1
|
Tetreault M, Fahiminiya S, Antonicka H, Mitchell GA, Geraghty MT, Lines M, Boycott KM, Shoubridge EA, Mitchell JJ, Michaud JL, Majewski J. Whole-exome sequencing identifies novel ECHS1 mutations in Leigh syndrome. Hum Genet 2015; 134:981-91. [PMID: 26099313 DOI: 10.1007/s00439-015-1577-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/03/2015] [Indexed: 12/28/2022]
Abstract
Leigh syndrome (LS) is a rare heterogeneous progressive neurodegenerative disorder usually presenting in infancy or early childhood. Clinical presentation is variable and includes psychomotor delay or regression, acute neurological or acidotic episodes, hypotonia, ataxia, spasticity, movement disorders, and corresponding anomalies of the basal ganglia and brain stem on magnetic resonance imaging. To date, 35 genes have been associated with LS, mostly involved in mitochondrial respiratory chain function and encoded in either nuclear or mitochondrial DNA. We used whole-exome sequencing to identify disease-causing variants in four patients with basal ganglia abnormalities and clinical presentations consistent with LS. Compound heterozygote variants in ECHS1, encoding the enzyme enoyl-CoA hydratase were identified. One missense variant (p.Thr180Ala) was common to all four patients and the haplotype surrounding this variant was also shared, suggesting a common ancestor of French-Canadian origin. Rare mutations in ECHS1 as well as in HIBCH, the enzyme downstream in the valine degradation pathway, have been associated with LS or LS-like disorders. A clear clinical overlap is observed between our patients and the reported cases with ECHS1 or HIBCH deficiency. The main clinical features observed in our cohort are T2-hyperintense signal in the globus pallidus and putamen, failure to thrive, developmental delay or regression, and nystagmus. Respiratory chain studies are not strikingly abnormal in our patients: one patient had a mild reduction of complex I and III and another of complex IV. The identification of four additional patients with mutations in ECHS1 highlights the emerging importance of this pathway in LS.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
47 |
2
|
Zambonin JL, Bellomo A, Ben-Pazi H, Everman DB, Frazer LM, Geraghty MT, Harper AD, Jones JR, Kamien B, Kernohan K, Koenig MK, Lines M, Palmer EE, Richardson R, Segel R, Tarnopolsky M, Vanstone JR, Gibbons M, Collins A, Fogel BL, Dudding-Byth T, Boycott KM. Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia. Orphanet J Rare Dis 2017; 12:121. [PMID: 28659154 PMCID: PMC5490223 DOI: 10.1186/s13023-017-0672-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/13/2017] [Indexed: 01/02/2023] Open
Abstract
Background Spinocerebellar ataxia type 29 (SCA29) is an autosomal dominant, non-progressive cerebellar ataxia characterized by infantile-onset hypotonia, gross motor delay and cognitive impairment. Affected individuals exhibit cerebellar dysfunction and often have cerebellar atrophy on neuroimaging. Recently, missense mutations in ITPR1 were determined to be responsible. Results Clinical information on 21 individuals from 15 unrelated families with ITPR1 mutations was retrospectively collected using standardized questionnaires, including 11 previously unreported singletons and 2 new patients from a previously reported family. We describe the genetic, clinical and neuroimaging features of these patients to further characterize the clinical features of this rare condition and assess for any genotype-phenotype correlation for this disorder. Our cohort consisted of 9 males and 12 females, with ages ranging from 28 months to 49 years. Disease course was non-progressive with infantile-onset hypotonia and delays in motor and speech development. Gait ataxia was present in all individuals and 10 (48%) were not ambulating independently between the ages of 3–12 years of age. Mild-to-moderate cognitive impairment was present in 17 individuals (85%). Cerebellar atrophy developed after initial symptom presentation in 13 individuals (72%) and was not associated with disease progression or worsening functional impairment. We identified 