1
|
Warken AJ, Kubeneck S, Camargo AF, Longo VD, Romani LC, Klein GH, Alves SL, Shah MP, Treichel H. Production and concentration of keratinases and application of fermentation residual in removing hexavalent chromium. Bioprocess Biosyst Eng 2024; 47:2091-2099. [PMID: 39271537 DOI: 10.1007/s00449-024-03087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The production of keratinases was evaluated in submerged fermentation with Aspergillus niger and by pigs' swine hair in a batch bioreactor. Experimental planning was performed to assess the interaction between different variables. The enzyme extract produced was characterized at various pH and temperatures and subjected to enzyme concentration using a biphasic aqueous system and salt/solvent precipitation techniques. In addition, the substrate's potential in reducing hexavalent chromium from synthetic potassium dichromate effluent with an initial concentration of 20 mg L-1 of chromium was evaluated. The resulting enzyme extract showed 89 ± 2 U mL-1 of keratinase. The enzyme concentration resulted in a purification factor of 1.3, while sodium chloride/acetone and ammonium sulfate/acetone resulted in a purification factor of 1.9 and 1.4, respectively. Still using the residual substrate of swine hair from the fermentation, a 94% reduction of hexavalent chromium concentration occurred after 9 h of reaction. Thus, the study proved relevant for producing keratinases, with further environmental applicability and the possibility of concentrating the extract via low-cost processes.
Collapse
|
2
|
Kishore S, Malik S, Shah MP, Bora J, Chaudhary V, Kumar L, Sayyed RZ, Ranjan A. A comprehensive review on removal of pollutants from wastewater through microbial nanobiotechnology -based solutions. Biotechnol Genet Eng Rev 2024; 40:3087-3112. [PMID: 35923085 DOI: 10.1080/02648725.2022.2106014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Increasing wastewater pollution owing to the briskly rising human population, rapid industrialization, and fast urbanization has necessitated highly efficient wastewater treatment technologies. Although several methods of wastewater treatments are in practice, expensiveness, use of noxious chemicals, generation of unsafe by-products, and longer time consumption restrain their use to a great extent. Over the last few decades, nanotechnological wastewater treatment approaches have received widespread recognition globally. Microbially fabricated nanoparticles reduce the utilization of reducing, capping, and stabilizing agents, and exhibit higher adsorptive and catalytic efficiency than chemically synthesized nanomaterials. The present review comprehensively summarizes the applications of microbial nanotechnology in the removal of a wide range of noxious wastewater pollutants. Moreover, prospects and challenges associated with the integration of nanotechnology with other biological treatment technologies including algal-membrane bioreactor, aerobic digestion, microbial fuel cells, and microbial nanofiber webs have also been briefly discussed.
Collapse
|
3
|
Behera SK, Huwaikem M, Jena B, Shah MP, Chakrabortty S, Tripathy SK, Mishra A. Fabrication of ZnO/Gypsum/Gelatine nanocomposites films and their antibacterial mechanism against Staphylococcus aureus. Biotechnol Genet Eng Rev 2024; 40:4713-4736. [PMID: 37243587 DOI: 10.1080/02648725.2023.2216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Staphylococcus aureus (S. aureus) has long been acknowledged as being one of the most harmful bacteria for human civilization. It is the main contributor to skin and soft tissue infections. The gram positive pathogen also contributes to bloodstream infections, pneumonia, or bone and joint infections. Hence, developing an efficient and targeted treatment for these illnesses is greatly desired. Recently, studies on nanocomposites (NCs) have significantly increased due to their potent antibacterial and antibiofilm properties. These NCs provide an intriguing way to control the growth of bacteria without causing the development of resistance strains that come from improper or excessive use of the conventional antibiotics. In this context, we have demonstrated the synthesis of a NC system by precipitation of ZnO nanoparticles (NPs) on Gypsum followed by encapsulation with Gelatine, in the present study. Fourier transform infrared (FTIR) spectroscopy was used to validate the presence of ZnO NPs and Gypsum. The film was characterized by X-ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The system exhibited promising antibiofilm action and was effective in combating S. aureus and MRSA in concentrations between 10 and 50 ug/ml. The bactericidal mechanism by release of reactive oxygen species (ROS) was anticipated to be induced by the NC system. Studies on cell survival and in-vitro infection support the film's notable biocompatibility and its potential for treating Staphylococcus infections in the future.
