1
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372:n71. [PMID: 33782057 PMCID: PMC8005924 DOI: 10.1136/bmj.n71] [Citation(s) in RCA: 35065] [Impact Index Per Article: 8766.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
|
Research Support, N.I.H., Extramural |
4 |
35065 |
2
|
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366:l4898. [PMID: 31462531 DOI: 10.1136/bmj.l4898] [Citation(s) in RCA: 13615] [Impact Index Per Article: 2269.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
Comment |
6 |
13615 |
3
|
Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, Thomas J. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 2019; 10:ED000142. [PMID: 31643080 DOI: 10.1002/9781119536604] [Citation(s) in RCA: 6940] [Impact Index Per Article: 1156.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
Editorial |
6 |
6940 |
4
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg 2021; 88:105906. [PMID: 33789826 DOI: 10.1016/j.ijsu.2021.105906] [Citation(s) in RCA: 4223] [Impact Index Per Article: 1055.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
Collapse
|
Journal Article |
4 |
4223 |
5
|
Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, McKenzie JE. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021; 372:n160. [PMID: 33781993 PMCID: PMC8005925 DOI: 10.1136/bmj.n160] [Citation(s) in RCA: 4148] [Impact Index Per Article: 1037.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
|
Guideline |
4 |
4148 |
6
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 2021; 10:89. [PMID: 33781348 PMCID: PMC8008539 DOI: 10.1186/s13643-021-01626-4] [Citation(s) in RCA: 3927] [Impact Index Per Article: 981.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
|
Research Support, N.I.H., Extramural |
4 |
3927 |
7
|
Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JPT, Thomas J. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 2019; 10:ED000142. [PMID: 31643080 PMCID: PMC10284251 DOI: 10.1002/14651858.ed000142] [Citation(s) in RCA: 2623] [Impact Index Per Article: 437.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
Editorial |
6 |
2623 |
8
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med 2021; 18:e1003583. [PMID: 33780438 PMCID: PMC8007028 DOI: 10.1371/journal.pmed.1003583] [Citation(s) in RCA: 1610] [Impact Index Per Article: 402.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Matthew Page and co-authors describe PRISMA 2020, an updated reporting guideline for systematic reviews and meta-analyses.
Collapse
|
Guideline |
4 |
1610 |
9
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol 2021; 134:178-189. [PMID: 33789819 DOI: 10.1016/j.jclinepi.2021.03.001] [Citation(s) in RCA: 1180] [Impact Index Per Article: 295.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
Collapse
|
Journal Article |
4 |
1180 |
10
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Moher D. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol 2021; 134:103-112. [PMID: 33577987 DOI: 10.1016/j.jclinepi.2021.02.003] [Citation(s) in RCA: 1073] [Impact Index Per Article: 268.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To describe the processes used to update the PRISMA 2009 statement for reporting systematic reviews, present results of a survey conducted to inform the update, summarize decisions made at the PRISMA update meeting, and describe and justify changes made to the guideline. METHODS We reviewed 60 documents with reporting guidance for systematic reviews to generate suggested modifications to the PRISMA 2009 statement. We invited 220 systematic review methodologists and journal editors to complete a survey about the suggested modifications. The results of these projects were discussed at a 21-member in-person meeting. Following the meeting, we drafted the PRISMA 2020 statement and refined it based on feedback from co-authors and a convenience sample of 15 systematic reviewers. RESULTS The review of 60 documents revealed that all topics addressed by the PRISMA 2009 statement could be modified. Of the 110 survey respondents, more than 66% recommended keeping six of the original checklist items as they were and modifying 15 of them using wording suggested by us. Attendees at the in-person meeting supported the revised wording for several items but suggested rewording for most to enhance clarity, and further refinements were made over six drafts of the guideline. CONCLUSIONS The PRISMA 2020 statement consists of updated reporting guidance for systematic reviews. We hope that providing this detailed description of the development process will enhance the acceptance and uptake of the guideline and assist those developing and updating future reporting guidelines.
