1
|
Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl HG, Matsunaga S, Piel J. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 2012; 338:387-90. [PMID: 22983711 DOI: 10.1126/science.1226121] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is held as a paradigm that ribosomally synthesized peptides and proteins contain only l-amino acids. We demonstrate a ribosomal origin of the marine sponge-derived polytheonamides, exceptionally potent, giant natural-product toxins. Isolation of the biosynthetic genes from the sponge metagenome revealed a bacterial gene architecture. Only six candidate enzymes were identified for 48 posttranslational modifications, including 18 epimerizations and 17 methylations of nonactivated carbon centers. Three enzymes were functionally validated, which showed that a radical S-adenosylmethionine enzyme is responsible for the unidirectional epimerization of multiple and different amino acids. Collectively, these complex alterations create toxins that function as unimolecular minimalistic ion channels with near-femtomolar activity. This study broadens the biosynthetic scope of ribosomal systems and creates new opportunities for peptide and protein bioengineering.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
260 |
2
|
Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat Chem 2016; 9:387-395. [DOI: 10.1038/nchem.2666] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
|
|
9 |
89 |
3
|
Morinaka BI, Vagstad AL, Helf MJ, Gugger M, Kegler C, Freeman MF, Bode HB, Piel J. RadicalS-Adenosyl Methionine Epimerases: Regioselective Introduction of DiverseD-Amino Acid Patterns into Peptide Natural Products. Angew Chem Int Ed Engl 2014; 53:8503-7. [DOI: 10.1002/anie.201400478] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/30/2014] [Indexed: 11/07/2022]
|
|
11 |
88 |
4
|
Morinaka BI, Lakis E, Verest M, Helf MJ, Scalvenzi T, Vagstad AL, Sims J, Sunagawa S, Gugger M, Piel J. Natural noncanonical protein splicing yields products with diverse β-amino acid residues. Science 2018; 359:779-782. [DOI: 10.1126/science.aao0157] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
|
|
7 |
60 |
5
|
Helf MJ, Fox BW, Artyukhin AB, Zhang YK, Schroeder FC. Comparative metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway in C. elegans. Nat Commun 2022; 13:782. [PMID: 35145075 PMCID: PMC8831614 DOI: 10.1038/s41467-022-28391-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
Untargeted metabolomics via high-resolution mass spectrometry can reveal more than 100,000 molecular features in a single sample, many of which may represent unidentified metabolites, posing significant challenges to data analysis. We here introduce Metaboseek, an open-source analysis platform designed for untargeted comparative metabolomics and demonstrate its utility by uncovering biosynthetic functions of a conserved fat metabolism pathway, α-oxidation, using C. elegans as a model. Metaboseek integrates modules for molecular feature detection, statistics, molecular formula prediction, and fragmentation analysis, which uncovers more than 200 previously uncharacterized α-oxidation-dependent metabolites in an untargeted comparison of wildtype and α-oxidation-defective hacl-1 mutants. The identified metabolites support the predicted enzymatic function of HACL-1 and reveal that α-oxidation participates in metabolism of endogenous β-methyl-branched fatty acids and food-derived cyclopropane lipids. Our results showcase compound discovery and feature annotation at scale via untargeted comparative metabolomics applied to a conserved primary metabolic pathway and suggest a model for the metabolism of cyclopropane lipids. Untargeted mass spectrometry-based metabolomics can reveal new biochemistry, but data analysis is challenging. Here, the authors develop Metaboseek, an open-source software that facilitates metabolite discovery, and apply it to characterize fatty acid alpha-oxidation in C. elegans.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
30 |
6
|
Chang HY, Colby SM, Du X, Gomez JD, Helf MJ, Kechris K, Kirkpatrick CR, Li S, Patti GJ, Renslow RS, Subramaniam S, Verma M, Xia J, Young JD. A Practical Guide to Metabolomics Software Development. Anal Chem 2021; 93:1912-1923. [PMID: 33467846 PMCID: PMC7859930 DOI: 10.1021/acs.analchem.0c03581] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
A growing number
of software tools have been developed for metabolomics
data processing and analysis. Many new tools are contributed by metabolomics
practitioners who have limited prior experience with software development,
and the tools are subsequently implemented by users with expertise
that ranges from basic point-and-click data analysis to advanced coding.