Collapse
|
4
|
Khan A, Pudhuvai B, Shrestha A, Mishra AK, Shah MP, Koul B, Dey N. CRISPR-mediated iron and folate biofortification in crops: advances and perspectives. Biotechnol Genet Eng Rev 2024; 40:4138-4168. [PMID: 37092872 DOI: 10.1080/02648725.2023.2205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Micronutrient deficiency conditions, such as anemia, are the most prevalent global health problem due to inadequate iron and folate in dietary sources. Biofortification advancements can propel the rapid amelioration of nutritionally beneficial components in crops that are required to combat the adverse effects of micronutrient deficiencies on human health. To date, several strategies have been proposed to increase micronutrients in plants to improve food quality, but very few approaches have intrigued `clustered regularly interspaced short palindromic repeats' (CRISPR) modules for the enhancement of iron and folate concentration in the edible parts of plants. In this review, we discuss two important approaches to simultaneously enhance the bioavailability of iron and folate concentrations in rice endosperms by utilizing advanced CRISPR-Cas9-based technology. This includes the 'tuning of cis-elements' and 'enhancer re-shuffling' in the regulatory components of genes that play a vital role in iron and folate biosynthesis/transportation pathways. In particular, base-editing and enhancer re-installation in native promoters of selected genes can lead to enhanced accumulation of iron and folate levels in the rice endosperm. The re-distribution of micronutrients in specific plant organs can be made possible using the above-mentioned contemporary approaches. Overall, the present review discusses the possible approaches for synchronized iron and folate biofortification through modification in regulatory gene circuits employing CRISPR-Cas9 technology.
Collapse
|
5
|
Bahl E, Jyoti A, Singh A, Siddqui A, Upadhyay SK, Jain D, Shah MP, Saxena J. Nanomaterials for intelligent CRISPR-Cas tools: improving environment sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67479-67495. [PMID: 38291210 DOI: 10.1007/s11356-024-32101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a desirable gene modification tool covering a wide area in various sectors of medicine, agriculture, and microbial biotechnology. The role of this incredible genetic engineering technology has been extensively investigated; however, it remains formidable with cargo choices, nonspecific delivery, and insertional mutagenesis. Various nanomaterials including lipid, polymeric, and inorganic are being used to deliver the CRISPR-Cas system. Progress in nanomaterials could potentially address these challenges by accelerating precision targeting, cost-effectiveness, and one-step delivery. In this review, we highlighted the advances in nanotechnology and nanomaterials as smart delivery systems for CRISPR-Cas so as to ameliorate applications for environmental remediation including biomedical research and healthcare, strategies for mitigating antimicrobial resistance, and to be used as nanofertilizers for enhancing crop growth, and reducing the environmental impact of traditional fertilizers. The timely co-evolution of nanotechnology and CRISPR technologies has contributed to smart novel nanostructure hybrids for improving the onerous tasks of environmental remediation and biological sustainability.
Collapse
|
6
|
Kiran NS, Yashaswini C, Chatterjee A, Shah MP. Biotechnological Approaches for Metal Recovery from Electronic Wastes. Curr Microbiol 2024; 81:419. [PMID: 39433568 DOI: 10.1007/s00284-024-03945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
The disposal of electronic waste (EW) in open landfills has caused several toxic environmental effects. The harmful metallic components released in the environment due to deposition of EW act as hazards for living systems. EW management has been widely studied in recent days across the world. Though, several processes are implemented in extraction, recycling and recovery of heavy metals from the EW, most of them are not effective in recovering the precious metals. Various chemical processes are executed for efficient extraction of precious metals from e-wastes. Though the techniques are easy to process and rapid, however, the chemical leaching also has detrimental environmental consequences. Biological approaches, on the other hand, solves the purpose for efficient and environmentally friendly recovery of precious metals. Thus, both resource recovery as well as remediation can be targeted simultaneously. Biotechnological methods offer sustainable and efficient solutions for metal recovery from electronic wastes, presenting a viable alternative to traditional methods. Continued advancements in this field hold significant promise for addressing the growing e-waste challenge.