12 different mutations including 6 novel mutations; 10 mutations were missense (with 4 present in >1 individual), 1 a splice site mutation leading to an in-frame insertion and 1 an in-frame deletion. No specific genotype-phenotype correlations were observed within our cohort. Conclusions Our findings document significant clinical heterogeneity between individuals with SCA29 in a large cohort of molecularly confirmed cases. Based on the retrospective observed clinical features and disease course, we provide recommendations for management. Further research into the natural history of SCA29 through prospective studies is an important next step in better understanding the condition. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0672-7) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
46 |
3
|
Johnson BV, Kumar R, Oishi S, Alexander S, Kasherman M, Vega MS, Ivancevic A, Gardner A, Domingo D, Corbett M, Parnell E, Yoon S, Oh T, Lines M, Lefroy H, Kini U, Van Allen M, Grønborg S, Mercier S, Küry S, Bézieau S, Pasquier L, Raynaud M, Afenjar A, Billette de Villemeur T, Keren B, Désir J, Van Maldergem L, Marangoni M, Dikow N, Koolen DA, VanHasselt PM, Weiss M, Zwijnenburg P, Sa J, Reis CF, López-Otín C, Santiago-Fernández O, Fernández-Jaén A, Rauch A, Steindl K, Joset P, Goldstein A, Madan-Khetarpal S, Infante E, Zackai E, Mcdougall C, Narayanan V, Ramsey K, Mercimek-Andrews S, Pena L, Shashi V, Schoch K, Sullivan JA, Pinto E Vairo F, Pichurin PN, Ewing SA, Barnett SS, Klee EW, Perry MS, Koenig MK, Keegan CE, Schuette JL, Asher S, Perilla-Young Y, Smith LD, Rosenfeld JA, Bhoj E, Kaplan P, Li D, Oegema R, van Binsbergen E, van der Zwaag B, Smeland MF, Cutcutache I, Page M, Armstrong M, Lin AE, Steeves MA, Hollander ND, Hoffer MJV, Reijnders MRF, Demirdas S, Koboldt DC, Bartholomew D, Mosher TM, Hickey SE, Shieh C, Sanchez-Lara PA, Graham JM, Tezcan K, Schaefer GB, Danylchuk NR, Asamoah A, Jackson KE, Yachelevich N, Au M, Pérez-Jurado LA, Kleefstra T, Penzes P, et alJohnson BV, Kumar R, Oishi S, Alexander S, Kasherman M, Vega MS, Ivancevic A, Gardner A, Domingo D, Corbett M, Parnell E, Yoon S, Oh T, Lines M, Lefroy H, Kini U, Van Allen M, Grønborg S, Mercier S, Küry S, Bézieau S, Pasquier L, Raynaud M, Afenjar A, Billette de Villemeur T, Keren B, Désir J, Van Maldergem L, Marangoni M, Dikow N, Koolen DA, VanHasselt PM, Weiss M, Zwijnenburg P, Sa J, Reis CF, López-Otín C, Santiago-Fernández O, Fernández-Jaén A, Rauch A, Steindl K, Joset P, Goldstein A, Madan-Khetarpal S, Infante E, Zackai E, Mcdougall C, Narayanan V, Ramsey K, Mercimek-Andrews S, Pena L, Shashi V, Schoch K, Sullivan JA, Pinto E Vairo F, Pichurin PN, Ewing SA, Barnett SS, Klee EW, Perry MS, Koenig MK, Keegan CE, Schuette JL, Asher S, Perilla-Young Y, Smith LD, Rosenfeld JA, Bhoj E, Kaplan P, Li D, Oegema R, van Binsbergen E, van der Zwaag B, Smeland MF, Cutcutache I, Page M, Armstrong M, Lin AE, Steeves MA, Hollander ND, Hoffer MJV, Reijnders MRF, Demirdas S, Koboldt DC, Bartholomew D, Mosher TM, Hickey SE, Shieh C, Sanchez-Lara PA, Graham JM, Tezcan K, Schaefer GB, Danylchuk NR, Asamoah A, Jackson KE, Yachelevich N, Au M, Pérez-Jurado LA, Kleefstra T, Penzes P, Wood SA, Burne T, Pierson TM, Piper M, Gécz J, Jolly LA. Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling. Biol Psychiatry 2020; 87:100-112. [PMID: 31443933 PMCID: PMC6925349 DOI: 10.1016/j.biopsych.2019.05.028] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative. METHODS We used clinically recommended guidelines to collect and interrogate the pathogenicity of 44 USP9X variants associated with neurodevelopmental disorders in males. Functional studies in patient-derived cell lines and mice were used to determine mechanisms of pathology. RESULTS Twelve missense variants showed strong evidence of pathogenicity. We define a characteristic phenotype of the central nervous system (white matter disturbances, thin corpus callosum, and widened ventricles); global delay with significant alteration of speech, language, and behavior; hypotonia; joint hypermobility; visual system defects; and other common congenital and dysmorphic