensatory mechanisms to vascular ischemia are affected in this condition. Accordingly, we sought to determine whether diabetes could: 1) impair the development of new collateral vessel formation in response to tissue ischemia and 2) inhibit cytokine-induced therapeutic neovascularization. Hindlimb ischemia was created by femoral artery ligation in nonobese diabetic mice (NOD mice, n = 20) and in control C57 mice (n = 20). Hindlimb perfusion was evaluated by serial laser Doppler studies after the surgery. In NOD mice, measurement of the Doppler flow ratio between the ischemic and the normal limb indicated that restoration of perfusion in the ischemic hindlimb was significantly impaired. At day 14 after surgery, Doppler flow ratio in the NOD mice was 0.49+/-0.04 versus 0.73+/-0.06 for the C57 mice (P< or =0.005). This impairment in blood flow recovery persisted throughout the duration of the study with Doppler flow ratio values at day 35 of 0.50+/-0.05 versus 0.90+/-0.07 in the NOD and C57 mice, respectively (P< or =0.001). CD31 immunostaining confirmed the laser Doppler data by showing a significant reduction in capillary density in the NOD mice at 35 days after surgery (302+/-4 capillaries/mm2 versus 782+/-78 in C57 mice (P< or =0.005). The reduction in neovascularization in the NOD mice was the result of a lower level of vascular endothelial growth factor (VEGF) in the ischemic tissues, as assessed by Northern blot, Western blot and immunohistochemistry. The central role of VEGF was confirmed by showing that normal levels of neovascularization (compared with C57) could be achieved in NOD mice that had been supplemented for this growth factor via intramuscular injection of an adenoviral vector encoding for VEGF. We conclude that 1) diabetes impairs endogenous neovascularization of ischemic tissues; 2) the impairment in new blood vessel formation results from reduced expression of VEGF; and 3) cytokine supplementation achieved by intramuscular adeno-VEGF gene transfer restores neovascularization in a mouse model of diabetes.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Genetic Therapy
- Genetic Vectors
- Hindlimb/blood supply
- Hindlimb/pathology
- Immunoenzyme Techniques
- Injections, Intramuscular
- Ischemia/pathology
- Ischemia/physiopathology
- Ischemia/therapy
- Laser-Doppler Flowmetry
- Lymphokines/genetics
- Lymphokines/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/therapy
- RNA, Messenger/biosynthesis
- Regional Blood Flow
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
|
research-article |
26 |
371 |
12
|
Namiki A, Brogi E, Kearney M, Kim EA, Wu T, Couffinhal T, Varticovski L, Isner JM. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 1995; 270:31189-95. [PMID: 8537383 DOI: 10.1074/jbc.270.52.31189] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Smooth muscle cells, macrophages, glial cells, keratinocytes, and transformed cells have been established as synthesis sites for vascular endothelial growth factor (VEGF). The modulating effects of VEGF are essentially limited to endothelial cells (ECs), the only cell type consistently shown to express VEGF receptors. VEGF has thus been considered to act exclusively via a paracrine pathway. We sought to determine whether the role of human ECs might, under selected conditions, extend beyond that of a target to involve contingency synthesis of VEGF. In both unstimulated human umbilical vein ECs (HUVECs) and human derma-derived microvascular ECs (HMECs), Northern analysis detected no VEGF transcripts. Phorbol-12-myristate 13-acetate (10(-7) M) treatment, however, induced VEGF mRNA expression in both HUVECs and HMECs, peaking at 3 and 6 h, respectively, and returning to undetectable levels by 12 h. In vitro exposure of HUVECs to a hypoxic environment (pO2 = 35 mm of mercury) for 12, 24, and 48 h and exposure of HMECs for 6, 12, 24, and 48 h induced VEGF mRNA in a time-dependent fashion. Re-exposure to normoxia (pO2 = 150 mm of mercury) for 24 h after 24 h of hypoxia returned VEGF mRNA transcripts to undetectable levels in HUVECs. Cobalt chloride and nickel chloride treatment each induced VEGF mRNA in ECs. Cycloheximide treatment further augmented expression of VEGF mRNA induced by cobalt chloride, nickel chloride, and hypoxia in HUVECs. VEGF protein production in hypoxia HUVECs was demonstrated immunohistochemically. Conditioned media from hypoxic HUVECs caused a 2-fold increase in the incorporation of tritiated thymidine. Finally, immune precipitates of anti-KDR probed with anti-Tyr(P) antibodies demonstrated evidence of receptor autophosphorylation in hypoxic but not normoxic HUVECs. These findings thus establish the potential for an autocrine pathway that may augment and/or amplify the paracrine effects of VEGF in stimulating angiogenesis.