Collapse
|
7
|
Bano A, Aziz MK, Mishra R, Dave H, Prasad B, Kumari M, Dubey D, Meili L, Shah MP, Prasad KS. Response surface methodology-based optimisation of adsorption of diclofenac and treatment of pharmaceutical effluent using combined coagulation-adsorption onto nFe 2O 3 decorated water chestnut shells biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55317-55335. [PMID: 39225928 DOI: 10.1007/s11356-024-34799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
This work involved the preparation of pristine and iron nanoparticle-loaded biochar from a water chestnut shell to remove diclofenac sodium (DCF) containing effluent of pharmaceutical origin. To create suitable forecasting equations for the modelling of the DCF adsorption onto the adsorbent, response surface methodology (RSM) was used. The parameters, e.g. pH, adsorbent mass, DCF concentration and contact time, were used for the modeling of adsorption. The RSM model predicts that for 98.0% DCF removal, the ideal conditions are pH 6, an adsorbent dose of 0.5 g L-1, and a contact time of 60 min with an initial adsorbate concentration of 25 mg L-1 at 303 K. The maximum capacity deduced from the Langmuir model was 75.9 mg g-1 for pristine water chestnut shell biochar (pWCBC) and 122.3 mg g-1 for magnetically modified nano-Fe2O3 biochar (mWCBC). Under equilibrium conditions, the Langmuir model was the best-suited model compared to the Temkin and Freundlich models. The adsorption data in this investigation efficiently fitted the pseudo-second-order model, emphasizing that chemisorption or ion exchange processes may be involved in the process. The WCBC demonstrated recyclability after 10 cycles of repeated adsorption and desorption of DCF. A combined coagulation adsorption process removed COD, NH3-N, NO3-, PO43-, and DCF by 92.50%, 86.41%, 77.57%, 84.54%, and 97.25%, respectively. This study therefore shows that coagulation followed by adsorption onto biochar can be a cost-effective substitute for conventional pharmaceutical wastewater treatment.
Collapse
|
8
|
Chandrashekar K, Chatterjee A, Shah MP. Paracetamol mineralization strategy in laboratory scale using Aspergillus niger KCAC. Int Microbiol 2024; 27:907-916. [PMID: 37878229 DOI: 10.1007/s10123-023-00439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
The emergence of drug resistance, caused due the presence of pharmaceutical contaminant in the environment, highlights the critical need for pharmaceutical drugs management. Pharmaceutical drugs are sourced in wastewater as pharmaceutical industrial effluents, antibiotic misuse, and inappropriate disposal of expired pharmaceuticals, eventually ending up in sewage deposition. In this work, we aimed to degrade paracetamol (APAP) through the mycoremediation approach in laboratory scale. The isolated paracetamol degradation fungal strain, identified as Aspergillus niger KCAC efficiently degraded the drug into non-toxic metabolites. The results demonstrated that 99.6% degradation rate was achieved by Aspergillus niger KCAC. Unique, low-cost, eco-friendly bioformulation of the fungal isolate was prepared during the study using used vegetable cooking oil as substrate. The bioformulation showed extended shelf-life and can be used in future for large-scale application. Thus, this detailed investigation on paracetamol biodegradation may be useful in developing a wastewater treatment system effective against paracetamol-contaminated wastewater.
Collapse
|
9
|
Barghoth MG, Desouky SE, Radwan AA, Shah MP, Salem SS. Characterizations of highly efficient moderately halophilic toluene degrading exiguobacterium mexicanum M7 strain isolated from Egyptian saline sediments. Biotechnol Genet Eng Rev 2024; 40:454-472. [PMID: 36861663 DOI: 10.1080/02648725.2023.2184053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
Toluene and other monoaromatic compounds are released into the environment particularly saline habitats due to the inappropriate disposal methods of petroleum products. Studying the bio-removal strategy is required to clean up these hazardous hydrocarbons that threaten all ecosystem life using halophilic bacteria with higher biodegradation efficiency of monoaromatic compounds as a sole carbon and energy source. Therefore, sixteen pure halophilic bacterial isolates were obtained from saline soil of Wadi An Natrun, Egypt, which have the ability to degrade toluene and consume it as the only source of carbon and energy. Amongst these isolates, isolate M7 exhibited the best growth with considerable properties. This isolate was selected as the most potent strain and identified based on phenotypic and genotypic characterizations. The strain M7 was belonging to Exiguobacterium genus and founded to be closely matched to the Exiguobacterium mexicanum with a similarity of 99%. Using toluene as sole carbon source, strain M7 showed good growth at a wide range temperature degree (20-40ºC), pH (5-9), and salt concentrations (2.5-10%, w/v) with optimal growth conditions at 35ºC, pH 8, and 5%, respectively. The biodegradation ratio of toluene was estimated at above optimal conditions and analyzed using Purge-Trap GC-MS. The results showed that strain M7 has the potentiality to degraded 88.32% of toluene within greatly short time (48 h). The current study findings support the potential ability to use strain M7 as a biotechnological tool in many applications such as effluent treatment and toluene waste management.
