1
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
|
research-article |
6 |
209 |
2
|
Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD, Friess H, Büchler M, Evert M, Lerch MM, Weiss FU. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 2012; 61:439-48. [PMID: 22147512 DOI: 10.1136/gutjnl-2011-300060] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Pancreatic cancer is characterised by invasive tumour spread and early metastasis formation. During epithelial-mesenchymal transition, loss of the cell adhesion molecule E-cadherin is frequent and can be caused by genetic or epigenetic modifications, recruitment of transcriptional activators/repressors or post-translational modifications. A study was undertaken to investigate how E-cadherin expression in human pancreatic adenocarcinoma and pancreatic cancer cell lines is regulated. METHODS In 25 human pancreatic cancer resection specimens, the coding region of the E-cadherin gene (CDH1) was sequenced for somatic mutations. The tumour samples and 11 established human pancreatic cancer cell lines were analysed by immunohistochemistry, western blot analysis, chromatin immunoprecipitation and methylation-specific PCR. The role of specific histone deacetylase inhibitors (HDACi) on pancreatic tumour cell migration and proliferation was studied in vitro. RESULTS Neither somatic mutations nor CDH1 promoter hypermethylation were found to be responsible for downregulation of E-cadherin in pancreatic cancer. In the transcriptionally active CDH1 promoter, acetylation of histones H3 and H4 was detected whereas HDAC1 and HDAC2 were found attached only to a silent promoter. Expression of ZEB1, a transcription factor known to recruit HDACs, was seen in E-cadherin-deficient cell lines in which ZEB1/HDAC complexes were found attached to the CDH1 promoter. Moreover, knockdown of ZEB1 prevented HDAC from binding to the CDH1 promoter, resulting in histone acetylation and expression of E-cadherin. HDACi treatment attenuated tumour cell migration and proliferation. CONCLUSIONS These findings imply an important role for histone deacetylation in the downregulation of E-cadherin in human pancreatic cancer. Recruitment of HDACs to the CDH1 promoter is regulated by the transcription factor ZEB1, and inhibition of HDACs may be a promising antitumour therapy for pancreatic cancer.
Collapse
|
|
13 |
192 |
3
|
Sendler M, Weiss FU, Golchert J, Homuth G, van den Brandt C, Mahajan UM, Partecke LI, Döring P, Gukovsky I, Gukovskaya AS, Wagh PR, Lerch MM, Mayerle J. Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology 2018; 154:704-718.e10. [PMID: 29079517 PMCID: PMC6663074 DOI: 10.1053/j.gastro.2017.10.018] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Acute pancreatitis is characterized by premature intracellular activation of digestive proteases within pancreatic acini and a consecutive systemic inflammatory response. We investigated how these processes interact during severe pancreatitis in mice. METHODS Pancreatitis was induced in C57Bl/6 wild-type (control), cathepsin B (CTSB)-knockout, and cathepsin L-knockout mice by partial pancreatic duct ligation with supramaximal caerulein injection, or by repetitive supramaximal caerulein injections alone. Immune cells that infiltrated the pancreas were characterized by immunofluorescence detection of Ly6g, CD206, and CD68. Macrophages were isolated from bone marrow and incubated with bovine trypsinogen or isolated acinar cells; the macrophages were then transferred into pancreatitis control or cathepsin-knockout mice. Activities of proteases and nuclear factor (NF)-κB were determined using fluorogenic substrates and trypsin activity was blocked by nafamostat. Cytokine levels were measured using a cytometric bead array. We performed immunohistochemical analyses to detect trypsinogen, CD206, and CD68 in human chronic pancreatitis (n = 13) and acute necrotizing pancreatitis (n = 15) specimens. RESULTS Macrophages were the predominant immune cell population that migrated into the pancreas during induction of pancreatitis in control mice. CD68-positive macrophages were found to phagocytose acinar cell components, including zymogen-containing vesicles, in pancreata from mice with pancreatitis, as well as human necrotic pancreatic tissues. Trypsinogen became activated in macrophages cultured with purified trypsinogen or co-cultured with pancreatic acini and in pancreata of mice with pancreatitis; trypsinogen activation required macrophage endocytosis and expression and activity of CTSB, and was sensitive to pH. Activation of trypsinogen in macrophages resulted in translocation of NF-kB and production of inflammatory cytokines; mice without trypsinogen activation (CTSB-knockout mice) in macrophages developed less severe pancreatitis compared with control mice. Transfer of macrophage from control mice to CTSB-knockout mice increased the severity of pancreatitis. Inhibition of trypsin activity in macrophages prevented translocation of NF-κB and production of inflammatory cytokines. CONCLUSIONS Studying pancreatitis in mice, we found activation of digestive proteases to occur not only in acinar cells but also in macrophages that infiltrate pancreatic tissue. Activation of the proteases in macrophage occurs during endocytosis of zymogen-containing vesicles, and depends on pH and CTSB. This process involves macrophage activation via NF-κB-translocation, and contributes to systemic inflammation and severity of pancreatitis.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cathepsin B/deficiency
- Cathepsin B/genetics
- Cathepsin B/metabolism
- Cathepsin L/deficiency
- Cathepsin L/genetics
- Cells, Cultured
- Ceruletide
- Coculture Techniques
- Cytokines/metabolism
- Disease Models, Animal
- Endocytosis
- Enzyme Activation
- Genetic Predisposition to Disease
- Humans
- Hydrogen-Ion Concentration
- Inflammation Mediators/metabolism
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/pathology
- Macrophages/transplantation
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Necrosis
- Pancreas/enzymology
- Pancreas/immunology
- Pancreas/pathology
- Pancreatectomy
- Pancreatitis, Acute Necrotizing/chemically induced
- Pancreatitis, Acute Necrotizing/enzymology
- Pancreatitis, Acute Necrotizing/immunology
- Pancreatitis, Acute Necrotizing/pathology
- Phagocytosis
- Phenotype
- Severity of Illness Index
- Time Factors
- Trypsinogen/metabolism
Collapse
|
research-article |
7 |
177 |
4
|