Collapse
|
Journal Article |
4 |
1073 |
11
|
Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, Koffel JB. PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst Rev 2021; 10:39. [PMID: 33499930 PMCID: PMC7839230 DOI: 10.1186/s13643-020-01542-z] [Citation(s) in RCA: 1052] [Impact Index Per Article: 263.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Literature searches underlie the foundations of systematic reviews and related review types. Yet, the literature searching component of systematic reviews and related review types is often poorly reported. Guidance for literature search reporting has been diverse, and, in many cases, does not offer enough detail to authors who need more specific information about reporting search methods and information sources in a clear, reproducible way. This document presents the PRISMA-S (Preferred Reporting Items for Systematic reviews and Meta-Analyses literature search extension) checklist, and explanation and elaboration. METHODS The checklist was developed using a 3-stage Delphi survey process, followed by a consensus conference and public review process. RESULTS The final checklist includes 16 reporting items, each of which is detailed with exemplar reporting and rationale. CONCLUSIONS The intent of PRISMA-S is to complement the PRISMA Statement and its extensions by providing a checklist that could be used by interdisciplinary authors, editors, and peer reviewers to verify that each component of a search is completely reported and therefore reproducible.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
1052 |
12
|
Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. CAMPBELL SYSTEMATIC REVIEWS 2022; 18:e1230. [PMID: 36911350 PMCID: PMC8958186 DOI: 10.1002/cl2.1230] [Citation(s) in RCA: 687] [Impact Index Per Article: 229.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Background Reporting standards, such as PRISMA aim to ensure that the methods and results of systematic reviews are described in sufficient detail to allow full transparency. Flow diagrams in evidence syntheses allow the reader to rapidly understand the core procedures used in a review and examine the attrition of irrelevant records throughout the review process. Recent research suggests that use of flow diagrams in systematic reviews is poor and of low quality and called for standardised templates to facilitate better reporting in flow diagrams. The increasing options for interactivity provided by the Internet gives us an opportunity to support easy-to-use evidence synthesis tools, and here we report on the development of a tool for the production of PRISMA 2020-compliant systematic review flow diagrams. Methods and Findings We developed a free-to-use, Open Source R package and web-based Shiny app to allow users to design PRISMA flow diagrams for their own systematic reviews. Our tool allows users to produce standardised visualisations that transparently document the methods and results of a systematic review process in a variety of formats. In addition, we provide the opportunity to produce interactive, web-based flow diagrams (exported as HTML files), that allow readers to click on boxes of the diagram and navigate to further details on methods, results or data files. We provide an interactive example here; https://prisma-flowdiagram.github.io/. Conclusions We have developed a user-friendly tool for producing PRISMA 2020-compliant flow diagrams for users with coding experience and, importantly, for users without prior experience in coding by making use of Shiny (https://estech.shinyapps.io/prisma_flowdiagram/). This free-to-use tool will make it easier to produce clear and PRISMA 2020-compliant systematic review flow diagrams. Significantly, users can also produce interactive flow diagrams for the first time, allowing readers of their reviews to smoothly and swiftly explore and navigate to further details of the methods and results of a review. We believe this tool will increase use of PRISMA flow diagrams, improve the compliance and quality of flow diagrams, and facilitate strong science communication of the methods and results of systematic reviews by making use of interactivity. We encourage the systematic review community to make use of the tool, and provide feedback to streamline and improve their usability and efficiency.
Collapse
|
research-article |
3 |
687 |
13
|
Page MJ, Shamseer L, Altman DG, Tetzlaff J, Sampson M, Tricco AC, Catalá-López F, Li L, Reid EK, Sarkis-Onofre R, Moher D. Epidemiology and Reporting Characteristics of Systematic Reviews of Biomedical Research: A Cross-Sectional Study. PLoS Med 2016; 13:e1002028. [PMID: 27218655 PMCID: PMC4878797 DOI: 10.1371/journal.pmed.1002028] [Citation(s) in RCA: 504] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/14/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Systematic reviews (SRs) can help decision makers interpret the deluge of published biomedical literature. However, a SR may be of limited use if the methods used to conduct the SR are flawed, and reporting of the SR is incomplete. To our knowledge, since 2004 there has been no cross-sectional study of the prevalence, focus, and completeness of reporting of SRs across different specialties. Therefore, the aim of our study was to investigate the epidemiological and reporting characteristics of a more recent cross-section of SRs. METHODS AND FINDINGS We searched MEDLINE to identify potentially eligible SRs indexed during the month of February 2014. Citations were screened using prespecified eligibility criteria. Epidemiological and reporting characteristics of a random sample of 300 SRs were extracted by one reviewer, with a 10% sample extracted in duplicate. We compared characteristics of Cochrane versus non-Cochrane reviews, and the 2014 sample of SRs versus a 2004 sample of SRs. We identified 682 SRs, suggesting that more than 8,000 SRs are being indexed in MEDLINE annually, corresponding to a 3-fold increase over the last decade. The majority of SRs addressed a therapeutic question and were conducted by authors based in China, the UK, or the US; they included a median of 15 studies involving 2,072 participants. Meta-analysis was performed in 63% of SRs, mostly using standard pairwise methods. Study risk of bias/quality assessment was performed in 70% of SRs but was rarely incorporated into the analysis (16%). Few SRs (7%) searched sources of unpublished data, and the risk of publication bias was considered in less than half of SRs. Reporting quality was highly variable; at least a third of SRs did not report use of a SR protocol, eligibility criteria relating to publication status, years of coverage of the search, a full Boolean search logic for at least one database, methods for data extraction, methods for study risk of bias assessment, a primary outcome, an abstract conclusion that incorporated study limitations, or the funding source of the SR. Cochrane SRs, which accounted for 15% of the sample, had more complete reporting than all other types of SRs. Reporting has generally improved since 2004, but remains suboptimal for many characteristics. CONCLUSIONS An increasing number of SRs are being published, and many are poorly conducted and reported. Strategies are needed to help reduce this avoidable waste in research.