Collapse
|
|
30 |
344 |
13
|
Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll KH. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 2008; 17:4398-417. [PMID: 18761619 DOI: 10.1111/j.1365-294x.2008.03899.x] [Citation(s) in RCA: 328] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth's biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1-4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesic-adapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights the opportunities that development of arid conditions provides for rapid and diverse evolutionary radiations, and re-enforces the emerging view that Pleistocene environmental change can have diverse impacts on genetic structure and diversity in different biomes. There is a clear need for more detailed and targeted phylogeographical studies of Australia's arid biota and we suggest a framework and a set of a priori hypotheses by which to proceed.
Collapse
|
Review |
17 |
328 |
14
|
Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation 1995; 91:2125-31. [PMID: 7697840 DOI: 10.1161/01.cir.91.8.2125] [Citation(s) in RCA: 321] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Acute coronary ischemia is usually initiated by rupture of atherosclerotic plaque, leading to intracoronary thrombosis and clinical sequelae. The proximate cause of plaque rupture is unknown. Accordingly, we investigated the potential role of the 92-kD gelatinase member of the matrix metalloproteinase family in acute coronary ischemia. METHODS AND RESULTS Coronary atherectomy specimens from patients with atherosclerosis and an acute ischemic syndrome consistent with recent plaque rupture (unstable angina) (n = 12) were immunostained for the presence of 92-kD gelatinase; the results were compared with those obtained by identical study of atherectomy specimens from patients with atherosclerosis and angina but without acute ischemia (stable angina) (n = 12). Positive immunostaining for 92-kD gelatinase was present in 83% of specimens from both unstable and stable angina patients. However, intracellular localization of enzyme (indicating active synthesis) was documented in 10 of 10 positively stained specimens from patients with unstable angina compared with 3 of 10 positively stained specimens from patients with stable angina. Macrophages and smooth muscle cells were the major sources of 92-kD gelatinase in all specimens examined by immunostaining of adjacent sections. CONCLUSIONS 92-kD gelatinase is commonly expressed in coronary arterial atherosclerotic lesions. Active synthesis of 92-kD gelatinase by macrophages and smooth muscle cells in atherosclerotic lesions may play a pathogenic role in the development of acute coronary ischemia.
Collapse
|
Clinical Trial |
30 |
321 |
15
|
Asahara T, Bauters C, Pastore C, Kearney M, Rossow S, Bunting S, Ferrara N, Symes JF, Isner JM. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 1995; 91:2793-801. [PMID: 7758186 DOI: 10.1161/01.cir.91.11.2793] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Most strategies designed to reduce restenosis by the use of pharmacological or biological reagents involve direct inhibition of vascular smooth muscle cell (SMC) proliferation. Alternatively, SMC proliferation might be indirectly inhibited if reendothelialization could be specifically facilitated at sites of balloon-induced arterial injury. Accordingly, we investigated the hypothesis that application of an endothelial cell (EC)-specific mitogen to a freshly denuded intimal surface could accelerate reendothelialization and thereby attenuate intimal hyperplasia. METHODS AND RESULTS The left carotid artery of 31 Sprague-Dawley rats was subjected to balloon injury, after which 16 rats were treated with a 30-minute incubation with 100 micrograms of vascular endothelial growth factor (VEGF), an EC-specific mitogen. Control animals (n = 15) received a 30-minute incubation with 0.9% saline. At 2 weeks after balloon injury, carotid artery reendothelialization was markedly superior in the VEGF-treated group compared with the control group (14.59 +/- 1.12 versus 7.96 +/- 0.51 mm2, P < 0.005). The extent of reendothelialization measured at 4 weeks after balloon injury remained superior for arteries treated with VEGF (18.04 +/- 0.90 mm2) versus saline (13.42 +/- 0.84 mm2, P < .005). Neointimal thickening was correspondingly attenuated to a statistically significant degree in arteries treated with VEGF versus the control group at both the 2-week and 4-week time points. Immunostaining for proliferating cell nuclear antigen (PCNA) disclosed a threefold increase in PCNA-positive cells in the neointima of control arteries versus VEGF-treated arteries at 2 weeks after injury. CONCLUSIONS Application of VEGF, an EC-specific growth regulatory molecule, may be effectively used in vivo to promote reendothelialization and thereby indirectly attenuate neointimal thickening due to SMC proliferation.