Sendler M, van den Brandt C, Glaubitz J, Wilden A, Golchert J, Weiss FU, Homuth G, De Freitas Chama LL, Mishra N, Mahajan UM, Bossaller L, Völker U, Bröker BM, Mayerle J, Lerch MM. NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology 2020; 158:253-269.e14. [PMID: 31593700 DOI: 10.1053/j.gastro.2019.09.040] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatitis starts with primarily sterile local inflammation that induces systemic inflammatory response syndrome, followed by compensatory anti-inflammatory response syndrome (CARS). We investigated the mechanisms of these processes in mice and human serum. METHODS We induced severe acute pancreatitis by partial duct ligation with caerulein stimulation or intraperitoneal injection of l-arginine in mice with deletion of interleukin (IL)12B, NLRP3, or IL18 and in mice given MCC950, a small molecule inhibitor of the NLRP3-inflammasome. Pancreata were collected from mice and analyzed by histology, and cytokine levels were measured in serum samples. We measured activation of adaptive immune responses in mice with pancreatitis by flow cytometry analysis of T cells (CD25 and CD69) isolated from the spleen. Differentiation of T-helper (Th1) cells, Th2 cells, and T-regulatory cells was determined by nuclear staining for TBET, GATA3, and FOXP3. We performed transcriptome analysis of mouse lymph nodes and bone marrow-derived macrophages after incubation with acini. We measured levels of cytokines in serum samples from patients with mild and severe acute pancreatitis. RESULTS Activation of the adaptive immune response in mice was initiated by macrophage-derived, caspase 1-processed cytokines and required activation of NLRP3 (confirmed in serum samples from patients with pancreatitis). Spleen cells from mice with pancreatitis had increases in Th2 cells but not in Th1 cells. Bone marrow-derived macrophages secreted IL1B and IL18, but not IL12, after co-incubation with pancreatic acini. T-cell activation and severity of acute pancreatitis did not differ significantly between IL12B-deficient and control mice. In contrast, NLRP3- or IL18-deficient mice had reduced activation of T cells and no increase in Th2 cell-mediated responses compared with control mice. The systemic type 2 immune response was mediated by macrophage-derived cytokines of the IL1 family. Specifically, IL18 induced a Th2 cell-mediated response in the absence of IL12. MCC950 significantly reduced neutrophil infiltration, T-cell activation, and disease severity in mice. CONCLUSIONS In mice with severe pancreatitis, we found systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome developed in parallel. Infiltrating macrophages promote inflammation and simultaneously induce a Th2 cell-mediated response via IL18. Inhibition of NLRP3 reduces systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome and might be used to treat patients with severe pancreatitis.
Collapse
|
|
5 |
172 |
5
|
Hohwieler M, Illing A, Hermann PC, Mayer T, Stockmann M, Perkhofer L, Eiseler T, Antony JS, Müller M, Renz S, Kuo CC, Lin Q, Sendler M, Breunig M, Kleiderman SM, Lechel A, Zenker M, Leichsenring M, Rosendahl J, Zenke M, Sainz B, Mayerle J, Costa IG, Seufferlein T, Kormann M, Wagner M, Liebau S, Kleger A. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 2017; 66:473-486. [PMID: 27633923 PMCID: PMC5534761 DOI: 10.1136/gutjnl-2016-312423] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The generation of acinar and ductal cells from human pluripotent stem cells (PSCs) is a poorly studied process, although various diseases arise from this compartment. DESIGN We designed a straightforward approach to direct human PSCs towards pancreatic organoids resembling acinar and ductal progeny. RESULTS Extensive phenotyping of the organoids not only shows the appropriate marker profile but also ultrastructural, global gene expression and functional hallmarks of the human pancreas in the dish. Upon orthotopic transplantation into immunodeficient mice, these organoids form normal pancreatic ducts and acinar tissue resembling fetal human pancreas without evidence of tumour formation or transformation. Finally, we implemented this unique phenotyping tool as a model to study the pancreatic facets of cystic fibrosis (CF). For the first time, we provide evidence that in vitro, but also in our xenograft transplantation assay, pancreatic commitment occurs generally unhindered in CF. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) activation in mutated pancreatic organoids not only mirrors the CF phenotype in functional assays but also at a global expression level. We also conducted a scalable proof-of-concept screen in CF pancreatic organoids using a set of CFTR correctors and activators, and established an mRNA-mediated gene therapy approach in CF organoids. CONCLUSIONS Taken together, our platform provides novel opportunities to model pancreatic disease and development, screen for disease-rescuing agents and to test therapeutic procedures.
Collapse
|
research-article |
8 |
156 |
6
|
Sendler M, Dummer A, Weiss FU, Krüger B, Wartmann T, Scharffetter-Kochanek K, van Rooijen N, Malla SR, Aghdassi A, Halangk W, Lerch MM, Mayerle J. Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 2013; 62:430-9. [PMID: 22490516 DOI: 10.1136/gutjnl-2011-300771] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Acute pancreatitis has long been considered a disorder of pancreatic self-digestion, in which intracellular activation of digestive proteases induces tissue injury. Chemokines, released from damaged pancreatic cells then attract inflammatory cells, whose systemic action ultimately determines the disease severity. In the present work the opposite mechanism is investigated; that is, whether and how inflammatory cells can activate intracellular proteases. DESIGN Using mice either deficient for the CD18-α subunit of the membrane attack complex-1 (MAC-1) complex or tumour necrosis factor (TNF)α, as well as after depletion of leucocyte subpopulations, pancreatitis was induced by 7-hourly caerulein injections (50 μg/kg, intraperitoneally). Pancreatic acini were coincubated in vitro from wild-type and cathepsin-B-deficient animals with phorbol-12-myristate-13-acetate (PMA)-activated neutrophils and macrophages, caerulein or TNFα, and activities of trypsin, cathepsin-B and caspase-3 were measured, as well as necrosis using fluorogenic substrates. TNFα was inhibited with monospecific antibodies. RESULTS Deletion of CD18 prevented transmigration of leucocytes into the pancreas during pancreatitis, greatly reduced disease severity and abolished digestive protease activation. Depletion of neutrophils and macrophages equally reduced premature trypsinogen activation and disease severity. In vitro activated neutrophils and macrophages directly induced premature protease activation and cell death in pancreatic acini and stimulation of acini with TNFα induced caspase-3 activation and necrosis via a cathepsin-B and calcium-dependent mechanism. Neutralising antibodies against TNFα and genetic deletion of TNFα prevented leucocyte-induced trypsin activity and necrosis in isolated acini. CONCLUSIONS The soluble inflammatory cell mediator TNFα directly induces premature protease activation and necrosis in pancreatic acinar cells. This activation depends on calcium and cathepsin-B activity. The findings from the present work further suggest that targeting TNFα, for which pharmaceutical agents are readily available, could be an effective treatment strategy that directly addresses the cellular causes of pancreatitis.