Collapse
|
research-article |
9 |
504 |
14
|
Page MJ, Moher D. Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: a scoping review. Syst Rev 2017; 6:263. [PMID: 29258593 PMCID: PMC5738221 DOI: 10.1186/s13643-017-0663-8] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The PRISMA Statement is a reporting guideline designed to improve transparency of systematic reviews (SRs) and meta-analyses. Seven extensions to the PRISMA Statement have been published to address the reporting of different types or aspects of SRs, and another eight are in development. We performed a scoping review to map the research that has been conducted to evaluate the uptake and impact of the PRISMA Statement and extensions. We also synthesised studies evaluating how well SRs published after the PRISMA Statement was disseminated adhere to its recommendations. METHODS We searched for meta-research studies indexed in MEDLINE® from inception to 31 July 2017, which investigated some component of the PRISMA Statement or extensions (e.g. SR adherence to PRISMA, journal endorsement of PRISMA). One author screened all records and classified the types of evidence available in the studies. We pooled data on SR adherence to individual PRISMA items across all SRs in the included studies and across SRs published after 2009 (the year PRISMA was disseminated). RESULTS We included 100 meta-research studies. The most common type of evidence available was data on SR adherence to the PRISMA Statement, which has been evaluated in 57 studies that have assessed 6487 SRs. The pooled results of these studies suggest that reporting of many items in the PRISMA Statement is suboptimal, even in the 2382 SRs published after 2009 (where nine items were adhered to by fewer than 67% of SRs). Few meta-research studies have evaluated the adherence of SRs to the PRISMA extensions or strategies to increase adherence to the PRISMA Statement and extensions. CONCLUSIONS Many studies have evaluated how well SRs adhere to the PRISMA Statement, and the pooled result of these suggest that reporting of many items is suboptimal. An update of the PRISMA Statement, along with a toolkit of strategies to help journals endorse and implement the updated guideline, may improve the transparency of SRs.
Collapse
|
Scoping Review |
8 |
396 |
15
|
Spaulding AC, Seals RM, Page MJ, Brzozowski AK, Rhodes W, Hammett TM. HIV/AIDS among inmates of and releasees from US correctional facilities, 2006: declining share of epidemic but persistent public health opportunity. PLoS One 2009; 4:e7558. [PMID: 19907649 PMCID: PMC2771281 DOI: 10.1371/journal.pone.0007558] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022] Open
Abstract
Because certain groups at high risk for HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome) come together in correctional facilities, seroprevalence was high early in the epidemic. The share of the HIV/AIDS epidemic borne by inmates of and persons released from jails and prisons in the United States (US) in 1997 was estimated in a previous paper. While the number of inmates and releasees has risen, their HIV seroprevalence rates have fallen. We sought to determine if the share of HIV/AIDS borne by inmates and releasees in the US decreased between 1997 and 2006. We created a new model of population flow in and out of correctional facilities to estimate the number of persons released in 1997 and 2006. In 1997, approximately one in five of all HIV-infected Americans was among the 7.3 million who left a correctional facility that year. Nine years later, only one in seven (14%) of infected Americans was among the 9.1 million leaving, a 29.3% decline in the share. For black and Hispanic males, two demographic groups with heightened incarceration rates, recently released inmates comprise roughly one in five of those groups' total HIV-infected persons, a figure similar to the proportion borne by the correctional population as a whole in 1997. Decreasing HIV seroprevalence among those admitted to jails and prisons, prolonged survival and aging of the US population with HIV/AIDS beyond the crime-prone years, and success with discharge planning programs targeting HIV-infected prisoners could explain the declining concentration of the epidemic among correctional populations. Meanwhile, the number of persons with HIV/AIDS leaving correctional facilities remains virtually identical. Jails and prisons continue to be potent targets for public health interventions. The fluid nature of incarcerated populations ensures that effective interventions will be felt not only in correctional facilities but also in communities to which releasees return.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