Collapse
|
|
30 |
319 |
16
|
Nikol S, Isner JM, Pickering JG, Kearney M, Leclerc G, Weir L. Expression of transforming growth factor-beta 1 is increased in human vascular restenosis lesions. J Clin Invest 1992; 90:1582-92. [PMID: 1328302 PMCID: PMC443206 DOI: 10.1172/jci116027] [Citation(s) in RCA: 299] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human atheromata obtained in vivo were used to test the hypothesis that transforming growth factor-beta 1 plays a role in the development of vascular restenosis. We analyzed 28 specimens from patients with primary atherosclerotic or restenotic lesions; 26 of these were obtained by directional atherectomy and 2 at the time of coronary bypass surgery. Seven control tissues included operatively excised segments of human internal mammary artery, myocardium, and unused portions of vein graft obtained intraoperatively. From these 35 specimens, 210 sections were examined using in situ hybridization. Measurement of silver grains/nucleus disclosed that expression of transforming growth factor-beta 1 mRNA was highest in restenotic tissues (P < 0.001 vs. primary atherosclerotic tissues) and lowest in nonatherosclerotic (control) tissues. In cultures of human vascular smooth muscle cells grown from explants of internal mammary artery, expression of mRNA for transforming growth factor-beta 1 was significantly greater in subconfluent than in confluent smooth muscle cells (P = 0.05). Transforming growth factor type-beta III receptor was expressed in cell cultures and undetectable in the tissue specimens. Sections taken adjacent to those studied by in situ hybridization were examined by immunohistochemistry using antibodies against transforming growth factor-beta 1 and alpha-actin (as a marker for smooth muscle cells) and disclosed transforming growth factor-beta 1 in smooth muscle cells present in these sections. These findings are consistent with the concept that transforming growth factor-beta 1 plays an important role in modulating repair of vascular injury, including restenosis, after balloon angioplasty.
Collapse
|
research-article |
33 |
299 |
17
|
Losordo DW, Kearney M, Kim EA, Jekanowski J, Isner JM. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation 1994; 89:1501-10. [PMID: 8149515 DOI: 10.1161/01.cir.89.4.1501] [Citation(s) in RCA: 291] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The relative absence of coronary atherosclerosis in premenopausal women has been established. Estrogen is presumed to play a role in the protection of coronary arteries from atherosclerosis, and part of this protective effect appears to be mediated by amelioration of serum lipid profiles. However, all of the atheroprotective effect of estrogen is not explained by alteration of serum lipids. In this study, we attempt to identify evidence of estrogen receptors in coronary artery specimens of female patients and in human vascular smooth muscle cells. METHODS AND RESULTS Postmortem coronary artery specimens were obtained from premenopausal (n = 18) and postmenopausal (n = 22) women who died with significant coronary artery disease (n = 19) and from noncardiac causes with normal coronary arteries (n = 21). Sections were examined for evidence of estrogen receptor expression using a monoclonal antibody stain. Radioligand binding assays for estrogen receptors were performed on human vascular smooth muscle cells in culture, and gel retardation assays were performed to confirm the presence of functional estrogen receptors. Estrogen receptor expression was identified by immunostaining in a total of 21 coronary arteries, with the majority of normal arteries (15 positive of 21 total, P = .0117) demonstrating evidence of estrogen receptor expression. Conversely, a minority (6 of 19, P = NS) of atherosclerotic arteries were positive for estrogen receptor expression. Furthermore, the relation between estrogen receptor expression and absence of coronary atherosclerosis was most evident in premenopausal subjects, with 10 of 12 normal arteries in this group demonstrating evidence of estrogen receptors, whereas only 1 of 6 atherosclerotic coronary arteries was positive (P = .0062). Radioligand binding assays confirmed the presence of estrogen receptors at significant concentrations in intact human vascular smooth muscle cells. Gel retardation assays also documented the presence of functional estrogen receptors in extracts from human vascular smooth muscle cells. CONCLUSIONS This investigation provides evidence of estrogen receptors in smooth muscle cells from human coronary arteries. The demonstrated relation between the presence of the receptors and the absence of atherosclerosis in premenopausal women suggests that these receptors may play a functional role in coronary atheroprotection.