This Perspective is intended to introduce metabolomics software users
and developers to important considerations that determine the overall
impact of a publicly available tool within the scientific community.
The recommendations reflect the collective experience of an NIH-sponsored
Metabolomics Consortium working group that was formed with the goal
of researching guidelines and best practices for metabolomics tool
development. The recommendations are aimed at metabolomics researchers
with little formal background in programming and are organized into
three stages: (i) preparation, (ii) tool development, and (iii) distribution
and maintenance.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
30 |
7
|
Morinaka BI, Vagstad AL, Helf MJ, Gugger M, Kegler C, Freeman MF, Bode HB, Piel J. RadicalS-Adenosyl Methionine Epimerases: Regioselective Introduction of DiverseD-Amino Acid Patterns into Peptide Natural Products. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400478] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
|
11 |
21 |
8
|
Le HH, Wrobel CJ, Cohen SM, Yu J, Park H, Helf MJ, Curtis BJ, Kruempel JC, Rodrigues PR, Hu PJ, Sternberg PW, Schroeder FC. Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. eLife 2020; 9:61886. [PMID: 33063667 PMCID: PMC7641594 DOI: 10.7554/elife.61886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
20 |
9
|
Hoki JS, Le HH, Mellott KE, Zhang YK, Fox BW, Rodrigues PR, Yu Y, Helf MJ, Baccile JA, Schroeder FC. Deep Interrogation of Metabolism Using a Pathway-Targeted Click-Chemistry Approach. J Am Chem Soc 2020; 142:18449-18459. [PMID: 33053303 DOI: 10.1021/jacs.0c06877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Untargeted metabolomics indicates that the number of unidentified small-molecule metabolites may exceed the number of protein-coding genes for many organisms, including humans, by orders of magnitude. Uncovering the underlying metabolic networks is essential for elucidating the physiological and ecological significance of these biogenic small molecules. Here we develop a click-chemistry-based enrichment strategy, DIMEN (deep interrogation of metabolism via enrichment), that we apply to investigate metabolism of the ascarosides, a family of signaling molecules in the model organism C. elegans. Using a single alkyne-modified metabolite and a solid-phase azide resin that installs a diagnostic moiety for MS/MS-based identification, DIMEN uncovered several hundred novel compounds originating from diverse biosynthetic transformations that reveal unexpected intersection with amino acid, carbohydrate, and energy metabolism. Many of the newly discovered transformations could not be identified or detected by conventional LC-MS analyses without enrichment, demonstrating the utility of DIMEN for deeply probing biochemical networks that generate extensive yet uncharacterized structure space.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
13 |
10
|
Helf MJ, Jud A, Piel J. Enzyme from an Uncultivated Sponge Bacterium Catalyzes S-Methylation in a Ribosomal Peptide. Chembiochem 2017; 18:444-450. [DOI: 10.1002/cbic.201600594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 12/19/2022]
|
|
8 |
11 |
11
|
Helf MJ, Freeman MF, Piel J. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis. ACTA ACUST UNITED AC 2019; 46:551-563. [DOI: 10.1007/s10295-018-02129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Polytheonamides are the most extensively modified ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) currently known. In RiPP biosynthesis, the processed peptide is usually released from a larger precursor by proteolytic cleavage to generate the bioactive terminal product of the pathway. For polytheonamides, which are members of a new RiPP family termed proteusins, we have recently shown that such cleavage is catalyzed by the cysteine protease PoyH acting on the precursor PoyA, both encoded in the polytheonamide biosynthetic gene cluster. We now report activity for PoyH under a variety of reaction conditions for different maturation states of PoyA and demonstrate a potential use of PoyH as a promiscuous protease to liberate and characterize RiPPs from other pathways. As a proof of concept, the identified recognition motif was introduced into precursors of the thiopeptide thiocillin and the lanthipeptide lichenicidin VK1, allowing for their site-specific cleavage with PoyH. Additionally, we show that PoyH cleavage is inhibited by PoyG, a previously uncharacterized chagasin-like protease inhibitor encoded in the polytheonamide gene cluster.