Collapse
|
10
|
Shah MP. Call for Special Issue Papers: Advances in Molecular Medicine. Cancer Biother Radiopharm 2024. [PMID: 38330412 DOI: 10.1089/cbr.2024.29017.cfp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
|
11
|
Mukherjee J, Lodh BK, Sharma R, Mahata N, Shah MP, Mandal S, Ghanta S, Bhunia B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. CHEMOSPHERE 2023; 345:140473. [PMID: 37866496 DOI: 10.1016/j.chemosphere.2023.140473] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Due to its complex and, often, highly contaminated nature, treating industrial wastewater poses a significant environmental problem. Many of the persistent pollutants found in industrial effluents cannot be effectively removed by conventional treatment procedures. Advanced Oxidation Processes (AOPs) have emerged as a promising solution, offering versatile and effective means of pollutant removal and mineralization. This comprehensive review explores the application of various AOP strategies in industrial wastewater treatment, focusing on their mechanisms and effectiveness. Ozonation (O3): Ozonation, leveraging ozone (O3), represents a well-established AOP for industrial waste water treatment. Ozone's formidable oxidative potential enables the breakdown of a broad spectrum of organic and inorganic contaminants. This paper provides an in-depth examination of ozone reactions, practical applications, and considerations involved in implementing ozonation. UV/Hydrogen Peroxide (UV/H2O2): The combination of ultraviolet (UV) light and hydrogen peroxide (H2O2) has gained prominence as an AOP due to its ability to generate hydroxyl radicals (ȮH), highly efficient in pollutant degradation. The review explores factors influencing the efficiency of UV/H2O2 processes, including H2O2 dosage and UV radiation intensity. Fenton and Photo-Fenton Processes: Fenton's reagent and Photo-Fenton processes employ iron ions and hydrogen peroxide to generate hydroxyl radicals for pollutant oxidation. The paper delves into the mechanisms, catalyst selection, and the role of photoactivation in enhancing degradation rates within the context of industrial wastewater treatment. Electrochemical Advanced Oxidation Processes (EAOPs): EAOPs encompass a range of techniques, such as electro-Fenton and anodic oxidation, which employ electrode reactions to produce ȮH radicals. This review explores the electrochemical principles, electrode materials, and operational parameters critical for optimizing EAOPs in industrial wastewater treatment. TiO2 Photocatalysis (UV/TiO2): Titanium dioxide (TiO2) photocatalysis, driven by UV light, is examined for its potential in industrial wastewater treatment. The review investigates TiO2 catalyst properties, reaction mechanisms, and the influence of parameters like catalyst loading and UV intensity on pollutant removal. Sonolysis (Ultrasonic Irradiation): High-frequency ultrasound-induced sonolysis represents a unique AOP, generating ȮH radicals during the formation and collapse of cavitation bubbles. This paper delves into the physics of cavitation, sonolytic reactions, and optimization strategies for industrial wastewater treatment. This review offers a critical assessment of the applicability, advantages, and limitations of these AOP strategies in addressing the diverse challenges posed by industrial wastewater. It emphasizes the importance of selecting AOPs tailored to the specific characteristics of industrial effluents and outlines potential directions for future research and practical implementation. The integrated use of these AOPs, when appropriately adapted, holds the potential to achieve sustainable and efficient treatment of industrial wastewater, contributing significantly to environmental preservation and regulatory compliance.
Collapse
|
12
|
Majumdar R, Mishra U, Mahata N, Shah MP, Mondal A, Bhunia B. Preparation, characterization, and performance evaluation of composite films of polyvinyl alcohol/ cellulose nanofiber extracted from Imperata cylindrica. CHEMOSPHERE 2023:139370. [PMID: 37402426 DOI: 10.1016/j.chemosphere.2023.139370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
In recent years, production of cellulose nanofiber (CNF) from waste materials has achieved great interest owing to their renewable nature, biodegradability, high mechanical properties, economic value, and low density. Because Polyvinyl alcohol (PVA) is a synthetic biopolymer with good water solubility and biocompatibility, the composite material formed of CNF and PVA, is a sustainable way of monetizing to address environmental and economic issues. In this work pure PVA, PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5, and PVA/CNF2.0 nanocomposite films were produced using the solvent casting approach with the addition of 0, 0.5, 1.0, 1.5, and 2.0 wt% of CNF concentrations respectively. The strongest water absorption behaviour was found as 25.82% for pure PVA membrane, followed by PVA/CNF0.5 (20.71%), PVA/CNF1.0 (10.26%), PVA/CNF1.5 (9.63%), and PVA/CNF2.0 (4.35%). The water contact angle of 53.1°, 47.8°, 43.4°, 37.7°, and 32.3° was