1
|
Kim SY, Sivaguru M, Stacey G. Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. PLANT PHYSIOLOGY 2006; 142:984-92. [PMID: 16963521 PMCID: PMC1630726 DOI: 10.1104/pp.106.085670] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extracellular ATP (eATP) in animals is well documented and known to play an important role in cellular signaling (e.g. at the nerve synapse). The existence of eATP has been postulated in plants; however, there is no definitive experimental evidence for its presence or an explanation as to how such a polar molecule could exit the plant cell and what physiological role it may play in plant growth and development. The presence of eATP in plants (Medicago truncatula) was detected by constructing a novel reporter; i.e. fusing a cellulose-binding domain peptide to the ATP-requiring enzyme luciferase. Application of this reporter to plant roots allowed visualization of eATP in the presence of the substrate luciferin. Luciferase activity could be detected in the interstitial spaces between plant epidermal cells and predominantly at the regions of actively growing cells. The levels of eATP were closely correlated with regions of active growth and cell expansion. Pharmacological compounds known to alter cytoplasmic calcium levels revealed that ATP release is a calcium-dependent process and may occur through vesicular fusion, an important step in the polar growth of actively growing root hairs. Reactive oxygen species (ROS) activity at the root hair tip is not only essential for root hair growth, but also dependent on the cytoplasmic calcium levels. Whereas application of exogenous ATP and a chitin mixture increased ROS activity in root hairs, no changes were observed in response to adenosine, AMP, ADP, and nonhydrolyzable ATP (betagammameATP). However, application of exogenous potato (Solanum tuberosum) apyrase (ATPase) decreased ROS activity, suggesting that cytoplasmic calcium gradients and ROS activity are closely associated with eATP release.
Collapse
|
research-article |
19 |
169 |
2
|
Wu X, Oh MH, Schwarz EM, Larue CT, Sivaguru M, Imai BS, Yau PM, Ort DR, Huber SC. Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1769-78. [PMID: 21311030 PMCID: PMC3091122 DOI: 10.1104/pp.110.165852] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/04/2011] [Indexed: 05/20/2023]
Abstract
Lysine acetylation (LysAc), a form of reversible protein posttranslational modification previously known only for histone regulation in plants, is shown to be widespread in Arabidopsis (Arabidopsis thaliana). Sixty-four Lys modification sites were identified on 57 proteins, which operate in a wide variety of pathways/processes and are located in various cellular compartments. A number of photosynthesis-related proteins are among this group of LysAc proteins, including photosystem II (PSII) subunits, light-harvesting chlorophyll a/b-binding proteins (LHCb), Rubisco large and small subunits, and chloroplastic ATP synthase (β-subunit). Using two-dimensional native green/sodium dodecyl sulfate gels, the loosely PSII-bound LHCb was separated from the LHCb that is tightly bound to PSII and shown to have substantially higher level of LysAc, implying that LysAc may play a role in distributing the LHCb complexes. Several potential LysAc sites were identified on eukaryotic elongation factor-1A (eEF-1A) by liquid chromatography/mass spectrometry and using sequence- and modification-specific antibodies the acetylation of Lys-227 and Lys-306 was established. Lys-306 is contained within a predicted calmodulin-binding sequence and acetylation of Lys-306 strongly inhibited the interactions of eEF-1A synthetic peptides with calmodulin recombinant proteins in vitro. These results suggest that LysAc of eEF-1A may directly affect regulatory properties and localization of the protein within the cell. Overall, these findings reveal the possibility that reversible LysAc may be an important and previously unknown regulatory mechanism of a large number of nonhistone proteins affecting a wide range of pathways and processes in Arabidopsis and likely in all plants.
Collapse
|
research-article |
14 |
167 |
3
|
Sivaguru M, Ezaki B, He ZH, Tong H, Osawa H, Baluska F, Volkmann D, Matsumoto H. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:2256-66. [PMID: 12913180 PMCID: PMC181309 DOI: 10.1104/pp.103.022129] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Here, we report the aluminum (Al)-induced organ-specific expression of a WAK1 (cell wall-associated receptor kinase 1) gene and cell type-specific localization of WAK proteins in Arabidopsis. WAK1-specific reverse transcriptase-polymerase chain reaction analysis revealed an Al-induced WAK1 gene expression in roots. Short- and long-term analysis of gene expression in root fractions showed a typical "on" and "off" pattern with a first peak at 3 h of Al exposure followed by a sharp decline at 6 h and a complete disappearance after 9 h of Al exposure, suggesting the WAK1 is a further representative of Al-induced early genes. In shoots, upon root Al exposure, an increased but stable WAK1 expression was observed. Using confocal microscopy, we visualized Al-induced closure of leaf stomata, consistent with previous suggestions that the Al stress primarily experienced in roots associated with the transfer of root-shoot signals. Elevated levels of WAK protein in root cells were observed through western blots after 6 h of Al exposure, indicating a lag time between the Al-induced WAK transcription and translation. WAK proteins are localized abundantly to peripheries of cortex cells within the elongation zone of the root apex. In these root cells, disintegration of cortical microtubules was observed after Al treatment but not after the Al analog lanthanum treatments. Tip-growing control root hairs, stem stomata, and leaf stomatal pores are characterized with high amounts of WAKs, suggesting WAKs are accumulating at plasma membrane domains, which suffer from mechanical stress and lack dense arrays of supporting cortical microtubules. Further, transgenic plants overexpressing WAK1 showed an enhanced Al tolerance in terms of root growth when compared with the wild-type plants, making the WAK1 one of the important candidates for plant defense against Al toxicity.