features. Comparison of in silico and phenotypical features align additional variants of unknown significance with likely pathogenicity. In support of partial loss-of-function mechanisms, using patient-derived cell lines, we show loss of only specific USP9X substrates that regulate neurodevelopmental signaling pathways and a united defect in transforming growth factor β signaling. In addition, we find correlates of the male phenotype in Usp9x brain-specific knockout mice, and further resolve loss of hippocampal-dependent learning and memory. CONCLUSIONS Our data demonstrate the involvement of USP9X variants in a distinctive neurodevelopmental and behavioral syndrome in male subjects and identify plausible mechanisms of pathogenesis centered on disrupted transforming growth factor β signaling and hippocampal function.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
35 |
4
|
Kernohan KD, Hartley T, Naumenko S, Armour CM, Graham GE, Nikkel SM, Lines M, Geraghty MT, Richer J, Mears W, Boycott KM, Dyment DA. Diagnostic clarity of exome sequencing following negative comprehensive panel testing in the neonatal intensive care unit. Am J Med Genet A 2019; 176:1688-1691. [PMID: 30160830 DOI: 10.1002/ajmg.a.38838] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022]
|
Research Support, Non-U.S. Gov't |
6 |
26 |
5
|
Tamimi Y, Lines M, Coca-Prados M, Walter MA. Identification of target genes regulated by FOXC1 using nickel agarose-based chromatin enrichment. Invest Ophthalmol Vis Sci 2004; 45:3904-13. [PMID: 15505035 DOI: 10.1167/iovs.04-0628] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To overcome the problem of antibody availability, often encountered during chromatin immunoprecipitation (ChIP) assays, nickel agarose-based chromatin enrichment (NACE) was developed. Based on the affinity of (His)-6-tagged proteins for the nickel ion, this modified form of ChIP allows the isolation of chromatin in the absence of specific antibodies. METHODS Nonpigmented ciliary epithelium cells were transfected with (His)-6-tagged FOXC1. FOXC1-enriched chromatin complexes were isolated by using the tight electrostatic interaction between histidine residues of the recombinant FOXC1 protein and nickel. One hundred fifty NACE-enriched clones were sequenced and subjected to in silico and biochemical analyses. RESULTS Twenty-six clones were detected near known genes: Eight were near predicted but uncharacterized genes, eight were within areas where neither known nor predicted genes have yet been mapped, four were chimeric, and the rest were either repetitive (n=81) or poor-quality (n=23) sequences. Twenty of the 26 known genes were expressed in the eye. Five of the NACE-enriched clones (BMP2K, DACH, FVT-1, SIX-1, and PGE-2 receptor), as well as nine clones selected from the literature, were validated by PCR amplification in two independent lots of NACE-enriched chromatin. All five NACE-selected genes were detected in two independent assays, as well as four (BMP7, SMAD2, TGF-B1, and WNT6) of the nine genes selected from the literature, consistent with these genes' being regulated by FOXC1. CONCLUSIONS NACE is a useful technique allowing specific chromatin enrichment in cases where antibodies are unavailable. Specific recovery of PTGER, DACH1, WNT6, and FVT-1 implicates FOXC1 in a variety of cellular events including modulation of intraocular pressure, cell cycle, ocular development, and oncogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
25 |
6
|
Abstract
The CT and magnetic resonance findings of neuropathic spinal arthropathy in a patient with long-standing complete post-traumatic paraplegia are reported. The arthropathy involved primarily the disk space between the 11th and 12th thoracic vertebrae. The CT changes included vertebral body sclerosis with foci of bone destruction, replacement of the disk space by a soft tissue mass containing bone fragments extending beyond the confines of the vertebral body margins, degenerative changes of the posterior joints, a partially calcified progressively enlarging paraspinal soft tissue mass, and calcification within the spinal canal.