formed between water droplet and the solid-liquid interface of pure PVA, PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5, PVA/CNF2.0 composite films respectively. The SEM image clearly shows that a network structure like a tree form at the PVA/CNF0.5 composite film, where the sizes and number of pores are apparent. XRD analysis suggested that unique peaks found at 2θ = 17.5°, 28.1°, 33.4°, and 38° for nanocomposites indicating new crystal plane generated upon cross-linking in presence of malic acid. The maximum loss rate temperature (Td,max) for PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5 was determined by TG analysis to be around 273.4 °C. FTIR studies suggested that PVA/CNF0.5 composite film showed the highest peak at 1428 cm-1 as compared to other PVA/CNF composite films representing the presence of higher crystalline band in the composite film matrix. PVA/CNF0.5 composite film was found to have a surface porosity and mean pore size of 27.35% and 0.19 μm respectively, classifying it in the MF membrane category. The maximum tensile strength (TS) of 5.27 MPa was found for PVA/CNF0.5, followed by PVA/CNF1.0, PVA/CNF1.5, pure PVA, and PVA/CNF2.0. The maximum young's modulus (111 MPa) was found for PVA/CNF1.0, followed by PVA/CNF0.5, PVA/CNF2.0, PVA/CNF1.5, and pure PVA, which could be attributed to the cyclization of the molecular structures by cross-linking. PVA/CNF0.5 exhibits greater elongation at break (21.7) than the other polymers, indicating a material's ability to undergo significant deformation before failure. Performance evaluation of the PVA/CNF0.5 composite film showed that 46.3% and 92.8% yield were found in the retentate for 200 mg/L of BSA, and 5 × 107 CFU/mL respectively. However, more than 90% E. coli was retained by PVA/CNF0.5 composite film, therefore absolute rating of this membrane is 0.22 μm. The size of this composite film may be therefore considered in the range of MF.
Collapse
|
13
|
Kumar V, Ameen F, Islam MA, Agrawal S, Motghare A, Dey A, Shah MP, Américo-Pinheiro JHP, Singh S, Ramamurthy PC. Evaluation of cytotoxicity and genotoxicity effects of refractory pollutants of untreated and biomethanated distillery effluent using Allium cepa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118975. [PMID: 35157935 DOI: 10.1016/j.envpol.2022.118975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution caused by the discharge of raw and partly treated distillery effluent has become a serious and threatening problem due to its high pollution load. The aim of the present study was to assess the physicochemical load in alcohol distillery effluent before and after biomethanation treatment and the cyto- and genotoxicity effects of refractory pollutants emanated in raw/untreated and biomethanated distillery effluent on the ultrastructural and biochemical responses of Allium cepa root tip cells. Physicochemical analysis revealed high biochemical oxygen demand (BOD: 47840-36651 mg L-1), chemical oxygen demand (COD: 93452-84500 mg L-1) and total dissolved solids (TDS: 64251-74652 mg L-1) in raw and biomethanated effluent along with metal(loid)s (Fe: 456.152-346.26; Zn: 1.654-1.465; Cu: 0.648-0.562; Ni: 1.012-0.951, and Pb: 0.264 mg L-1) which were beyond the safe discharge values prescribed by the environmental regulatory agencies. The UV-Visible and Fourier transform infrared spectrophotometry analyses confirmed the high levels of organic, inorganic, and mixed contaminants discharged in raw and biomethanated distillery effluents. Furthermore, GC-MS analysis characterised chemical contaminants, such as hexadecanoic acid, butanedioic acid, bis(trimethylsilyl) ester; hexadecane, 2,6,11,15-tetramethyl, stigmasterol, and β-sitosterol trimethylsilyl ether that have been reported as androgenic-mutagenic, and endocrine disrupting chemicals by the United States Environmental Protection Agency (U.S. EPA). The cytotoxicity measured by A. cepa showed dose depended inhibition root growth inhibition and simultaneous reduction in mitotic index in tested effluents. The chromosomal aberrations studies resulted in laggard chromosomes, sticky chromosomes, vagrant chromosomes, chromosome loss, c-mitosis, chromosome bridge, abnormal metaphase, and disturbed anaphase as found in a dose-dependent manner. Furthermore, dose-dependent enhancement in the levels of malondialdehyde, hydrogen peroxide, and antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase, and catalase were found to be higher in raw effluents treated root cells compared to biomethanated distillery effluent. Analysis of ultrastructural changes in root tip cells by TEM analysis revealed dramatic changes in the morphology of cell organelles and accumulation of metallic elements in and on the surface tissues. The results concluded that the discharged distillery effluents retained certain toxic pollutants which imposed cytotoxic and genotoxic hazards to A. cepa. Thus, for the sake of environmental protection, the raw as well as the disposed biomethanated effluent must be efficiently treated before its dumping into the terrestrial ecosystem.