282 |
16
|
Page MJ, Shamseer L, Tricco AC. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst Rev 2018; 7:32. [PMID: 29463298 PMCID: PMC5819709 DOI: 10.1186/s13643-018-0699-4] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The International Prospective Register of Systematic Reviews (PROSPERO) was launched in February 2011 to increase transparency of systematic reviews (SRs). There have been few investigations of the content and use of the database. We aimed to investigate the number of PROSPERO registrations from inception to 2017, and website usage in the last year. We also aimed to explore the epidemiological characteristics of and completeness of primary outcome pre-specification in a sample of PROSPERO records from 2017. METHODS The PROSPERO database managers provided us with data on the annual and cumulative number of SR registrations up to October 10, 2017, and the number of visits to the PROSPERO website over the year preceding October 10, 2017. One author collected data on the focus of the SR (e.g. therapeutic, diagnostic), health area addressed, funding source and completeness of outcome pre-specification in a random sample of 150 records of SRs registered in PROSPERO between April 1, 2017 and September 30, 2017. RESULTS As of October 10, 2017, there were 26,535 SRs registered in PROSPERO; guided by current monthly submission rates, we anticipate this figure will reach over 30,000 by the end of 2017. There has been a 10-fold increase in registrations, from 63 SRs per month in 2012 to 800 per month in 2017. In the year preceding October 10, 2017, the PROSPERO website received more than 1.75 million page views. In the random sample of 150 registered SRs, the majority were focused on a therapeutic question (78/150 [52%]), while only a few focused on a diagnostic/prognostic question (11/150 [7%]). The 150 registered SRs addressed 18 different health areas. Any information about the primary outcome other than the domain (e.g. timing, effect measures) was not pre-specified in 44/150 records (29%). CONCLUSIONS Registration of SRs in PROSPERO increased rapidly between 2011 and 2017, thus benefiting users of health evidence who want to know about ongoing SRs. Further work is needed to explore how closely published SRs adhere to the planned methods, whether greater pre-specification of outcomes prevents selective inclusion and reporting of study results, and whether registered SRs address necessary questions.
Collapse
|
Review |
7 |
281 |
17
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2021; 74:790-799. [PMID: 34446261 DOI: 10.1016/j.rec.2021.07.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews. Full English text available from:www.revespcardiol.org/en.
Collapse
|
|
4 |
199 |
18
|
Ardern CL, Büttner F, Andrade R, Weir A, Ashe MC, Holden S, Impellizzeri FM, Delahunt E, Dijkstra HP, Mathieson S, Rathleff MS, Reurink G, Sherrington C, Stamatakis E, Vicenzino B, Whittaker JL, Wright AA, Clarke M, Moher D, Page MJ, Khan KM, Winters M. Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. Br J Sports Med 2022; 56:175-195. [PMID: 34625401 PMCID: PMC8862073 DOI: 10.1136/bjsports-2021-103987] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 02/01/2023]
Abstract
Poor reporting of medical and healthcare systematic reviews is a problem from which the sports and exercise medicine, musculoskeletal rehabilitation, and sports science fields are not immune. Transparent, accurate and comprehensive systematic review reporting helps researchers replicate methods, readers understand what was done and why, and clinicians and policy-makers implement results in practice. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement and its accompanying Explanation and Elaboration document provide general reporting examples for systematic reviews of healthcare interventions. However, implementation guidance for sport and exercise medicine, musculoskeletal rehabilitation, and sports science does not exist. The Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science (PERSiST) guidance attempts to address this problem. Nineteen content experts collaborated with three methods experts to identify examples of exemplary reporting in systematic reviews in sport and exercise medicine (including physical activity), musculoskeletal rehabilitation (including physiotherapy), and sports science, for each of the PRISMA 2020 Statement items. PERSiST aims to help: (1) systematic reviewers improve the transparency and reporting of systematic reviews and (2) journal editors and peer reviewers make informed decisions about systematic review reporting quality.