Collapse
|
|
12 |
136 |
7
|
Mahajan UM, Langhoff E, Goni E, Costello E, Greenhalf W, Halloran C, Ormanns S, Kruger S, Boeck S, Ribback S, Beyer G, Dombroswki F, Weiss FU, Neoptolemos JP, Werner J, D'Haese JG, Bazhin A, Peterhansl J, Pichlmeier S, Büchler MW, Kleeff J, Ganeh P, Sendler M, Palmer DH, Kohlmann T, Rad R, Regel I, Lerch MM, Mayerle J. Immune Cell and Stromal Signature Associated With Progression-Free Survival of Patients With Resected Pancreatic Ductal Adenocarcinoma. Gastroenterology 2018; 155:1625-1639.e2. [PMID: 30092175 DOI: 10.1053/j.gastro.2018.08.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Changes to the microenvironment of pancreatic ductal adenocarcinomas (PDACs) have been associated with poor outcomes of patients. We studied the associations between composition of the pancreatic stroma (fibrogenic, inert, dormant, or fibrolytic stroma) and infiltration by inflammatory cells and times of progression-free survival (PFS) of patients with PDACs after resection. METHODS We obtained 1824 tissue microarray specimens from 385 patients included in the European Study Group for Pancreatic Cancer trial 1 and 3 and performed immunohistochemistry to detect alpha smooth muscle actin, type 1 collagen, CD3, CD4, CD8, CD68, CD206, and neutrophils. Tumors that expressed high and low levels of these markers were compared with patient outcomes using Kaplan-Meier curves and multivariable recursive partitioning for discrete-time survival tree analysis. Prognostic index was delineated by a multivariable Cox proportional hazards model of immune cell and stromal markers and PFS. Findings were validated using 279 tissue microarray specimens from 93 patients in a separate cohort. RESULTS Levels of CD3, CD4, CD8, CD68, and CD206 were independently associated with tumor recurrence. Recursive partitioning for discrete-time survival tree analysis identified a high level of CD3 as the strongest independent predictor for longer PFS. Tumors with levels of CD3 and high levels of CD206 associated with a median PFS time of 16.6 months and a median prognostic index of -0.32 (95% confidence interval [CI] -0.35 to -0.31), whereas tumors with low level of CD3 cell and low level of CD8 and high level of CD68 associated with a median PFS time of 7.9 months and a prognostic index of 0.32 (95% CI 0.050-0.32); we called these patterns histologic signatures. Stroma composition, when unassociated with inflammatory cell markers, did not associate significantly with PFS. In the validation cohort, the histologic signature resulted in an error matrix accuracy of predicted response of 0.75 (95% CI 0.64-0.83; accuracy P < .001). CONCLUSIONS In an analysis of PDAC tissue microarray specimens, we identified and validated a histologic signature, based on leukocyte and stromal factors, that associates with PFS times of patients with resected PDACs. Immune cells might affect the composition of the pancreatic stroma to affect progression of PDAC. These findings provide new insights into the immune response to PDAC.
Collapse
|
|
7 |
136 |
8
|
Maléth J, Balázs A, Pallagi P, Balla Z, Kui B, Katona M, Judák L, Németh I, Kemény LV, Rakonczay Z, Venglovecz V, Földesi I, Pető Z, Somorácz Á, Borka K, Perdomo D, Lukacs GL, Gray MA, Monterisi S, Zaccolo M, Sendler M, Mayerle J, Kühn JP, Lerch MM, Sahin-Tóth M, Hegyi P. Alcohol disrupts levels and function of the cystic fibrosis transmembrane conductance regulator to promote development of pancreatitis. Gastroenterology 2015; 148:427-39.e16. [PMID: 25447846 PMCID: PMC4353632 DOI: 10.1053/j.gastro.2014.11.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Excessive consumption of ethanol is one of the most common causes of acute and chronic pancreatitis. Alterations to the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) also cause pancreatitis. However, little is known about the role of CFTR in the pathogenesis of alcohol-induced pancreatitis. METHODS We measured CFTR activity based on chloride concentrations in sweat from patients with cystic fibrosis, patients admitted to the emergency department because of excessive alcohol consumption, and healthy volunteers. We measured CFTR levels and localization in pancreatic tissues and in patients with acute or chronic pancreatitis induced by alcohol. We studied the effects of ethanol, fatty acids, and fatty acid ethyl esters on secretion of pancreatic fluid and HCO3(-), levels and function of CFTR, and exchange of Cl(-) for HCO3(-) in pancreatic cell lines as well as in tissues from guinea pigs and CFTR knockout mice after administration of alcohol. RESULTS Chloride concentrations increased in sweat samples from patients who acutely abused alcohol but not in samples from healthy volunteers, indicating that alcohol affects CFTR function. Pancreatic tissues from patients with acute or chronic pancreatitis had lower levels of CFTR than tissues from healthy volunteers. Alcohol and fatty acids inhibited secretion of fluid and HCO3(-), as well as CFTR activity, in pancreatic ductal epithelial cells. These effects were mediated by sustained increases in concentrations of intracellular calcium and adenosine 3',5'-cyclic monophosphate, depletion of adenosine triphosphate, and depolarization of mitochondrial membranes. In pancreatic cell lines and pancreatic tissues of mice and guinea pigs, administration of ethanol reduced expression of CFTR messenger RNA, reduced the stability of CFTR at the cell surface, and disrupted folding of CFTR at the endoplasmic reticulum. CFTR knockout mice given ethanol or fatty acids developed more severe pancreatitis than mice not given ethanol or fatty acids. CONCLUSIONS Based on studies of human, mouse, and guinea pig pancreata, alcohol disrupts expression and localization of the CFTR. This appears to contribute to development of pancreatitis. Strategies to increase CFTR levels or function might be used to treat alcohol-associated pancreatitis.