Collapse
|
14
|
Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. ENVIRONMENTAL RESEARCH 2022; 206:112285. [PMID: 34710442 DOI: 10.1016/j.envres.2021.112285] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 05/27/2023]
Abstract
Globally, abundant agricultural wastes (AWs) are being generated each day to fulfil the increasing demands of the fast-growing population. The limited and/or improper management of the same has created an urgent need to devise strategies for their timely utilization and valorisation, for agricultural sustainability and human-food and health security. The AWs are generated from different sources including crop residue, agro-industries, livestock, and aquaculture. The main component of the crop residue and agro-industrial waste is cellulose, (the most abundant biopolymer), followed by lignin and hemicellulose (lignocellulosic biomass). The AWs and their processing are a global issue since its vast majority is currently burned or buried in soil, causing pollution of air, water and global warming. Traditionally, some crop residues have been used in combustion, animal fodder, roof thatching, composting, soil mulching, matchsticks and paper production. But, lignocellulosic biomass can also serve as a sustainable source of biofuel (biodiesel, bioethanol, biogas, biohydrogen) and bioenergy in order to mitigate the fossil fuel shortage and climate change issues. Thus, valorisation of lignocellulosic residues has the potential to influence the bioeconomy by producing value-added products including biofertilizers, bio-bricks, bio-coal, bio-plastics, paper, biofuels, industrial enzymes, organic acids etc. This review encompasses circular bioeconomy based various AW management strategies, which involve 'reduction', 'reusing' and 'recycling' of AWs to boost sustainable agriculture and minimise environmental pollution.
Collapse
|
15
|
Varghese VK, Poddar BJ, Shah MP, Purohit HJ, Khardenavis AA. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152500. [PMID: 34968606 DOI: 10.1016/j.scitotenv.2021.152500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Volatile fatty acids (VFA), the secondary metabolite of microbial fermentation, are used in a wide range of industries for production of commercially valuable chemicals. In this review, the fermentative production of VFAs by both pure as well mixed microbial cultures is highlighted along with the strategies for enhancing the VFA production through innovations in existing approaches. Role of conventionally applied tools for the optimization of operational parameters such as pH, temperature, retention time, organic loading rate, and headspace pressure has been discussed. Furthermore, a comparative assessment of above strategies on VFA production has been done with alternate developments such as co-fermentation, substrate pre-treatment, and in situ removal from fermented broth. The review also highlights the applications of different bioreactor geometries in the optimum production of VFAs and how metagenomic tools could provide a detailed insight into the microbial communities and their functional attributes that could be subjected to metabolic engineering for the efficient production of VFAs.
Collapse
|
16
|
Shah MP, Banerjee R, Rodríguez-Couto S. Special issue: Emerging microbial technologies for wastewater treatment. J Basic Microbiol 2022; 62:199-200. [PMID: 35315113 DOI: 10.1002/jobm.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
|
17
|
Malik S, Kishore S, Prasad S, Shah MP. A comprehensive review on emerging trends in industrial wastewater research. J Basic Microbiol 2022; 62:296-309. [PMID: 35132661 DOI: 10.1002/jobm.202100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/27/2021] [Accepted: 01/23/2022] [Indexed: 12/07/2022]
Abstract
Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to various obstructions and impediments, such as ineffective treatment solutions, exorbitant prices, lack of basic amenities, insufficient financial assistance, and technical expertise, sustainable treatment of industrial effluents has become an onerous process in most parts of the world. The majority of current treatment solutions are conventional and outdated, and thus fall short to remove all the contaminants efficiently from the industrial wastewater. Moreover, poorly treated or untreated industrial effluents are indiscriminately dumped into water bodies such as lakes, ponds, and rivers, causing substantial health hazards to humans and animals and serious threats to the aquatic ecosystem. Thus, there is a need for highly efficient, cost-effective, and sustainable technologies for the treatment of industrial wastewater. Employment of microbial technologies such as microbial fuel cells and microalgal technologies, treatment of wastewater can be coupled with the production of bioelectricity and valuable biomass, respectively. Moreover, with nanofiltration and biochar technologies, the efficiency of the overall treatment procedure can be increased to a greater extent. The present review aims to highlight opportunities and challenges associated with some of the emerging trends in industrial wastewater research.