Collapse
|
Case Reports |
38 |
22 |
7
|
Dai H, Zhang VW, El-Hattab AW, Ficicioglu C, Shinawi M, Lines M, Schulze A, McNutt M, Gotway G, Tian X, Chen S, Wang J, Craigen WJ, Wong LJ. FBXL4 defects are common in patients with congenital lactic acidemia and encephalomyopathic mitochondrial DNA depletion syndrome. Clin Genet 2017; 91:634-639. [PMID: 27743463 DOI: 10.1111/cge.12894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022]
Abstract
Mutations in FBXL4 have recently been recognized to cause a mitochondrial disorder, with clinical features including early onset lactic acidosis, hypotonia, and developmental delay. FBXL4 sequence analysis was performed in 808 subjects suspected to have a mitochondrial disorder. In addition, 28 samples from patients with early onset of lactic acidosis, but without identifiable mutations in 192 genes known to cause mitochondrial diseases, were examined for FBXL4 mutations. Definitive diagnosis was made in 10 new subjects with a total of 7 novel deleterious variants; 5 null and 2 missense substitutions. All patients exhibited congenital lactic acidemia, most of them with severe encephalopathic presentation, and global developmental delay. Overall, FBXL4 defects account for at least 0.7% (6 out of 808) of subjects suspected to have a mitochondrial disorder, and as high as 14.3% (4 out of 28) in young children with congenital lactic acidosis and clinical features of mitochondrial disease. Including FBLX4 in the mitochondrial diseases panel should be particularly important for patients with congenital lactic acidosis.
Collapse
|
Journal Article |
8 |
16 |
8
|
Liwak-Muir U, Mamady H, Naas T, Wylie Q, McBride S, Lines M, Michaud J, Baird SD, Chakraborty PK, Holcik M. Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts. Orphanet J Rare Dis 2016; 11:79. [PMID: 27317422 PMCID: PMC4912790 DOI: 10.1186/s13023-016-0466-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND SIFD (Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay) is a novel form of congenital sideroblastic anemia associated with B-cell immunodeficiency, periodic fevers, and developmental delay caused by mutations in the CCA-adding enzyme TRNT1, but the precise molecular pathophysiology is not known. RESULTS We show that the disease causing mutations in patient-derived fibroblasts do not affect subcellular localization of TRNT1 and show no gross morphological differences when compared to control cells. Analysis of cellular respiration and oxidative phosphorylation (OXPHOS) complexes demonstrates that both basal and maximal respiration rates are decreased in patient cells, which may be attributed to an observed decrease in the abundance of select proteins of the OXPHOS complexes. CONCLUSIONS Our data provides further insight into cellular pathophysiology of SIFD.