Collapse
|
|
31 |
291 |
18
|
Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, Horowitz JR, Symes JF, Isner JM. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996; 94:3281-90. [PMID: 8989142 DOI: 10.1161/01.cir.94.12.3281] [Citation(s) in RCA: 270] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Striated muscle has been shown to be capable of taking up and expressing foreign genes transferred in the form of naked plasmid DNA, although typically with a low level of gene expression. In the case of genes that encode secreted proteins, however, low transfection efficiency may not preclude bio-activity of the secreted gene product. Accordingly, we investigated the hypothesis that intramuscular (IM) gene therapy with naked plasmid DNA encoding vascular endothelial growth factor (VEGF) could augment collateral development and tissue perfusion in an animal model of hindlimb ischemia. METHODS AND RESULTS Ten days after ischemia was induced in one rabbit hindlimb, 500 micrograms of phVEGF165, or the reporter gene LacZ, was injected IM into the ischemic hindlimb muscles. Thirty days later, angiographically recognizable collateral vessels and histologically identifiable capillaries were increased in VEGF transfectants compared with controls. This augmented vascularity improved perfusion to the ischemic limb, documented by a superior calf blood pressure ratio for phVEGF165 (0.85 +/- 0.05) versus controls (0.64 +/- 0.05, P < .01), improved blood flow in the ischemic limb (measured with an intra-arterial Doppler wire) at rest (phVEGF165 = 21.3 +/- 3.9 mL/min, control = 14.6 +/- 1.6 mL/min, P < .01) and after a vasodilator (phVEGF165 = 54.2 +/- 12.0 mL/min, control = 37.3 +/- 8.9 mL/min, P < .01) and increased microspheres in the adductor (phVEGF165 = 4.3 +/- 1.6 mL.min-1.100 g of tissue-1, control = 2.9 +/- 1.2 mL.min-1.100 g of tissue-1, P < .05) and gastrocnemius (phVEGF165 = 3.9 +/- 1.0 mL.min-1.100 g of tissue-1, control = 2.8 +/- 1.4 mL.min-1.100 g of tissue-1, P < .05) muscles of the ischemic limb. CONCLUSIONS Ischemic skeletal muscle represents a promising target for gene therapy with naked plasmid DNA. IM transfection of genes encoding angiogenic cytokines, particularly those that are naturally secreted by intact cells, may constitute an alternative treatment strategy for patients with extensive peripheral vascular disease in whom the use of intravascular catheter-based gene transfer is compromised and/or prohibited.