Collapse
|
|
6 |
7 |
12
|
Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crüsemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014. [PMID: 24476823 DOI: 10.1038/nature12959.erratum.in:nature507:262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such 'talented' producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus 'Entotheonella' with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. 'Entotheonella' spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum 'Tectomicrobia'. The pronounced bioactivities and chemical uniqueness of 'Entotheonella' compounds provide significant opportunities for ecological studies and drug discovery.
Collapse
|
|
11 |
1 |
13
|
Fox BW, Helf MJ, Burkhardt RN, Artyukhin AB, Curtis BJ, Palomino DF, Schroeder AF, Chaturbedi A, Tauffenberger A, Wrobel CJJ, Zhang YK, Lee SS, Schroeder FC. Author Correction: Evolutionarily related host and microbial pathways regulate fat desaturation in C. elegans. Nat Commun 2024; 15:6090. [PMID: 39030188 PMCID: PMC11259584 DOI: 10.1038/s41467-024-50246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
|
Published Erratum |
1 |
|
14
|
Helf MJ, Buntin K, Klančar A, Rust M, Petersen F, Pistorius D, Weber E, Wong J, Krastel P. Scaling up for success: from bioactive natural products to new medicines. Nat Prod Rep 2024; 41:1824-1834. [PMID: 39129507 DOI: 10.1039/d4np00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Covering 1986 to presentNatural product drug discovery at Novartis has a long and successful history of delivering life saving medicines to millions of patients. In this viewpoint, we are presenting the tools we use and challenges we face as we advance natural products from early research into development and beyond. We are leveraging our collection of 90 000 microbial strains and 20 000 isolated natural products to find new medications in an interdisciplinary approach that requires expertise in microbiology, computational biology, synthetic biology, chemistry, and process development. Technological advances, particularly in genome engineering and data science have transformed our field, accelerating discovery and facilitating sustainable compound supply. Emerging new modalities such as antibody drug conjugates, radioligand therapies and xRNA-based medications offer new opportunities for natural product-derived drugs. By taking advantage of these new modalities and the most recent research technologies, natural products will significantly contribute to the medicines of the future.
Collapse
|
Review |
1 |
|
15
|
Fox BW, Helf MJ, Burkhardt RN, Artyukhin AB, Curtis BJ, Palomino DF, Chaturbedi A, Tauffenberger A, Wrobel CJ, Zhang YK, Lee SS, Schroeder FC. Evolutionarily related host and microbial pathways regulate fat desaturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555782. [PMID: 37693574 PMCID: PMC10491262 DOI: 10.1101/2023.08.31.555782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression1-4, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a β-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a β-methyl fatty acid, bemeth#1, whose activity mimics that of microbiota-dependent becyp#1, but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated β-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.
Collapse
|
Preprint |
2 |
|
16
|
Fox BW, Helf MJ, Burkhardt RN, Artyukhin AB, Curtis BJ, Palomino DF, Schroeder AF, Chaturbedi A, Tauffenberger A, Wrobel CJJ, Zhang YK, Lee SS, Schroeder FC. Evolutionarily related host and microbial pathways regulate fat desaturation in C. elegans. Nat Commun 2024; 15:1520. [PMID: 38374083 PMCID: PMC10876521 DOI: 10.1038/s41467-024-45782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a β-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a β-methyl fatty acid, bemeth#1, which mimics the activity of microbiota-dependent becyp#1 but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated β-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.
Collapse
|
research-article |
1 |
|