Collapse
|
research-article |
10 |
133 |
9
|
Fjeld K, Weiss FU, Lasher D, Rosendahl J, Chen JM, Johansson BB, Kirsten H, Ruffert C, Masson E, Steine SJ, Bugert P, Cnop M, Grützmann R, Mayerle J, Mössner J, Ringdal M, Schulz HU, Sendler M, Simon P, Sztromwasser P, Torsvik J, Scholz M, Tjora E, Férec C, Witt H, Lerch MM, Njølstad PR, Johansson S, Molven A. A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis. Nat Genet 2015; 47:518-522. [PMID: 25774637 PMCID: PMC5321495 DOI: 10.1038/ng.3249] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
Carboxyl-ester lipase is a digestive pancreatic enzyme encoded by the highly polymorphic CEL gene1. Mutations in CEL cause maturity-onset diabetes of the young (MODY) with pancreatic exocrine dysfunction2. Here we identified a hybrid allele (CEL-HYB), originating from a crossover between CEL and its neighboring pseudogene CELP. In a discovery cohort of familial chronic pancreatitis cases, the carrier frequency of CEL-HYB was 14.1% (10/71) compared with 1.0% (5/478) in controls (odds ratio [OR] = 15.5, 95% confidence interval [CI] = 5.1-46.9, P = 1.3 × 10−6). Three replication studies in non-alcoholic chronic pancreatitis cohorts identified CEL-HYB in a total of 3.7% (42/1,122) cases and 0.7% (30/4,152) controls (OR = 5.2, 95% CI = 3.2-8.5, P = 1.2 × 10−11; formal meta-analysis). The allele was also enriched in alcoholic chronic pancreatitis. Expression of CEL-HYB in cellular models revealed reduced lipolytic activity, impaired secretion, prominent intracellular accumulation and induced autophagy. The hybrid variant of CEL is the first chronic pancreatitis gene identified outside the protease/antiprotease system of pancreatic acinar cells.
Collapse
|
Journal Article |
10 |
125 |
10
|
Wartmann T, Mayerle J, Kähne T, Sahin-Tóth M, Ruthenbürger M, Matthias R, Kruse A, Reinheckel T, Peters C, Weiss FU, Sendler M, Hans-Lippert, Schulz HU, Aghdassi A, Dummer A, Teller S, Halangk W, Lerch MM. Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology 2010; 138:726-37. [PMID: 19900452 PMCID: PMC2941736 DOI: 10.1053/j.gastro.2009.10.048] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/20/2009] [Accepted: 10/09/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acute pancreatitis is characterized by an activation cascade of digestive enzymes in the pancreas. The first of these, trypsinogen, can be converted to active trypsin by the peptidase cathepsin B (CTSB). We investigated whether cathepsin L (CTSL) can also process trypsinogen to active trypsin and has a role in pancreatitis. METHODS In CTSL-deficient (Ctsl(-/-)) mice, pancreatitis was induced by injection of cerulein or infusion of taurocholate into the pancreatic duct. Human tissue, pancreatic juice, mouse pancreatitis specimens, and recombinant enzymes were studied by enzyme assay, immunoblot, N-terminal sequencing, immunocytochemistry, and electron microscopy analyses. Isolated acini from Ctsl(-/-) and Ctsb(-/-) mice were studied. RESULTS CTSL was expressed in human and mouse pancreas, colocalized with trypsinogen in secretory vesicles and lysosomes, and secreted into pancreatic juice. Severity of pancreatitis was reduced in Ctsl(-/-) mice, whereas apoptosis and intrapancreatic trypsin activity were increased. CTSL-induced cleavage of trypsinogen occurred 3 amino acids toward the C-terminus from the CTSB activation site and resulted in a truncated, inactive form of trypsin and an elongated propeptide (trypsinogen activation peptide [TAP]). This elongated TAP was not detected by enzyme-linked immunosorbent assay (ELISA) but was effectively converted to an immunoreactive form by CTSB. Levels of TAP thus generated by CTSB were not associated with disease severity, although this is what the TAP-ELISA is used to determine in the clinic. CONCLUSIONS CTSL inactivates trypsinogen and counteracts the ability of CTSB to form active trypsin. In mouse models of pancreatitis, absence of CTSL induces apoptosis and reduces disease severity.
Collapse
|
research-article |
15 |
105 |
11
|
Frost F, Kacprowski T, Rühlemann M, Pietzner M, Bang C, Franke A, Nauck M, Völker U, Völzke H, Dörr M, Baumbach J, Sendler M, Schulz C, Mayerle J, Weiss FU, Homuth G, Lerch MM. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut 2021; 70:522-530. [PMID: 33168600 PMCID: PMC7873430 DOI: 10.1136/gutjnl-2020-322753] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The intestinal microbiome affects the prevalence and pathophysiology of a variety of diseases ranging from inflammation to cancer. A reduced taxonomic or functional diversity of the microbiome was often observed in association with poorer health outcomes or disease in general. Conversely, factors or manifest diseases that determine the long-term stability or instability of the microbiome are largely unknown. We aimed to identify disease-relevant phenotypes associated with faecal microbiota (in-)stability. DESIGN A total of 2564 paired faecal samples from 1282 participants of the population-based Study of Health in Pomerania (SHIP) were collected at a 5-year (median) interval and microbiota profiles determined by 16S rRNA gene sequencing. The changes in faecal microbiota over time were associated with highly standardised and comprehensive phenotypic data to determine factors related to microbiota (in-)stability. RESULTS The overall microbiome landscape remained remarkably stable over time. The greatest microbiome instability was associated with factors contributing to metabolic syndrome such as fatty liver disease and diabetes mellitus. These, in turn, were associated with an increase in facultative pathogens such as Enterobacteriaceae or Escherichia/Shigella. Greatest stability of the microbiome was determined by higher initial alpha diversity, female sex, high household income and preserved exocrine pancreatic function. Participants who newly developed fatty liver disease or diabetes during the 5-year follow-up already displayed significant microbiota changes at study entry when the diseases were absent. CONCLUSION This study identifies distinct components of metabolic liver disease to be associated with instability of the intestinal microbiome, increased abundance of facultative pathogens and thus greater susceptibility toward dysbiosis-associated diseases.
Collapse
|
research-article |
4 |
103 |
12
|
Mareninova OA, Sendler M, Malla SR, Yakubov I, French SW, Tokhtaeva E, Vagin O, Oorschot V, Lüllmann-Rauch R, Blanz J, Dawson D, Klumperman J, Lerch MM, Mayerle J, Gukovsky I, Gukovskaya AS. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis. Cell Mol Gastroenterol Hepatol 2015; 1:678-694. [PMID: 26693174 PMCID: PMC4673685 DOI: 10.1016/j.jcmgh.2015.07.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. METHODS We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. RESULTS Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. CONCLUSIONS The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.