Collapse
|
systematic-review |
3 |
199 |
19
|
Catalá-López F, Hutton B, Núñez-Beltrán A, Page MJ, Ridao M, Macías Saint-Gerons D, Catalá MA, Tabarés-Seisdedos R, Moher D. The pharmacological and non-pharmacological treatment of attention deficit hyperactivity disorder in children and adolescents: A systematic review with network meta-analyses of randomised trials. PLoS One 2017; 12:e0180355. [PMID: 28700715 PMCID: PMC5507500 DOI: 10.1371/journal.pone.0180355] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed psychiatric disorders in childhood. A wide variety of treatments have been used for the management of ADHD. We aimed to compare the efficacy and safety of pharmacological, psychological and complementary and alternative medicine interventions for the treatment of ADHD in children and adolescents. METHODS AND FINDINGS We performed a systematic review with network meta-analyses. Randomised controlled trials (≥ 3 weeks follow-up) were identified from published and unpublished sources through searches in PubMed and the Cochrane Library (up to April 7, 2016). Interventions of interest were pharmacological (stimulants, non-stimulants, antidepressants, antipsychotics, and other unlicensed drugs), psychological (behavioural, cognitive training and neurofeedback) and complementary and alternative medicine (dietary therapy, fatty acids, amino acids, minerals, herbal therapy, homeopathy, and physical activity). The primary outcomes were efficacy (treatment response) and acceptability (all-cause discontinuation). Secondary outcomes included discontinuation due to adverse events (tolerability), as well as serious adverse events and specific adverse events. Random-effects Bayesian network meta-analyses were conducted to obtain estimates as odds ratios (ORs) with 95% credibility intervals. We analysed interventions by class and individually. 190 randomised trials (52 different interventions grouped in 32 therapeutic classes) that enrolled 26114 participants with ADHD were included in complex networks. At the class level, behavioural therapy (alone or in combination with stimulants), stimulants, and non-stimulant seemed significantly more efficacious than placebo. Behavioural therapy in combination with stimulants seemed superior to stimulants or non-stimulants. Stimulants seemed superior to behavioural therapy, cognitive training and non-stimulants. Behavioural therapy, stimulants and their combination showed the best profile of acceptability. Stimulants and non-stimulants seemed well tolerated. Among medications, methylphenidate, amphetamine, atomoxetine, guanfacine and clonidine seemed significantly more efficacious than placebo. Methylphenidate and amphetamine seemed more efficacious than atomoxetine and guanfacine. Methylphenidate and clonidine seemed better accepted than placebo and atomoxetine. Most of the efficacious pharmacological treatments were associated with harms (anorexia, weight loss and insomnia), but an increased risk of serious adverse events was not observed. There is lack of evidence for cognitive training, neurofeedback, antidepressants, antipsychotics, dietary therapy, fatty acids, and other complementary and alternative medicine. Overall findings were limited by the clinical and methodological heterogeneity, small sample sizes of trials, short-term follow-up, and the absence of high-quality evidence; consequently, results should be interpreted with caution. CONCLUSIONS Clinical differences may exist between the pharmacological and non-pharmacological treatment used for the management of ADHD. Uncertainties about therapies and the balance between benefits, costs and potential harms should be considered before starting treatment. There is an urgent need for high-quality randomised trials of the multiple treatments for ADHD in children and adolescents. PROSPERO, number CRD42014015008.
Collapse
|
Systematic Review |
8 |
194 |
20
|
Page MJ, Higgins JPT, Clayton G, Sterne JAC, Hróbjartsson A, Savović J. Empirical Evidence of Study Design Biases in Randomized Trials: Systematic Review of Meta-Epidemiological Studies. PLoS One 2016; 11:e0159267. [PMID: 27398997 PMCID: PMC4939945 DOI: 10.1371/journal.pone.0159267] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To synthesise evidence on the average bias and heterogeneity associated with reported methodological features of randomized trials. DESIGN Systematic review of meta-epidemiological studies. METHODS We retrieved eligible studies included in a recent AHRQ-EPC review on this topic (latest search September 2012), and searched Ovid MEDLINE and Ovid EMBASE for studies indexed from Jan 2012-May 2015. Data were extracted by one author and verified by another. We combined estimates of average bias (e.g. ratio of odds ratios (ROR) or difference in standardised mean differences (dSMD)) in meta-analyses using the random-effects model. Analyses were stratified by type of outcome ("mortality" versus "other objective" versus "subjective"). Direction of effect was standardised so that ROR < 1 and dSMD < 0 denotes a larger intervention effect estimate in trials with an inadequate or unclear (versus adequate) characteristic. RESULTS We included 24 studies. The available evidence suggests that intervention effect estimates may be exaggerated in trials with inadequate/unclear (versus adequate) sequence generation (ROR 0.93, 95% CI 0.86 to 0.99; 7 studies) and allocation concealment (ROR 0.90, 95% CI 0.84 to 0.97; 7 studies). For these characteristics, the average bias appeared to be larger in trials of subjective outcomes compared with other objective outcomes. Also, intervention effects for subjective outcomes appear to be exaggerated in trials with lack of/unclear blinding of participants (versus blinding) (dSMD -0.37, 95% CI -0.77 to 0.04; 2 studies), lack of/unclear blinding of outcome assessors (ROR 0.64, 95% CI 0.43 to 0.96; 1 study) and lack of/unclear double blinding (ROR 0.77, 95% CI 0.61 to 0.93; 1 study). The influence of other characteristics (e.g. unblinded trial personnel, attrition) is unclear. CONCLUSIONS Certain characteristics of randomized trials may exaggerate intervention effect estimates. The average bias appears to be greatest in trials of subjective outcomes. More research on several characteristics, particularly attrition and selective reporting, is needed.