Collapse
|
research-article |
9 |
13 |
9
|
Tingley K, Lamoureux M, Pugliese M, Geraghty MT, Kronick JB, Potter BK, Coyle D, Wilson K, Kowalski M, Austin V, Brunel-Guitton C, Buhas D, Chan AKJ, Dyack S, Feigenbaum A, Giezen A, Goobie S, Greenberg CR, Ghai SJ, Inbar-Feigenberg M, Karp N, Kozenko M, Langley E, Lines M, Little J, MacKenzie J, Maranda B, Mercimek-Andrews S, Mohan C, Mhanni A, Mitchell G, Mitchell JJ, Nagy L, Napier M, Pender A, Potter M, Prasad C, Ratko S, Salvarinova R, Schulze A, Siriwardena K, Sondheimer N, Sparkes R, Stockler-Ipsiroglu S, Trakadis Y, Turner L, Van Karnebeek C, Vallance H, Vandersteen A, Walia J, Wilson A, Wilson BJ, Yu AC, Yuskiv N, Chakraborty P. Evaluation of the quality of clinical data collection for a pan-Canadian cohort of children affected by inherited metabolic diseases: lessons learned from the Canadian Inherited Metabolic Diseases Research Network. Orphanet J Rare Dis 2020; 15:89. [PMID: 32276663 PMCID: PMC7149838 DOI: 10.1186/s13023-020-01358-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The Canadian Inherited Metabolic Diseases Research Network (CIMDRN) is a pan-Canadian practice-based research network of 14 Hereditary Metabolic Disease Treatment Centres and over 50 investigators. CIMDRN aims to develop evidence to improve health outcomes for children with inherited metabolic diseases (IMD). We describe the development of our clinical data collection platform, discuss our data quality management plan, and present the findings to date from our data quality assessment, highlighting key lessons that can serve as a resource for future clinical research initiatives relating to rare diseases. METHODS At participating centres, children born from 2006 to 2015 who were diagnosed with one of 31 targeted IMD were eligible to participate in CIMDRN's clinical research stream. For all participants, we collected a minimum data set that includes information about demographics and diagnosis. For children with five prioritized IMD, we collected longitudinal data including interventions, clinical outcomes, and indicators of disease management. The data quality management plan included: design of user-friendly and intuitive clinical data collection forms; validation measures at point of data entry, designed to minimize data entry errors; regular communications with each CIMDRN site; and routine review of aggregate data. RESULTS As of June 2019, CIMDRN has enrolled 798 participants of whom 764 (96%) have complete minimum data set information. Results from our data quality assessment revealed that potential data quality issues were related to interpretation of definitions of some variables, participants who transferred care across institutions, and the organization of information within the patient charts (e.g., neuropsychological test results). Little information was missing regarding disease ascertainment and diagnosis (e.g., ascertainment method - 0% missing). DISCUSSION Using several data quality management strategies, we have established a comprehensive clinical database that provides information about care and outcomes for Canadian children affected by IMD. We describe quality issues and lessons for consideration in future clinical research initiatives for rare diseases, including accurately accommodating different clinic workflows and balancing comprehensiveness of data collection with available resources. Integrating data collection within clinical care, leveraging electronic medical records, and implementing core outcome sets will be essential for achieving sustainability.
Collapse
|
research-article |
5 |
10 |
10
|
Grams SE, Argiropoulos B, Lines M, Chakraborty P, Mcgowan-Jordan J, Geraghty MT, Tsang M, Eswara M, Tezcan K, Adams KL, Linck L, Himes P, Kostiner D, Zand DJ, Stalker H, Driscoll DJ, Huang T, Rosenfeld JA, Li X, Chen E. Genotype-phenotype characterization in 13 individuals with chromosome Xp11.22 duplications. Am J Med Genet A 2015; 170A:967-77. [PMID: 26692240 DOI: 10.1002/ajmg.a.37519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/25/2015] [Indexed: 11/10/2022]
Abstract
We report 13 new individuals with duplications in Xp11.22-p11.23. The index family has one male and two female members in three generations with mild-severe intellectual disability (ID), speech delay, dysmorphic features, early puberty, constipation, and/or hand and foot abnormalities. Affected individuals were found to have two small duplications in Xp11.22 at nucleotide position (hg19) 50,112,063-50,456,458 bp (distal) and 53,160,114-53,713,154 bp (proximal). Collectively, these two regions include 14 RefSeq genes, prompting collection of a larger cohort of patients, in an attempt to delineate critical genes associated with the observed phenotype. In total, we have collected data on nine individuals with duplications overlapping the distal duplication region containing SHROOM4 and DGKK and eight individuals overlapping the proximal region including HUWE1. Duplications of HUWE1 have been previously associated with non-syndromic ID. Our data, with previously published reports, suggest that duplications involving SHROOM4 and DGKK may represent a new syndromic X-linked ID critical region associated with mild to severe ID, speech delay +/- dysarthria, attention deficit disorder, precocious puberty, constipation, and motor delay. We frequently observed foot abnormalities, 5th finger clinodactyly, tapering fingers, constipation, and exercise intolerance in patients with duplications of these two genes. Regarding duplications including the proximal region, our observations agree with previous studies, which have found associations with intellectual disability. In addition, expressive language delay, failure to thrive, motor delay, and 5th finger clinodactyly were also frequently observed in patients with the proximal duplication.