Collapse
|
research-article |
10 |
98 |
13
|
Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M, Lerch MM. Animal models for investigating chronic pancreatitis. FIBROGENESIS & TISSUE REPAIR 2011; 4:26. [PMID: 22133269 PMCID: PMC3274456 DOI: 10.1186/1755-1536-4-26] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/01/2011] [Indexed: 02/06/2023]
Abstract
Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed.
Collapse
|
Journal Article |
14 |
88 |
14
|
Partecke LI, Speerforck S, Käding A, Seubert F, Kühn S, Lorenz E, Schwandke S, Sendler M, Keßler W, Trung DN, Oswald S, Weiss FU, Mayerle J, Henkel C, Menges P, Beyer K, Lerch MM, Heidecke CD, von Bernstorff W. Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade. Pancreatology 2016; 16:423-33. [PMID: 27083074 DOI: 10.1016/j.pan.2016.03.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/17/2016] [Accepted: 03/06/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Chronic stress could promote tumour growth and reduce survival of pancreatic cancer patients via beta-adrenergic receptors of tumour cells. We have tested the impact of chronic acoustic and restraint stress on tumour development in an orthotopic syngeneic murine model of pancreatic cancer. METHODS AND RESULTS Tumour-bearing C57BL/6 mice exposed to chronic stress had 45% (p = 0.0138) higher circulating steroid and 111% (p = 0.0052) higher adrenal tyrosine hydroxylase levels. Their immune response was significantly suppressed: The in vitro LPS response of splenocytes was significantly reduced regarding Th1- and Th2-cytokines including IFN-gamma, IL-6, IL-10 and MCP-1 (0.0011 < p < 0.043). Also, tumours of stressed mice showed a tendency towards fewer total CD4 cells, more regulatory T cells (Treg), less T cell/tumour cell contacts and a reduction of CTLA-4 in CD4 cells (p > 0.05). TGF-beta in vitro was increased by 23.4% using catecholamines (p < 0.012) and in vivo employing chronic stress (p < 0.001). After 5 weeks tumour volumes were 130% (p = 0.0061) larger and median survival reduced by 13.5% (p = 0.0058). Tumours expressed more VEGF (p = 0.0334), had greater microvessel densities (p = 0.047), and an increased MMP-9 expression (p = 0.0456). Beta-catecholamines increased proliferation in tumour cells by 18% (p < 0.0001) and migration by 78% (p = 0.0348) whereas the beta-blocker propranolol reduced these effects by 25% (p < 0.0001) and 53% (p = 0.045), respectively. When stressed tumour-bearing animals were treated with propranolol tumour volumes were reduced by 69% (p = 0.0088) and survival improved by 14% (p < 0.0058). CONCLUSIONS The potential treatment with beta-blockers of patients with pancreatic cancer or other malignancies should be further evaluated as an adjuvant anti-neoplastic agent in clinical trials.
Collapse
|
|
9 |
84 |
15
|
Sendler M, Maertin S, John D, Persike M, Weiss FU, Krüger B, Wartmann T, Wagh P, Halangk W, Schaschke N, Mayerle J, Lerch MM. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis. J Biol Chem 2016; 291:14717-31. [PMID: 27226576 DOI: 10.1074/jbc.m116.718999] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
74 |
16
|
Frost F, Kacprowski T, Rühlemann M, Bülow R, Kühn JP, Franke A, Heinsen FA, Pietzner M, Nauck M, Völker U, Völzke H, Aghdassi AA, Sendler M, Mayerle J, Weiss FU, Homuth G, Lerch MM. Impaired Exocrine Pancreatic Function Associates With Changes in Intestinal Microbiota Composition and Diversity. Gastroenterology 2019; 156:1010-1015. [PMID: 30391469 DOI: 10.1053/j.gastro.2018.10.047] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/10/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Changes in intestinal microbiome composition are associated with inflammatory, metabolic, and malignant disorders. We studied how exocrine pancreatic function affects intestinal microbiota. METHODS We performed 16S ribosomal RNA gene sequencing analysis of stool samples from 1795 volunteers from the population-based Study of Health in Pomerania who had no history of pancreatic disease. We also measured fecal pancreatic elastase by enzyme-linked immunosorbent assay and performed quantitative imaging of secretin-stimulated pancreatic fluid secretion. Associations of exocrine pancreatic function with microbial diversity or individual genera were calculated by permutational analysis of variance or linear regression, respectively. RESULTS Differences in pancreatic elastase levels associated with significantly (P < .0001) greater changes in microbiota diversity than with participant age, body mass index, sex, smoking, alcohol consumption, or dietary factors. Significant changes in the abundance of 30 taxa, such as an increase in Prevotella (q < .0001) and a decrease of Bacteroides (q < .0001), indicated a shift from a type-1 to a type-2 enterotype. Changes in pancreatic fluid secretion alone were also associated with changes in microbial diversity (P = .0002), although to a lesser degree. CONCLUSIONS In an analysis of fecal samples from 1795 volunteers, pancreatic acinar cell, rather than duct cell, function is presently the single most significant host factor to be associated with changes in intestinal microbiota composition.