Collapse
|
|
29 |
270 |
19
|
Tsurumi Y, Murohara T, Krasinski K, Chen D, Witzenbichler B, Kearney M, Couffinhal T, Isner JM. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med 1997; 3:879-86. [PMID: 9256279 DOI: 10.1038/nm0897-879] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Balloon angioplasty disrupts the protective endothelial lining of the arterial wall, rendering arteries susceptible to thrombosis and intimal thickening. We show here that vascular endothelial growth factor (VEGF), an endothelial cell mitogen, is upregulated in medial smooth muscle cells of the arterial wall in response to balloon injury. Both protein kinase C (PKC) and tyrosine kinase pp60src mediate augmented VEGF expression. In contrast, nitric oxide (NO) donors inhibit PKC-induced VEGF upregulation by interfering with binding of the transcription factor activator protein-1 (AP-1) to the VEGF promoter. Inhibition of VEGF promoter activation suggests that NO secreted by a restored endothelium functions as the negative feedback mechanism that downregulates VEGF expression to basal levels. Administration of a neutralizing VEGF antibody impaired reendothelialization following balloon injury performed in vivo. These findings establish a reciprocal relation between VEGF and NO in the endogenous regulation of endothelial integrity following arterial injury.
Collapse
|
|
28 |
267 |
20
|
Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS, Isner JM. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:381-94. [PMID: 9708799 PMCID: PMC1852989 DOI: 10.1016/s0002-9440(10)65582-4] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, vascular endothelial growth factor-C (VEGF-C or VEGF-2) was described as a specific ligand for the endothelial receptor tyrosine kinases VEGFR-2 and VEGFR-3. In vivo data, limited to constitutive overexpression in transgenic mice, have been interpreted as evidence that the growth-promoting effects of VEGF-C are restricted to development of the lymphatic vasculature. The current studies were designed to test the hypothesis that constitutive expression of VEGF-C in adult animals promotes angiogenesis. In vitro, VEGF-C exhibited a dose-dependent mitogenic and chemotactic effect on endothelial cells, particularly for microvascular endothelial cells (72% and 95% potency, respectively, compared with VEGF-A/VEGF-1). VEGF-C stimulated release of nitric oxide from endothelial cells and increased vascular permeability in the Miles assay; the latter effect was attenuated by pretreatment with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester. Both VEGFR-2 and VEGFR-3 receptors were shown to be expressed in human saphenous vein and internal mammary artery. The potential for VEGF-C to promote angiogenesis in vivo was then tested in a rabbit ischemic hindlimb model. Ten days after ligation of the external iliac artery, VEGF-C was administered as naked plasmid DNA (pcVEGF-C; 500 microg) from the polymer coating of an angioplasty balloon (n = 8 each) or as recombinant human protein (rhVEGF-C; 500 microg) by direct intra-arterial infusion. Physiological and anatomical assessments of angiogenesis 30 days later showed evidence of therapeutic angiogenesis for both pcVEGF-C and rhVEGF-C. Hindlimb blood pressure ratio (ischemic/normal) after pcVEGF-C increased to 0.83 +/- 0.03 after pcVEGF-C versus 0.59 +/- 0.04 (P < 0.005) in pGSVLacZ controls and to 0.76 +/- 0.04 after rhVEGF-C versus 0.58 +/- 0.03 (P < 0.01) in control rabbits receiving rabbit serum albumin. Doppler-derived iliac flow reserve was 2.7 +/- 0.1 versus 2.0 +/- 0.2 (P < 0.05) for pcVEGF-C versus LacZ controls and 2.9 +/- 0.3 versus 2.1 +/- 0.2 (P < 0.05) for rhVEGF-C versus albumin controls. Neovascularity was documented by angiography in vivo (angiographic scores: 0.85 +/- 0.05 versus 0.51 +/- 0.02 (P < 0.001) for plasmid DNA and 0.74 +/- 0.08 versus 0.53 +/- 0.03 (P < 0.05) for protein), and capillary density (per mm2) was measured at necropsy (252 +/- 12 versus 183 +/- 10 (P < 0.005) for plasmid DNA and 229 +/- 20 versus 164 +/- 20 (P < 0.05) for protein). In contrast to the results of gene targeting experiments, constitutive expression of VEGF-C in adult animals promotes angiogenesis in the setting of limb ischemia. VEGF-C and its receptors thus constitute an apparently redundant pathway for postnatal angiogenesis and may represent an alternative to VEGF-A for strategies of therapeutic angiogenesis in patients with limb and/or myocardial ischemia.