Collapse
|
Journal Article |
10 |
9 |
11
|
Zhao T, Goedhart C, Pfeffer G, Greenway SC, Lines M, Khan A, Innes AM, Shutt TE. Skeletal Phenotypes Due to Abnormalities in Mitochondrial Protein Homeostasis and Import. Int J Mol Sci 2020; 21:8327. [PMID: 33171986 PMCID: PMC7664180 DOI: 10.3390/ijms21218327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial disease represents a collection of rare genetic disorders caused by mitochondrial dysfunction. These disorders can be quite complex and heterogeneous, and it is recognized that mitochondrial disease can affect any tissue at any age. The reasons for this variability are not well understood. In this review, we develop and expand a subset of mitochondrial diseases including predominantly skeletal phenotypes. Understanding how impairment ofdiverse mitochondrial functions leads to a skeletal phenotype will help diagnose and treat patients with mitochondrial disease and provide additional insight into the growing list of human pathologies associated with mitochondrial dysfunction. The underlying disease genes encode factors involved in various aspects of mitochondrial protein homeostasis, including proteases and chaperones, mitochondrial protein import machinery, mediators of inner mitochondrial membrane lipid homeostasis, and aminoacylation of mitochondrial tRNAs required for translation. We further discuss a complex of frequently associated phenotypes (short stature, cataracts, and cardiomyopathy) potentially explained by alterations to steroidogenesis, a process regulated by mitochondria. Together, these observations provide novel insight into the consequences of impaired mitochondrial protein homeostasis.
Collapse
|
Review |
5 |
8 |
12
|
Sharp DM, Walker MB, Chaturvedi A, Upadhyay S, Hamid A, Walker AA, Bateman J, Braid F, Ellwood K, Hebblewhite C, Hope T, Lines M, Walker LG. A randomised controlled trial of the psychoneuroimmunological effects of reflexology in women with early-stage breast cancer. Breast Cancer Res 2010. [PMCID: PMC2875588 DOI: 10.1186/bcr2523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
15 |
2 |
13
|
Hartley T, Soubry É, Acker M, Osmond M, Couse M, Gillespie MK, Ito Y, Marshall AE, Lemire G, Huang L, Chisholm C, Eaton AJ, Price EM, Dowling JJ, Ramani AK, Mendoza-Londono R, Costain G, Axford MM, Szuto A, McNiven V, Damseh N, Jobling R, de Kock L, Mojarad BA, Young T, Shao Z, Hayeems RZ, Graham ID, Tarnopolsky M, Brady L, Armour CM, Geraghty M, Richer J, Sawyer S, Lines M, Mercimek-Andrews S, Carter MT, Graham G, Kannu P, Lazier J, Li C, Aul RB, Balci TB, Dlamini N, Badalato L, Guerin A, Walia J, Chitayat D, Cohn R, Faghfoury H, Forster-Gibson C, Gonorazky H, Grunebaum E, Inbar-Feigenberg M, Karp N, Morel C, Rusnak A, Sondheimer N, Warman-Chardon J, Bhola PT, Bourque DK, Chacon IJ, Chad L, Chakraborty P, Chong K, Doja A, Goh ESY, Saleh M, Potter BK, Marshall CR, Dyment DA, Kernohan K, Boycott KM. Bridging clinical care and research in Ontario, Canada: Maximizing diagnoses from reanalysis of clinical exome sequencing data. Clin Genet 2023; 103:288-300. [PMID: 36353900 DOI: 10.1111/cge.14262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses.