Collapse
|
18
|
Malik S, Kishore S, Shah MP, Kumar SA. A comprehensive review on nanobiotechnology for bioremediation of heavy metals from wastewater. J Basic Microbiol 2022; 62:361-375. [PMID: 34978081 DOI: 10.1002/jobm.202100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
Removal of contaminants from wastewater is a big concern for the scientific community. Heavy metals are one of the major contaminants present in wastewater. Heavy metals such as Cd2+ , Pb2+ , Mn2+ , and so forth, are highly toxic and pose a serious threat to the environment due to their nonbiodegradable nature. With the advent of nanobiotechnology, heavy metal contaminants can be mitigated with the help of nanomaterials produced by eco-friendly methods. Specially designed bionanomaterials often exhibit properties such as increased shelf life, self-healing nature, adaptability in different environments, and cost-effectiveness, thus showing advantages over nanomaterials produced by physicochemical methods. Due to their high specificity and adsorption capacity, bionanomaterials can remove heavy metals present even in a very low concentration in wastewater. The use of bionanotechnology in their remediation paves a way for environmental sustainability and helps in cost reduction. This paper intends to discuss the nanobiotechnological approach for the remediation of heavy metals from wastewater. Furthermore, the paper also reviews some important nanomaterials and their potential applications in the depollution of heavy-metal contaminated wastewater.
Collapse
|
19
|
Narwal E, Kannepalli A, Choudhary J, Singh YV, Shah MP. Bioprospecting plant growth-promoting rhizobacteria from rice genotypes and their influence on growth under aerobic conditions. J Basic Microbiol 2021; 62:135-149. [PMID: 34845728 DOI: 10.1002/jobm.202100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 11/12/2022]
Abstract
The bacteria that colonize plant roots and enhance plant growth by various mechanisms are known as plant growth-promoting rhizobacteria (PGPR). The functions of rhizobacteria stand substantially unexplored and detailed insights into the aerobic rice ecosystem are yet to be examined. In this study, we have isolated rhizobacteria from rice varieties grown under aerobic conditions. Seed germination test showed that strain Ekn 03 was significantly effective in stimulating germination, enhancing shoot and root length, and increasing dry matter accumulation in treated rice plants as compared to the uninoculated plants. Under greenhouse conditions, strain Ekn 03 treated rice varieties showed an overall increase in plant height by 7.63%, dry matter accumulation by 16.23%, and total chlorophyll content by 76.47%. Soil acetylene reduction assay (ARA) (4.17 nmole ethylene/g soil/h) and in-planta ARA (4.2 × 10-2 nmole ethylene/mg fresh weight of plant/h) was significantly higher in Ekn 03 treated rice variety PB 1509 under aerobic conditions. Other rice varieties showed comparable performance on inoculation with strain Ekn 03. The endophytic and rhizospheric population of antibiotic tagged Ekn 03 was higher in the roots of PB 1509 (1.02 × 104 cfu/g and 5.8 × 105 cfu/g soil, respectively) compared to other rice varieties. 16S rDNA sequence analysis revealed that strain Ekn 03 was having 100% similarity with Pseudomonas protegens. This study suggests that strain Ekn 03 can be used as a microbial inoculant in rice plants under aerobic system of cultivation. This is the first report on the application of P. protegens as PGPR in rice.
Collapse
|
20
|
Borthakur D, Rani M, Das K, Shah MP, Sharma BK, Kumar A. Bioremediation: an alternative approach for detoxification of polymers from the contaminated environment. Lett Appl Microbiol 2021; 75:744-758. [PMID: 34825392 DOI: 10.1111/lam.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
The industries and metropolitan wastes produced by anthropogenic activities are of great concern for nature as it causes soil contamination and deteriorate the environment. Plastic utilization is rapidly enhancing globally with passing days that last for a more extended period in the environment due to slow decomposition and natural degradation. Excessive use of polymer has risked the life of both marine, freshwater and terrestrial organisms. Lack of proper waste management and inappropriate disposal leads to environmental threats. Bioremediation processes involve microbes such as fungi, bacteria, etc. which contribute a crucial role in the breakdown of plastics. Extremophiles secrete extremozymes that are functionally active in extreme conditions and are highly crucial for polymer disaggregation in those conditions.
Collapse
|
21
|
Goswami RK, Agrawal K, Shah MP, Verma P. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Lett Appl Microbiol 2021; 75:701-717. [PMID: 34562022 DOI: 10.1111/lam.13564] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
Heavy metals-containing drinking water and wastewater are posing a severe threat to the environment, and living beings on land, air and water. Different conventional, advanced nanomaterials-based and biological method has been employed for the treatment of heavy metals. Among the biological methods, microalgae are an important group of micro-organisms that have numerous environmental applications and can remediate heavy metals from wastewater. Also, it has numerous advantages over conventional remediation processes. Microalgae cells can uptake the heavy metal via different physiological and biological methods and are utilized as a nutrient source to regulate its metabolic process for the production of biomass. Furthermore, the enhancement in heavy metal removal efficiency can be improved using different strategies such as immobilization of algal cells, development of algal consortia and designing of microalgae-based nanocomposite materials. Also, it can significantly contribute towards environmental sustainability and future. Thus, the review provides a critical overview of heavy metals and their existence along with their negative effects on humans. This review provides insight on recent advanced nanomaterial approaches for the removal of heavy metals, overviews of microalgae-based heavy metal uptake mechanisms and their potential for the amputation of different heavy metals. Furthermore, the special focus is on recent strategies that enhance heavy metal removal efficiency and contribute towards sustainability for the development of a microalgae-based future.