Collapse
|
|
6 |
71 |
17
|
Partecke LI, Käding A, Trung DN, Diedrich S, Sendler M, Weiss F, Kühn JP, Mayerle J, Beyer K, von Bernstorff W, Heidecke CD, Keßler W. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget 2017; 8:22501-22512. [PMID: 28160574 PMCID: PMC5410240 DOI: 10.18632/oncotarget.15019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
This study analyses the effects of vagotomy on tumor growth and survival in a murine, pancreatic cancer model in wild-type and TNFα-knockout (−/−) mice. Throughout many operative procedures in the upper gastrointestinal tract the partial or complete transection of the vagus nerve or its local nerve fibers is unavoidable. Thereby its anti-inflammatory effects in residual tumor tissue may get lost. This effect may be mediated by tumor-associated macrophages (TAM) secreting TNFα. In an orthotopic murine pancreatic cancer model subdiaphragmatic vagotomy versus sham surgery was performed. The impact on tumor growth was monitored in wild type and TNFα −/− mice using MRI. TAMs as well as expression levels of TNFα were analyzed using immunohistochemistry. The role of TNFα on tumor growth and migration was examined in vitro. Vagotomised mice showed increased tumor growth with macroscopic features of invasive growth and had a shorter survival time. The loss of vagal modulation led to significantly increased TNFα levels in tumors and considerably elevated numbers of TAMs. In vitro TNFα significantly stimulated growth (p < 0.05) and migration (p < 0.05) of pancreatic cancer cells. TNFα −/− mice survived significantly longer after tumor implantation (p < 0.05), with vagotomy not affecting the prognosis of these animals (p > 0.05). Vagotomy can increase tumor growth and worsen survival in a murine pancreatic cancer model mediated through TAMs and TNFα. Hence, the suppression of TAMs and the modulation of TNFα dependent pathways could offer new perspectives in immunotherapies of pancreatic cancer patients especially with remaining vital tumor cells and lost vagal modulation.
Collapse
|
Journal Article |
8 |
67 |
18
|
Sendler M, Beyer G, Mahajan UM, Kauschke V, Maertin S, Schurmann C, Homuth G, Völker U, Völzke H, Halangk W, Wartmann T, Weiss FU, Hegyi P, Lerch MM, Mayerle J. Complement Component 5 Mediates Development of Fibrosis, via Activation of Stellate Cells, in 2 Mouse Models of Chronic Pancreatitis. Gastroenterology 2015; 149:765-76.e10. [PMID: 26001927 PMCID: PMC4560830 DOI: 10.1053/j.gastro.2015.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Little is known about the pathogenic mechanisms of chronic pancreatitis. We investigated the roles of complement component 5 (C5) in pancreatic fibrogenesis in mice and patients. METHODS Chronic pancreatitis was induced by ligation of the midpancreatic duct, followed by a single supramaximal intraperitoneal injection of cerulein, in C57Bl6 (control) and C5-deficient mice. Some mice were given injections of 2 different antagonists of the receptor for C5a over 21 days. In a separate model, mice were given injections of cerulein for 10 weeks to induce chronic pancreatitis. Direct effects of C5 were studied in cultured primary cells. We performed genotype analysis for the single-nucleotide polymorphisms rs 17611 and rs 2300929 in C5 in patients with pancreatitis and healthy individuals (controls). Blood cells from 976 subjects were analyzed by transcriptional profiling. RESULTS During the initial phase of pancreatitis, levels of pancreatic damage were similar between C5-deficient and control mice. During later stages of pancreatitis, C5-deficient mice and mice given injections of C5a-receptor antagonists developed significantly less pancreatic fibrosis than control mice. Primary pancreatic stellate cells were activated in vitro by C5a. There were no differences in the rs 2300929 SNP between subjects with or without pancreatitis, but the minor allele rs17611 was associated with a significant increase in levels of C5 in whole blood. CONCLUSIONS In mice, loss of C5 or injection of a C5a-receptor antagonist significantly reduced the level of fibrosis of chronic pancreatitis, but this was not a consequence of milder disease in early stages of pancreatitis. C5 might be a therapeutic target for chronic pancreatitis.
Collapse
|
research-article |
10 |
65 |
19
|
Mahajan UM, Teller S, Sendler M, Palankar R, van den Brandt C, Schwaiger T, Kühn JP, Ribback S, Glöckl G, Evert M, Weitschies W, Hosten N, Dombrowski F, Delcea M, Weiss FU, Lerch MM, Mayerle J. Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut 2016; 65:1838-1849. [PMID: 27196585 PMCID: PMC5099195 DOI: 10.1136/gutjnl-2016-311393] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and is projected to be the second leading cause of cancer-related death by 2030. Despite extensive knowledge and insights into biological properties and genetic aberrations of PDAC, therapeutic options remain temporary and ineffective. One plausible explanation for the futile response to therapy is an insufficient and non-specific delivery of anticancer drugs to the tumour site. DESIGN Superparamagnetic iron oxide nanoparticles (SPIONs) coupled with siRNA directed against the cell cycle-specific serine-threonine-kinase, Polo-like kinase-1 (siPLK1-StAv-SPIONs), could serve a dual purpose for delivery of siPLK1 to the tumour and for non-invasive assessment of efficiency of delivery in vivo by imaging the tumour response. siPLK1-StAv-SPIONs were designed and synthesised as theranostics to function via a membrane translocation peptide with added advantage of driving endosomal escape for mediating transportation to the cytoplasm (myristoylated polyarginine peptides) as well as a tumour-selective peptide (EPPT1) to increase intracellular delivery and tumour specificity, respectively. RESULTS A syngeneic orthotopic as well as an endogenous cancer model was treated biweekly with siPLK1-StAv-SPIONs and tumour growth was monitored by small animal MRI. In vitro and in vivo experiments using a syngeneic orthotopic PDAC model as well as the endogenous LSL-KrasG12D, LSL-Trp53R172H, Pdx-1-Cre model revealed significant accumulation of siPLK1-StAv-SPIONs in PDAC, resulting in efficient PLK1 silencing. Tumour-specific silencing of PLK1 halted tumour growth, marked by a decrease in tumour cell proliferation and an increase in apoptosis. CONCLUSIONS Our data suggest siPLK1-StAv-SPIONs with dual specificity residues for tumour targeting and membrane translocation to represent an exciting opportunity for targeted therapy in patients with PDAC.