Collapse
|
Systematic Review |
9 |
179 |
21
|
O'Dea RE, Lagisz M, Jennions MD, Koricheva J, Noble DW, Parker TH, Gurevitch J, Page MJ, Stewart G, Moher D, Nakagawa S. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol Rev Camb Philos Soc 2021; 96:1695-1722. [PMID: 33960637 PMCID: PMC8518748 DOI: 10.1111/brv.12721] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Since the early 1990s, ecologists and evolutionary biologists have aggregated primary research using meta-analytic methods to understand ecological and evolutionary phenomena. Meta-analyses can resolve long-standing disputes, dispel spurious claims, and generate new research questions. At their worst, however, meta-analysis publications are wolves in sheep's clothing: subjective with biased conclusions, hidden under coats of objective authority. Conclusions can be rendered unreliable by inappropriate statistical methods, problems with the methods used to select primary research, or problems within the primary research itself. Because of these risks, meta-analyses are increasingly conducted as part of systematic reviews, which use structured, transparent, and reproducible methods to collate and summarise evidence. For readers to determine whether the conclusions from a systematic review or meta-analysis should be trusted - and to be able to build upon the review - authors need to report what they did, why they did it, and what they found. Complete, transparent, and reproducible reporting is measured by 'reporting quality'. To assess perceptions and standards of reporting quality of systematic reviews and meta-analyses published in ecology and evolutionary biology, we surveyed 208 researchers with relevant experience (as authors, reviewers, or editors), and conducted detailed evaluations of 102 systematic review and meta-analysis papers published between 2010 and 2019. Reporting quality was far below optimal and approximately normally distributed. Measured reporting quality was lower than what the community perceived, particularly for the systematic review methods required to measure trustworthiness. The minority of assessed papers that referenced a guideline (~16%) showed substantially higher reporting quality than average, and surveyed researchers showed interest in using a reporting guideline to improve reporting quality. The leading guideline for improving reporting quality of systematic reviews is the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Here we unveil an extension of PRISMA to serve the meta-analysis community in ecology and evolutionary biology: PRISMA-EcoEvo (version 1.0). PRISMA-EcoEvo is a checklist of 27 main items that, when applicable, should be reported in systematic review and meta-analysis publications summarising primary research in ecology and evolutionary biology. In this explanation and elaboration document, we provide guidance for authors, reviewers, and editors, with explanations for each item on the checklist, including supplementary examples from published papers. Authors can consult this PRISMA-EcoEvo guideline both in the planning and writing stages of a systematic review and meta-analysis, to increase reporting quality of submitted manuscripts. Reviewers and editors can use the checklist to assess reporting quality in the manuscripts they review. Overall, PRISMA-EcoEvo is a resource for the ecology and evolutionary biology community to facilitate transparent and comprehensively reported systematic reviews and meta-analyses.
Collapse
|
research-article |
4 |
171 |
22
|
Abstract
BACKGROUND Several scales, checklists and domain-based tools for assessing risk of reporting biases exist, but it is unclear how much they vary in content and guidance. We conducted a systematic review of the content and measurement properties of such tools. METHODS We searched for potentially relevant articles in Ovid MEDLINE, Ovid Embase, Ovid PsycINFO and Google Scholar from inception to February 2017. One author screened all titles, abstracts and full text articles, and collected data on tool characteristics. RESULTS We identified 18 tools that include an assessment of the risk of reporting bias. Tools varied in regard to the type of reporting bias assessed (eg, bias due to selective publication, bias due to selective non-reporting), and the level of assessment (eg, for the study as a whole, a particular result within a study or a particular synthesis of studies). Various criteria are used across tools to designate a synthesis as being at 'high' risk of bias due to selective publication (eg, evidence of funnel plot asymmetry, use of non-comprehensive searches). However, the relative weight assigned to each criterion in the overall judgement is unclear for most of these tools. Tools for assessing risk of bias due to selective non-reporting guide users to assess a study, or an outcome within a study, as 'high' risk of bias if no results are reported for an outcome. However, assessing the corresponding risk of bias in a synthesis that is missing the non-reported outcomes is outside the scope of most of these tools. Inter-rater agreement estimates were available for five tools. CONCLUSION There are several limitations of existing tools for assessing risk of reporting biases, in terms of their scope, guidance for reaching risk of bias judgements and measurement properties. Development and evaluation of a new, comprehensive tool could help overcome present limitations.