Collapse
|
22
|
Yadav VK, Khan SH, Choudhary N, Tirth V, Kumar P, Ravi RK, Modi S, Khayal A, Shah MP, Sharma P, Godha M. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J Basic Microbiol 2021; 62:348-360. [PMID: 34528719 DOI: 10.1002/jobm.202100217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 11/12/2022]
Abstract
Nanotechnology has gained huge importance in the field of environmental clean-up today. Due to their remarkable and unique properties, it has shown potential application for the remediation of several pesticides and textile dyes. Recently it has shown positive results for the remediation of sodium dodecyl sulfate (SDS). One of the highly exploited surfactants in detergent preparation is anionic surfactants. The SDS selected for the present study is an example of anionic linear alkyl sulfate. It is utilized extensively in industrial washing, which results in the high effluent level of this contaminant and ubiquitously toxic to the environment. The present review is based on the research depicting the adverse effects of SDS in general and possible strategies to minimizing its effects by bacterial degradation which are capable of exploiting the SDS as an only source of carbon. Moreover, it has also highlighted that how nanotechnology can play a role in the remediation of such recalcitrant pesticides.
Collapse
|
23
|
Nagda A, Meena M, Shah MP. Bioremediation of industrial effluents: A synergistic approach. J Basic Microbiol 2021; 62:395-414. [PMID: 34516028 DOI: 10.1002/jobm.202100225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/14/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022]
Abstract
Industrial wastewater consists of inorganic and organic toxic pollutants that pose a threat to environmental sustainability. The organic pollutants are a menace to the environment and life forms than the inorganic substances and pose teratogenic, mutagenic, carcinogenic, and other serious detrimental effects on the living entities, moreover, they have a gene-altering effect on aquatic life forms and affect the soil fertility and quality. Removal of varying effluents having recalcitrant contaminants with conventional treatment technologies is strenuous. In contrast to physical and chemical methods, biological treatment methods are environmentally friendly, versatile, efficient, and technically feasible with low operational costs and energy footprints. Biological treatment is a secondary wastewater treatment system that utilizes the metabolic activities of microorganisms to oxidize or reduce inorganic and organic compounds and transform them into dense biomass, which later can be removed by the sedimentation process. Biological treatment in bioreactors is an ex situ method of bioremediation and provides the benefits of continuous monitoring under controlled parameters. This paper attempts to provide a review of bioremediation technologies discussing most concerning widespread bioreactors and advances used for different industrial effluents with their comparative merits and limitations.
Collapse
|
24
|
Meena M, Yadav G, Sonigra P, Shah MP. A comprehensive review on application of bioreactor for industrial wastewater treatment. Lett Appl Microbiol 2021; 74:131-158. [PMID: 34469596 DOI: 10.1111/lam.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
In the recent past, wastewater treatment processes performed a pivotal role in accordance with maintaining the sustainable environment and health of mankind at a proper hygiene level. It has been proved indispensable by government regulations throughout the world on account of the importance of preserving freshwater bodies. Human activities, predominantly from industrial sectors, generate an immeasurable amount of industrial wastewater loaded with toxic chemicals, which not only cause dreadful environmental problems, but also leave harmful impacts on public health. Hence, industrial wastewater effluent must be treated before being released into the environment to restrain the problems related to industrial wastewater discharged to the environment. Nowadays, biological wastewater treatment methods have been considered an excellent approach for industrial wastewater treatment process because of their cost-effectiveness in the treatment, high efficiency and their potential to counteract the drawbacks of conventional wastewater treatment methods. Recently, the treatment of industrial effluent through bioreactor has been proved as one of the best methods from the presently available methods. Reactors are the principal part of any biotechnology-based method for microbial or enzymatic biodegradation, biotransformation and bioremediation. This review aims to explore and compile the assessment of the most appropriate reactors such as packed bed reactor, membrane bioreactor, rotating biological contactor, up-flow anaerobic sludge blanket reactor, photobioreactor, biological fluidized bed reactor and continuous stirred tank bioreactor that are extensively used for distinct industrial wastewater treatment.
Collapse
|
25
|
|