Collapse
MESH Headings
- Angiography
- Animals
- Capillary Permeability/drug effects
- Cell Division/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/pharmacology
- Endothelial Growth Factors/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Transfer Techniques
- Guinea Pigs
- Hindlimb/blood supply
- Histocytochemistry
- Humans
- Injections, Intra-Arterial
- Ischemia
- Male
- NG-Nitroarginine Methyl Ester/pharmacology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Nitric Oxide/biosynthesis
- Nitric Oxide/physiology
- RNA, Messenger/analysis
- Rabbits
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor
- Recombinant Proteins/pharmacology
- Vascular Endothelial Growth Factor C
Collapse
|
research-article |
27 |
252 |
21
|
Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM. Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem 2000; 275:29643-7. [PMID: 10882714 DOI: 10.1074/jbc.m001029200] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have indicated that advanced age is associated with impaired angiogenesis in part because of reduced levels of vascular endothelial growth factor (VEGF) expression. To investigate potential mechanisms responsible for this age-dependent defect in VEGF expression, aortic smooth muscle cells isolated from young rabbits (ages 6-8 months) or old rabbits (ages 4-5 years) were exposed to normoxic (21% oxygen) or hypoxic (0.1% oxygen) conditions. Hypoxia-induced VEGF expression was significantly lower in old versus young cells. VEGF mRNA stability in hypoxic conditions was similar in both young and old cells. However, transient transfection with a luciferase reporter gene that was transcriptionally regulated by the VEGF promoter revealed a significant defect in VEGF up-regulation following hypoxia in old versus young cells (a 43 versus 117% increase in luciferase activity, p < 0.05); this difference was not seen when a deletion construct lacking the hypoxia-inducible 1 (HIF-1) binding site was used. Moreover, although HIF-1 alpha-mRNA expression was shown to be similar in young and old smooth muscle cells, HIF-1 alpha protein and DNA binding activity were significantly reduced in old versus young smooth muscle cells that were exposed to hypoxia. We propose that age-dependent reduction in hypoxia-induced VEGF expression results from reduced HIF-1 activity and may explain the previously described age-dependent impairment of angiogenesis in response to ischemia.
Collapse
|
|
25 |
204 |
22
|
Kearney M, Pieczek A, Haley L, Losordo DW, Andres V, Schainfeld R, Rosenfield K, Isner JM. Histopathology of in-stent restenosis in patients with peripheral artery disease. Circulation 1997; 95:1998-2002. [PMID: 9133506 DOI: 10.1161/01.cir.95.8.1998] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Clinical studies have suggested that smooth muscle cell (SMC) hyperplasia is the most likely cause of in-stent restenosis. However, pathological data regarding this issue are limited. Specifically, direct evidence of proliferative activity in tissues excised from stenotic stents has not been previously reported. METHODS AND RESULTS Tissue specimens were retrieved by directional atherectomy from 10 patients in whom in-stent restenosis complicated percutaneous revascularization of peripheral artery disease. Analysis of cellular composition was performed quantitatively after cell-specific immunostaining. For specimens preserved in methanol (7 of 10), cellular proliferation was evaluated by use of antibodies to proliferating cell nuclear antigen (PCNA), cyclin E, and cdk2. TUNEL staining for apoptosis was performed on 8 paraformaldehyde-preserved specimens. Each of the 10 specimens contained extensive foci of hypercellularity composed predominantly of SMCs (mean+/-SEM, 59.3+/-3.0%). Evidence of ongoing proliferative activity was documented in all 7 methanol-preserved specimens: 24.6+/-2.3% of SMCs were PCNA-positive, 24.8+/-3.1% were cyclin E-positive, and 22.5+/-2.2% were cdk2-positive. Apoptotic cells were detected in all 8 specimens that had been appropriately preserved to permit DNA nick-end labeling. Macrophages and leukocytes were identified in each of the 10 specimens but accounted for a proportionately smaller number of cells (14.5+/-1.9% and 9.5+/-1.4%, respectively). Organized thrombus was observed in 6 of the 10 specimens. CONCLUSIONS These findings support the notion that in-stent restenosis results from SMC hyperplasia and suggest that adjunctive therapies designed to inhibit SMC proliferation may further enhance the utility of endovascular stents.