Collapse
|
|
2 |
2 |
14
|
Gilpin C, Lines M, Tomiak E. When is a desmoid not a desmoid? Endometrial cancer as an extracolonic manifestation of MYH Associated Polyposis (MAP). Hered Cancer Clin Pract 2011. [PMCID: PMC3288939 DOI: 10.1186/1897-4287-9-s1-p14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
|
14 |
1 |
15
|
Masson J, Pons L, Busa T, Missirian C, Lines M, Tevissen H, Diguet F, Rollat-Farnier PA, Lesca G, Sanlaville D, Schluth-Bolard C. Disruption and deletion of the proximal part of TCF4 are associated with mild intellectual disability: About three new patients. Eur J Med Genet 2022; 65:104458. [DOI: 10.1016/j.ejmg.2022.104458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/01/2022]
|
|
3 |
1 |
16
|
Ginsberg A, Lines M, Karlin K, Lippard S, DiSalvo F. Additions and Corrections - Orbitally Dependent Exchange in Two Sulfur-Bridged Binuclear Iron(II) Complexes. Magnetic Exchange in Transition Metal Complexes. J Am Chem Soc 1977. [DOI: 10.1021/ja00446a605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
48 |
|
17
|
Weiman DI, Gillespie MK, Hartley T, Osmond M, Ito Y, Boycott KM, Kernohan KD, Lines M, McMillan HJ. Neurophysiological Characteristics of Allgrove (Triple A) Syndrome: Case Report and Literature Review. Child Neurol Open 2021; 8:2329048X211031059. [PMID: 34796249 PMCID: PMC8594529 DOI: 10.1177/2329048x211031059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Allgrove or “Triple A” syndrome is characterized by alacrima, achalasia, and adrenocorticotropic hormone-resistant adrenal insufficiency, as well as central and peripheral nervous system involvement. Patients demonstrate heterogeneity with regard to their age of symptom onset, disease severity, and nature of clinical symptoms. Neurophysiological testing has also shown variability ranging from: motor neuron disease with prominent bulbar involvement, motor-predominant neuropathy, or sensorimotor polyneuropathy with axonal or mixed axonal and demyelinating features. We report an 11-year-old boy who presented with neurological symptoms of progressive spasticity and peripheral neuropathy. His neurophysiological testing confirmed a sensorimotor polyneuropathy with axonal and demyelinating features. Exome sequencing identified compound heterozygote variants in the AAAS gene. We summarize the neurophysiological findings in him and 29 other patients with Allgrove syndrome where nerve conduction study findings were available thereby providing a review of the heterogeneity in neurophysiological findings that have been reported in this rare disorder.