Collapse
|
research-article |
9 |
60 |
20
|
Nambaru PK, Hübner T, Köck K, Mews S, Grube M, Payen L, Guitton J, Sendler M, Jedlitschky G, Rimmbach C, Rosskopf D, Kowalczyk DW, Kroemer HK, Weiss FU, Mayerle J, Lerch MM, Ritter CA. Drug efflux transporter multidrug resistance-associated protein 5 affects sensitivity of pancreatic cancer cell lines to the nucleoside anticancer drug 5-fluorouracil. Drug Metab Dispos 2011; 39:132-9. [PMID: 20930123 DOI: 10.1124/dmd.110.033613] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Pancreatic adenocarcinoma is one of the malignancies that is highly resistant to therapy and among the leading causes of cancer-related death. Several factors may influence pancreatic cancer resistance, and expression of ATP-binding cassette transport proteins is one of the major mechanisms of drug resistance. Members of this family's C-branch, also referred to as multidrug resistance-associated proteins (MRPs), might be of particular interest because they are able to efflux nucleoside analogs used in the treatment of pancreatic cancer. Expression of MRP1, MRP3, MRP4, and MRP5 in human pancreas and pancreatic carcinoma has been reported. However, contributions of MRPs to chemoresistance of pancreatic cancer are not fully understood. MRP5 mRNA expression in pancreatic adenocarcinoma cell lines correlated significantly with cellular sensitivity to 5-fluorouracil (5-FU) (r = 0.738, p < 0.05). Long-term treatment with 5-FU increased expression of MRP5 by 2.4-fold and was associated with significant drug resistance [IC(50) values for control and 5-fluorouracil (5-FU)-resistant Patu-T cell lines were 11.3 ± 5.3 and 33.2 ± 6.9 μM, respectively (p < 0.05)]. Consequently, overexpression of MRP5 in Colo-357 cells resulted in significantly reduced accumulation of 5-FU related radioactivity and 5-FU cytotoxicity. Knockdown of MRP5 significantly increased cellular cytotoxicity of 5-FU to Patu-02 cells and enhanced accumulation of radioactivity related to 5-FU and its metabolites. Our results suggest that MRP5 is expressed and functionally active and contributes to variable sensitivities of pancreatic adenocarcinoma cell lines to 5-FU. Further investigations using models that resemble human pancreas tumors are necessary to prove a causative relation between expression and activity of MRP5 and tumor resistance to 5-FU.
Collapse
|
|
14 |
48 |
21
|
Partecke IL, Kaeding A, Sendler M, Albers N, Kühn JP, Speerforck S, Roese S, Seubert F, Diedrich S, Kuehn S, Weiss UF, Mayerle J, Lerch MM, Hadlich S, Hosten N, Heidecke CD, Puls R, von Bernstorff W. In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer 2011; 11:40. [PMID: 21276229 PMCID: PMC3039629 DOI: 10.1186/1471-2407-11-40] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/28/2011] [Indexed: 03/01/2023] Open
Abstract
Background Pancreatic cancer is the fourth leading cause of tumour death in the western world. However, appropriate tumour models are scarce. Here we present a syngeneic murine pancreatic cancer model using 7 Tesla MRI and evaluate its clinical relevance and applicability. Methods 6606PDA murine pancreatic cancer cells were orthotopically injected into the pancreatic head. Liver metastases were induced through splenic injection. Animals were analyzed by MRI three and five weeks following injection. Tumours were detected using T2-weighted high resolution sequences. Tumour volumes were determined by callipers and MRI. Liver metastases were analyzed using gadolinium-EOB-DTPA and T1-weighted 3D-Flash sequences. Tumour blood flow was measured using low molecular gadobutrol and high molecular gadolinium-DTPA. Results MRI handling and applicability was similar to human systems, resolution as low as 0.1 mm. After 5 weeks tumour volumes differed significantly (p < 0.01) when comparing calliper measurments (n = 5, mean 1065 mm3+/-243 mm3) with MRI (mean 918 mm3+/-193 mm3) with MRI being more precise. Histology (n = 5) confirmed MRI tumour measurements (mean size MRI 38.5 mm2+/-22.8 mm2 versus 32.6 mm2+/-22.6 mm2 (histology), p < 0,0004) with differences due to fixation and processing of specimens. After splenic injection all mice developed liver metastases with a mean of 8 metastases and a mean volume of 173.8 mm3+/-56.7 mm3 after 5 weeks. Lymphnodes were also easily identified. Tumour accumulation of gadobutrol was significantly (p < 0.05) higher than gadolinium-DTPA. All imaging experiments could be done repeatedly to comply with the 3R-principle thus reducing the number of experimental animals. Conclusions This model permits monitoring of tumour growth and metastasis formation in longitudinal non-invasive high-resolution MR studies including using contrast agents comparable to human pancreatic cancer. This multidisciplinary environment enables radiologists, surgeons and physicians to further improve translational research and therapies of pancreatic cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
45 |
22
|
Aghdassi AA, John DS, Sendler M, Weiss FU, Reinheckel T, Mayerle J, Lerch MM. Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis. J Biol Chem 2017; 293:1018-1029. [PMID: 29229780 DOI: 10.1074/jbc.m117.814772] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/03/2017] [Indexed: 12/27/2022] Open
Abstract
Acute pancreatitis is a complex disorder involving both premature intracellular protease activation and inflammatory cell invasion. An initiating event is the intracellular activation of trypsinogen by cathepsin B (CTSB), which can be induced directly via G protein-coupled receptors on acinar cells or through inflammatory cells. Here, we studied CTSB regulation by another lysosomal hydrolase, cathepsin D (CTSD), using mice with a complete (CTSD-/-) or pancreas-specific conditional CTSD knockout (KO) (CTSDf/f/p48Cre/+). We induced acute pancreatitis by repeated caerulein injections and isolated acinar and bone marrow cells for ex vivo studies. Supramaximal caerulein stimulation induced subcellular redistribution of CTSD from the lysosomal to the zymogen-containing subcellular compartment of acinar cells and activation of CTSD, CTSB, and trypsinogen. Of note, the CTSD KO greatly reduced CTSB and trypsinogen activation in acinar cells, and CTSD directly activated CTSB but not trypsinogen in vitro During pancreatitis in pancreas-specific CTSDf/f/p48Cre/+ animals, markers of severity were reduced only at 1 h, whereas in the complete KO, this effect also included the late disease phase (8 h), indicating an important effect of extra-acinar CTSD on course of the disease. CTSD-/- leukocytes exhibited reduced cytokine release after lipopolysaccharide (LPS) stimulation, and CTSD KO also reduced caspase-3 activation and apoptosis in acinar cells stimulated with the intestinal hormone cholecystokinin. In summary, CTSD is expressed in pancreatic acinar and inflammatory cells, undergoes subcellular redistribution and activation during experimental pancreatitis, and regulates disease severity by potently activating CTSB. Its impact is only minimal and transient in the early, acinar cell-dependent phase of pancreatitis and much greater in the later, inflammatory cell-dependent phase of the disease.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