Collapse
|
Review |
7 |
160 |
23
|
Page MJ, Amess B, Townsend RR, Parekh R, Herath A, Brusten L, Zvelebil MJ, Stein RC, Waterfield MD, Davies SC, O'Hare MJ. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc Natl Acad Sci U S A 1999; 96:12589-94. [PMID: 10535966 PMCID: PMC23001 DOI: 10.1073/pnas.96.22.12589] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Normal human luminal and myoepithelial breast cells separately purified from a set of 10 reduction mammoplasties by using a double antibody magnetic affinity cell sorting and Dynabead immunomagnetic technique were used in two-dimensional gel proteome studies. A total of 43,302 proteins were detected across the 20 samples, and a master image for each cell type comprising a total of 1,738 unique proteins was derived. Differential analysis identified 170 proteins that were elevated 2-fold or more between the two breast cell types, and 51 of these were annotated by tandem mass spectrometry. Muscle-specific enzyme isoforms and contractile intermediate filaments including tropomyosin and smooth muscle (SM22) alpha protein were detected in the myoepithelial cells, and a large number of cytokeratin subclasses and isoforms characteristic of luminal cells were detected in this cell type. A further 134 nondifferentially regulated proteins were also annotated from the two breast cell types, making this the most extensive study to date of the protein expression map of the normal human breast and the basis for future studies of purified breast cancer cells.
Collapse
|
research-article |
26 |
153 |
24
|
Page MJ, McKenzie JE, Kirkham J, Dwan K, Kramer S, Green S, Forbes A. Bias due to selective inclusion and reporting of outcomes and analyses in systematic reviews of randomised trials of healthcare interventions. Cochrane Database Syst Rev 2014; 2014:MR000035. [PMID: 25271098 PMCID: PMC8191366 DOI: 10.1002/14651858.mr000035.pub2] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Systematic reviews may be compromised by selective inclusion and reporting of outcomes and analyses. Selective inclusion occurs when there are multiple effect estimates in a trial report that could be included in a particular meta-analysis (e.g. from multiple measurement scales and time points) and the choice of effect estimate to include in the meta-analysis is based on the results (e.g. statistical significance, magnitude or direction of effect). Selective reporting occurs when the reporting of a subset of outcomes and analyses in the systematic review is based on the results (e.g. a protocol-defined outcome is omitted from the published systematic review). OBJECTIVES To summarise the characteristics and synthesise the results of empirical studies that have investigated the prevalence of selective inclusion or reporting in systematic reviews of randomised controlled trials (RCTs), investigated the factors (e.g. statistical significance or direction of effect) associated with the prevalence and quantified the bias. SEARCH METHODS We searched the Cochrane Methodology Register (to July 2012), Ovid MEDLINE, Ovid EMBASE, Ovid PsycINFO and ISI Web of Science (each up to May 2013), and the US Agency for Healthcare Research and Quality (AHRQ) Effective Healthcare Program's Scientific Resource Center (SRC) Methods Library (to June 2013). We also searched the abstract books of the 2011 and 2012 Cochrane Colloquia and the article alerts for methodological work in research synthesis published from 2009 to 2011 and compiled in Research Synthesis Methods. SELECTION CRITERIA We included both published and unpublished empirical studies that investigated the prevalence and factors associated with selective inclusion or reporting, or both, in systematic reviews of RCTs of healthcare interventions. We included empirical studies assessing any type of selective inclusion or reporting, such as investigations of how frequently RCT outcome data is selectively included in systematic reviews based on the results, outcomes and analyses are discrepant between protocol and published review or non-significant outcomes are partially reported in the full text or summary within systematic reviews. DATA COLLECTION AND ANALYSIS Two review authors independently selected empirical studies for inclusion, extracted the data and performed a risk of bias assessment. A third review author resolved any disagreements about inclusion or exclusion of empirical studies, data extraction and risk of bias. We contacted authors of included studies for additional unpublished data. Primary outcomes included overall prevalence of selective inclusion or reporting, association between selective inclusion or reporting and the statistical significance of the effect estimate, and association between selective inclusion or reporting and the direction of the effect estimate. We combined prevalence estimates and risk ratios (RRs) using a random-effects meta-analysis model. MAIN RESULTS Seven studies met the inclusion criteria. No studies had investigated selective inclusion of results in systematic reviews, or discrepancies in outcomes and analyses between systematic review registry entries and published systematic reviews. Based on a meta-analysis of four studies (including 485 Cochrane Reviews), 38% (95% confidence interval (CI) 23% to 54%) of systematic reviews added, omitted, upgraded or downgraded at least one outcome between the protocol and published systematic review. The association between statistical significance and discrepant outcome reporting between protocol and published systematic review was uncertain. The meta-analytic estimate suggested an increased risk of adding or upgrading (i.e. changing a secondary outcome to primary) when the outcome was statistically significant, although the 95% CI included no association and a decreased risk as plausible estimates (RR 1.43, 95% CI 0.71 to 2.85; two studies, n = 552 meta-analyses). Also, the meta-analytic