Collapse
|
Case Reports |
4 |
|
18
|
Sabeh P, Dumas SA, Maios C, Daghar H, Korzeniowski M, Rousseau J, Lines M, Guerin A, Millichap JJ, Landsverk M, Grebe T, Lindstrom K, Strober J, Ait Mouhoub T, Zweier C, Steinraths M, Hebebrand M, Callewaert B, Abou Jamra R, Kautza-Lucht M, Wegler M, Kruszka P, Kumps C, Banne E, Waberski MB, Dieux A, Raible S, Krantz I, Medne L, Pechter K, Villard L, Guerrini R, Bianchini C, Barba C, Mei D, Blanc X, Kallay C, Ranza E, Yang XR, O'Heir E, Donald KA, Murugasen S, Bruwer Z, Calikoglu M, Mathews JM, Lesieur-Sebellin M, Baujat G, Derive N, Pierson TM, Murrell JR, Shillington A, Ormieres C, Rondeau S, Reis A, Fernandez-Jaen A, Au PYB, Sweetser DA, Briere LC, Couque N, Perrin L, Schymick J, Gueguen P, Lefebvre M, Van Andel M, Juusola J, Antonarakis SE, Parker JA, Burnett BG, Campeau PM. Heterozygous UBR5 variants result in a neurodevelopmental syndrome with developmental delay, autism, and intellectual disability. Am J Hum Genet 2025; 112:75-86. [PMID: 39721588 PMCID: PMC11739880 DOI: 10.1016/j.ajhg.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
E3 ubiquitin ligases have been linked to developmental diseases including autism, Angelman syndrome (UBE3A), and Johanson-Blizzard syndrome (JBS) (UBR1). Here, we report variants in the E3 ligase UBR5 in 29 individuals presenting with a neurodevelopmental syndrome that includes developmental delay, autism, intellectual disability, epilepsy, movement disorders, and/or genital anomalies. Their phenotype is distinct from JBS due to the absence of exocrine pancreatic insufficiency and the presence of autism, epilepsy, and, in some probands, a movement disorder. E3 ubiquitin ligases are responsible for transferring ubiquitin to substrate proteins to regulate a variety of cellular functions, including protein degradation, protein-protein interactions, and protein localization. Knocking out ubr-5 in C. elegans resulted in a lower movement score compared to the wild type, supporting a role for UBR5 in neurodevelopment. Using an in vitro autoubiquitination assay and confocal microscopy for the human protein, we found decreased ubiquitination activity and altered cellular localization in several variants found in our cohort compared to the wild type. In conclusion, we found that variants in UBR5 cause a neurodevelopmental syndrome that can be associated with a movement disorder, reinforcing the role of the UBR protein family in a neurodevelopmental disease that differs from previously described ubiquitin-ligase-related syndromes. We also provide evidence for the pathogenic potential loss of UBR5 function with functional experiments in C. elegans and in vitro ubiquitination assays.
Collapse
|
research-article |
1 |
|
19
|
Burgos R, Rodríguez-Pardo D, Ferrer C, Lines M, Malagelada C, Segurola H, Martinez J, Almirante B. PP242-SUN: Impact of the Implementation of a Multidisciplinary Prevention Strategy in the Incidence of Catheter-Related Bacteremia due to Parenteral Nutrition (BRC-NP) in the HOSPITAL. Clin Nutr 2014. [DOI: 10.1016/s0261-5614(14)50283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
11 |
|
20
|
Iverson R, Taljaard M, Geraghty MT, Pugliese M, Tingley K, Coyle D, Kronick JB, Wilson K, Austin V, Brunel-Guitton C, Buhas D, Butcher NJ, Chan AKJ, Dyack S, Goobie S, Greenberg CR, Jain-Ghai S, Inbar-Feigenberg M, Karp N, Kozenko M, Langley E, Lines M, Little J, MacKenzie J, Maranda B, Mercimek-Andrews S, Mhanni A, Mitchell JJ, Nagy L, Offringa M, Pender A, Potter M, Prasad C, Ratko S, Salvarinova R, Schulze A, Siriwardena K, Sondheimer N, Sparkes R, Stockler-Ipsiroglu S, Tapscott K, Trakadis Y, Turner L, Van Karnebeek C, Vandersteen A, Walia JS, Wilson BJ, Yu AC, Potter BK, Chakraborty P. Assessing the quality and value of metabolic chart data for capturing core outcomes for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. BMC Pediatr 2024; 24:37. [PMID: 38216926 PMCID: PMC10787451 DOI: 10.1186/s12887-023-04393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.
Collapse
|
research-article |
1 |
|