44 |
23
|
Partecke LI, Sendler M, Kaeding A, Weiss FU, Mayerle J, Dummer A, Nguyen TD, Albers N, Speerforck S, Lerch MM, Heidecke CD, von Bernstorff W, Stier A. A syngeneic orthotopic murine model of pancreatic adenocarcinoma in the C57/BL6 mouse using the Panc02 and 6606PDA cell lines. ACTA ACUST UNITED AC 2011; 47:98-107. [PMID: 21720167 DOI: 10.1159/000329413] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 05/17/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS To develop a clinically relevant immunocompetent murine model to study pancreatic cancer using two different syngeneic pancreatic cancer cell lines and to assess MRI for its applicability in this model. METHODS Two cell lines, 6606PDA and Panc02, were employed for the experiments. Cell proliferation and migration were monitored in vitro. Matrigel™ was tested for its role in tumor induction. Tumor cell growth was assessed after orthotopic injection of tumor cells into the pancreatic head of C57/BL6 mice by MRI and histology. RESULTS Proliferation and migration of Panc02 were significantly faster than those of 6606PDA. Matrigel did not affect tumor growth/migration but prevented tumor cell spread after injection thus avoiding undesired peritoneal tumor growth. MRI could reliably monitor longitudinal tumor growth in both cell lines: Panc02 had a more irregular finger-like growth, and 6606PDA grew more spherically. Both tumors showed local invasiveness. Histologically, Panc02 showed a sarcoma-like undifferentiated growth pattern, whereas 6606PDA displayed a moderately differentiated glandular tumor growth. Panc02 mice had a significantly shorter (28 days) survival than 6606PDA mice (50 days). CONCLUSION This model closely mimics human pancreatic cancer. MRI was invaluable for longitudinal monitoring of tumor growth thus reducing the number of mice required. Employing two different cell lines, this model can be used for various treatment and imaging studies.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
43 |
24
|
Partecke LI, Günther C, Hagemann S, Jacobi C, Merkel M, Sendler M, van Rooijen N, Käding A, Nguyen Trung D, Lorenz E, Diedrich S, Weiss FU, Heidecke CD, von Bernstorff W. Induction of M2-macrophages by tumour cells and tumour growth promotion by M2-macrophages: a quid pro quo in pancreatic cancer. Pancreatology 2013; 13:508-16. [PMID: 24075516 DOI: 10.1016/j.pan.2013.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/03/2013] [Accepted: 06/30/2013] [Indexed: 12/11/2022]
Abstract
INTRODUCTION More effective therapies are required to improve survival of pancreatic cancer. Possible immunologic targets include tumour associated macrophages (TAMs), generally consisting of M1- and M2-macrophages. We have analysed the impact of TAMS on pancreatic cancer in a syngeneic orthotopic murine model. METHODS 6606PDA murine pancreatic cancer cells were orthotopically injected into C57BL6 mice. Tumour growth was monitored using MRI. Macrophages were depleted by clodronate liposomes. Tumours including microvessel density were evaluated using immunohistochemistry, immunofluorescence and/or cytometric beads assays. Naïve macrophages were generated employing peritoneal macrophages. In vitro experiments included culturing of macrophages in tumour supernatants as well as tumour cells cultured in macrophage supernatants using arginase as well as Griess assays. RESULTS Clodronate treatment depleted macrophages by 80% in livers (p = 0.0051) and by 60% in pancreatic tumours (p = 0.0169). MRI revealed tumour growth inhibition from 221.8 mm(3) to 92.3 mm(3) (p = 0.0216). Micro vessel densities were decreased by 44% (p = 0.0315). Yet, MCP-1-, IL-4- and IL-10-levels within pancreatic tumours were unchanged. 6606PDA culture supernatants led to a shift from naïve macrophages towards an M2-phenotype after a 36 h treatment (p < 0.0001), reducing M1-macrophages at the same time (p < 0.037). In vivo, M2-macrophages represented 85% of all TAMs (p < 0.0001). Finally, culture supernatants of M2-macrophages induced tumour growth in vitro by 63.2% (p = 0.0034). CONCLUSIONS This quid pro quo of tumour cells and M2-macrophages could serve as a new target for future immunotherapies that interrupt tumour promoting activities of TAMs and change the iNOS-arginase balance towards their tumoricidal capacities.
Collapse
|
|
12 |
41 |
25
|
Glaubitz J, Wilden A, Frost F, Ameling S, Homuth G, Mazloum H, Rühlemann MC, Bang C, Aghdassi AA, Budde C, Pickartz T, Franke A, Bröker BM, Voelker U, Mayerle J, Lerch MM, Weiss FU, Sendler M. Activated regulatory T-cells promote duodenal bacterial translocation into necrotic areas in severe acute pancreatitis. Gut 2023:gutjnl-2022-327448. [PMID: 36631247 DOI: 10.1136/gutjnl-2022-327448] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVE In acute pancreatitis (AP), bacterial translocation and subsequent infection of pancreatic necrosis are the main risk factors for severe disease and late death. Understanding how immunological host defence mechanisms fail to protect the intestinal barrier is of great importance in reducing the mortality risk of the disease. Here, we studied the role of the Treg/Th17 balance for maintaining the intestinal barrier function in a mouse model of severe AP. DESIGN AP was induced by partial duct ligation in C57Bl/6 or DEREG mice, in which regulatory T-cells (Treg) were depleted by intraperitoneal injection of diphtheria toxin. By flow cytometry, functional suppression assays and transcriptional profiling we analysed Treg activation and characterised T-cells of the lamina propria as well as intraepithelial lymphocytes (IELs) regarding their activation and differentiation. Microbiota composition was examined in intestinal samples as well as in murine and human pancreatic necrosis by 16S rRNA gene sequencing. RESULTS The prophylactic Treg-depletion enhanced the proinflammatory response in an experimental mouse model of AP but stabilised the intestinal immunological barrier function of Th17 cells and CD8+/γδTCR+ IELs. Treg depleted animals developed less bacterial translocation to the pancreas. Duodenal overgrowth of the facultative pathogenic taxa Escherichia/Shigella which associates with severe disease and infected necrosis was diminished in Treg depleted animals. CONCLUSION Tregs play a crucial role in the counterbalance against systemic inflammatory response syndrome. In AP, Treg-activation disturbs the duodenal barrier function and permits translocation of commensal bacteria into pancreatic necrosis. Targeting Tregs in AP may help to ameliorate the disease course.
Collapse
|
|
2 |
28 |