Collapse
|
|
28 |
196 |
23
|
Schratzberger P, Schratzberger G, Silver M, Curry C, Kearney M, Magner M, Alroy J, Adelman LS, Weinberg DH, Ropper AH, Isner JM. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000; 6:405-13. [PMID: 10742147 DOI: 10.1038/74664] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ischemic peripheral neuropathy is a frequent, irreversible complication of lower extremity vascular insufficiency. We investigated whether ischemic peripheral neuropathy could be prevented and/or reversed by gene transfer of an endothelial cell mitogen designed to promote therapeutic angiogenesis. Intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor (VEGF) simultaneously with induction of hindlimb ischemia in rabbits abrogated the substantial decrease in motor and sensory nerve parameters, and nerve function recovered promptly. When gene transfer was administered 10 days after induction of ischemia, nerve function was restored earlier and/or recovered faster than in untreated rabbits. These findings are due in part to enhanced hindlimb perfusion. In addition, however, the demonstration of functional VEGF receptor expression by Schwann cells indicates a direct effect of VEGF on neural integrity as well. These findings thus constitute a new paradigm for the treatment of ischemic peripheral neuropathy.
Collapse
|
|
25 |
188 |
24
|
McMahon D, Jones J, Wiegand A, Gange SJ, Kearney M, Palmer S, McNulty S, Metcalf JA, Acosta E, Rehm C, Coffin JM, Mellors JW, Maldarelli F. Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy. Clin Infect Dis 2010; 50:912-9. [PMID: 20156060 PMCID: PMC2897152 DOI: 10.1086/650749] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Combination antiretroviral therapy suppresses but does not eradicate human immunodeficiency virus type 1 (HIV-1) in infected persons, and low-level viremia can be detected despite years of suppressive antiretroviral therapy. Short-course (28-day) intensification of standard antiretroviral combination therapy is a useful approach to determine whether complete rounds of HIV-1 replication in rapidly cycling cells contribute to persistent viremia. We investigated whether intensification with the integrase inhibitor raltegravir decreases plasma HIV-1 RNA levels in patients receiving suppressive antiretroviral therapy. METHODS Subjects (n = 10) with long-term HIV-1 suppression receiving combination antiretroviral regimens had their regimens intensified for 4 weeks with raltegravir. Plasma HIV-1 RNA level was determined before, during, and after the 4-week intensification period, using a sensitive assay (limit of detection, 0.2 copies of HIV-1 RNA/mL of plasma). A 4-week intensification course was chosen to investigate potential HIV-1 replication in cells with relatively short (approximately 1-14-day) half-lives. RESULTS There was no evidence in any subject of a decline in HIV-1 RNA level during the period of raltegravir intensification or of rebound after discontinuation. Median levels of HIV-1 RNA before (0.17 log10 copies/mL), during (0.04 log10 copies/mL), and after (0.04 log10 copies/mL) raltegravir intensification were not significantly different (P > .1 for all comparisons in parametric analyses). High-performance liquid chromatography and mass spectroscopy experiments confirmed that therapeutic levels of raltegravir were achieved in plasma during intensification. CONCLUSIONS Intensification of antiretroviral therapy with a potent HIV-1 integrase inhibitor did not decrease persistent viremia in subjects receiving suppressive regimens, indicating that rapidly cycling cells infected with HIV-1 were not present. Eradication of HIV-1 from infected persons will require new therapeutic approaches. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00618371.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
188 |
25
|
Kearney M. From the Invisible Hand to Visible Feet: Anthropological Studies of Migration and Development. ANNUAL REVIEW OF ANTHROPOLOGY 1986; 15:331-61. [PMID: 12314827 DOI: 10.1146/annurev.an.15.100186.001555] [Citation(s) in RCA: 179] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
39 |
179 |