estimate suggested an increased risk of downgrading (i.e. changing a primary outcome to secondary) when the outcome was statistically significant, although the 95% CI included no association and a decreased risk as plausible estimates (RR 1.26, 95% CI 0.60 to 2.62; two studies, n = 484 meta-analyses). None of the included studies had investigated whether the association between statistical significance and adding, upgrading or downgrading of outcomes was modified by the type of comparison, direction of effect or type of outcome; or whether there is an association between direction of the effect estimate and discrepant outcome reporting.Several secondary outcomes were reported in the included studies. Two studies found that reasons for discrepant outcome reporting were infrequently reported in published systematic reviews (6% in one study and 22% in the other). One study (including 62 Cochrane Reviews) found that 32% (95% CI 21% to 45%) of systematic reviews did not report all primary outcomes in the abstract. Another study (including 64 Cochrane and 118 non-Cochrane reviews) found that statistically significant primary outcomes were more likely to be completely reported in the systematic review abstract than non-significant primary outcomes (RR 2.66, 95% CI 1.81 to 3.90). None of the studies included systematic reviews published after 2009 when reporting standards for systematic reviews (Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement, and Methodological Expectations of Cochrane Intervention Reviews (MECIR)) were disseminated, so the results might not be generalisable to more recent systematic reviews. AUTHORS' CONCLUSIONS Discrepant outcome reporting between the protocol and published systematic review is fairly common, although the association between statistical significance and discrepant outcome reporting is uncertain. Complete reporting of outcomes in systematic review abstracts is associated with statistical significance of the results for those outcomes. Systematic review outcomes and analysis plans should be specified prior to seeing the results of included studies to minimise post-hoc decisions that may be based on the observed results. Modifications that occur once the review has commenced, along with their justification, should be clearly reported. Effect estimates and CIs should be reported for all systematic review outcomes regardless of the results. The lack of research on selective inclusion of results in systematic reviews needs to be addressed and studies that avoid the methodological weaknesses of existing research are also needed.
Collapse
|
systematic-review |
11 |
136 |
25
|
Islam RM, Bell RJ, Green S, Page MJ, Davis SR. Safety and efficacy of testosterone for women: a systematic review and meta-analysis of randomised controlled trial data. Lancet Diabetes Endocrinol 2019; 7:754-766. [PMID: 31353194 DOI: 10.1016/s2213-8587(19)30189-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The benefits and risks of testosterone treatment for women with diminished sexual wellbeing remain controversial. We did a systematic review and meta-analysis to assess potential benefits and risks of testosterone for women. METHODS We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, and Web of Science for blinded, randomised controlled trials of testosterone treatment of at least 12 weeks' duration completed between Jan 1, 1990, and Dec 10, 2018. We also searched drug registration applications to the European Medicine Agency and the US Food and Drug Administration to identify any unpublished data. Primary outcomes were the effects of testosterone on sexual function, cardiometabolic variables, cognitive measures, and musculoskeletal health. This study is registered with the International Prospective Register of Systematic Reviews (PROSPERO), number CRD42018104073. FINDINGS Our search strategy retrieved 46 reports of 36 randomised controlled trials comprising 8480 participants. Our meta-analysis showed that, compared with placebo or a comparator (eg, oestrogen, with or without progestogen), testosterone significantly increased sexual function, including satisfactory sexual event frequency (mean difference 0·85, 95% CI 0·52 to 1·18), sexual desire (standardised mean difference 0·36, 95% CI 0·22 to 0·50), pleasure (mean difference 6·86, 95% CI 5·19 to 8·52), arousal (standardised mean difference 0·28, 95% CI 0·21 to 0·35), orgasm (standardised mean difference 0·25, 95% CI 0·18 to 0·32), responsiveness (standardised mean difference 0·28, 95% CI 0·21 to 0·35), and self-image (mean difference 5·64, 95% CI 4·03 to 7·26), and reduced sexual concerns (mean difference 8·99, 95% CI 6·90 to 11·08) and distress (standardised mean difference -0·27, 95% CI -0·36 to -0·17) in postmenopausal women. A significant rise in the amount of LDL-cholesterol, and reductions in the amounts of total cholesterol, HDL-cholesterol, and triglycerides, were seen with testosterone administered orally, but not when administered non-orally (eg, by transdermal patch or cream). An overall increase in weight was recorded with testosterone treatment. No effects of testosterone were reported for body composition, musculoskeletal variables, or cognitive measures, although the number of women who contributed data for these outcomes was small. Testosterone was associated with a significantly greater likelihood of reporting acne and hair growth, but no serious adverse events were recorded. INTERPRETATION Testosterone is effective for postmenopausal women with low sexual desire causing distress, with administration via non-oral routes (eg, transdermal application) preferred because of a neutral lipid profile. The effects of testosterone on individual wellbeing and musculoskeletal and cognitive health, as well as long-term safety, warrant further investigation. FUNDING Australian National Health and Medical Research Council.
Collapse
|
Meta-Analysis |
6 |
131 |