Collapse
|
|
22 |
155 |
4
|
Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vazquez-Santana S, Kim S, Phillips TE, Cruz-Garcia F, McClure B. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 2006; 439:805-10. [PMID: 16482149 DOI: 10.1038/nature04491] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Accepted: 11/23/2005] [Indexed: 11/09/2022]
Abstract
Pollen-pistil interactions are crucial for controlling plant mating. For example, S-RNase-based self-incompatibility prevents inbreeding in diverse angiosperm species. S-RNases are thought to function as specific cytotoxins that inhibit pollen that has an S-haplotype that matches one of those in the pistil. Thus, pollen and pistil factors interact to prevent mating between closely related individuals. Other pistil factors, such as HT-B, 4936-factor and the 120 kDa glycoprotein, are also required for pollen rejection but do not contribute to S-haplotype-specificity per se. Here we show that S-RNase is taken up and sorted to a vacuolar compartment in the pollen tubes. Antibodies to the 120 kDa glycoprotein label the compartment membrane. When the pistil does not express HT-B or 4936-factor, S-RNase remains sequestered, unable to cause rejection. Similarly, in wild-type pistils, compatible pollen tubes degrade HT-B and sequester S-RNase. We suggest that S-RNase trafficking and the stability of HT-B are central to S-specific pollen rejection.
Collapse
|
|
19 |
148 |
5
|
Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H. Aluminum-induced 1-->3-beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. PLANT PHYSIOLOGY 2000; 124:991-1006. [PMID: 11080277 PMCID: PMC59199 DOI: 10.1104/pp.124.3.991] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Accepted: 07/10/2000] [Indexed: 05/19/2023]
Abstract
Symplastic intercellular transport in plants is achieved by plasmodesmata (PD). These cytoplasmic channels are well known to interconnect plant cells to facilitate intercellular movement of water, nutrients, and signaling molecules including hormones. However, it is not known whether Al may affect this cell-to-cell transport process, which is a critical feature for roots as organs of nutrient/water uptake. We have microinjected the dye lucifer yellow carbohydrazide into peripheral root cells of an Al-sensitive wheat (Triticum aestivum cv Scout 66) either before or after Al treatment and followed the cell-to-cell dye-coupling through PD. Here we show that the Al-induced root growth inhibition is closely associated with the Al-induced blockage of cell-to-cell dye coupling. Immunofluorescence combined with immuno-electron microscopic techniques using monoclonal antibodies against 1-->3-beta-D-glucan (callose) revealed circumstantial evidence that Al-induced callose deposition at PD may responsible for this blockage of symplastic transport. Use of 2-deoxy-D-glucose, a callose synthesis inhibitor, allowed us to demonstrate that a reduction in callose particles correlated well with the improved dye-coupling and reduced root growth inhibition. While assessing the tissue specificity of this Al effect, comparable responses were obtained from the dye-coupling pattern in tobacco (Nicotiana tabacum) mesophyll cells. Analyses of the Al-induced expression of PD-associated proteins, such as calreticulin and unconventional myosin VIII, showed enhanced fluorescence and co-localizations with callose deposits. These results suggest that Al-signal mediated localized alterations to calcium homeostasis may drive callose formation and PD closure. Our data demonstrate that extracellular Al-induced callose deposition at PD could effectively block symplastic transport and communication in higher plants.
Collapse
|
research-article |
25 |
139 |
6
|
Zhu J, Alvarez S, Marsh EL, Lenoble ME, Cho IJ, Sivaguru M, Chen S, Nguyen HT, Wu Y, Schachtman DP, Sharp RE. Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. PLANT PHYSIOLOGY 2007; 145:1533-48. [PMID: 17951457 PMCID: PMC2151692 DOI: 10.1104/pp.107.107250] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 10/13/2007] [Indexed: 05/17/2023]
Abstract
Previous work on the adaptation of maize (Zea mays) primary roots to water deficit showed that cell elongation is maintained preferentially toward the apex, and that this response involves modification of cell wall extension properties. To gain a comprehensive understanding of how cell wall protein (CWP) composition changes in association with the differential growth responses to water deficit in different regions of the elongation zone, a proteomics approach was used to examine water soluble and loosely ionically bound CWPs. The results revealed major and predominantly region-specific changes in protein profiles between well-watered and water-stressed roots. In total, 152 water deficit-responsive proteins were identified and categorized into five groups based on their potential function in the cell wall: reactive oxygen species (ROS) metabolism, defense and detoxification, hydrolases, carbohydrate metabolism, and other/unknown. The results indicate that stress-induced changes in CWPs involve multiple processes that are likely to regulate the response of cell elongation. In particular, the changes in protein abundance related to ROS metabolism predicted an increase in apoplastic ROS production in the apical region of the elongation zone of water-stressed roots. This was verified by quantification of hydrogen peroxide content in extracted apoplastic fluid and by in situ imaging of apoplastic ROS levels. This response could contribute directly to the enhancement of wall loosening in this region. This large-scale proteomic analysis provides novel insights into the complexity of mechanisms that regulate root growth under water deficit conditions and highlights the spatial differences in CWP composition in the root elongation zone.
Collapse
|
research-article |
18 |
134 |
7
|
Sivaguru M, Pike S, Gassmann W, Baskin TI. Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. PLANT & CELL PHYSIOLOGY 2003; 44:667-75. [PMID: 12881494 DOI: 10.1093/pcp/pcg094] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Efforts to understand how plants respond to aluminum have focused on describing the symptoms of toxicity and elucidating mechanisms of tolerance; however, little is known about the signal transduction steps that initiate the plant's response. Here, we image cortical microtubules and quantify plasma-membrane potential in living, root cells of intact Arabidopsis seedlings. We show that aluminum depolymerizes microtubules and depolarizes the membrane, and that these responses are prevented by calcium channel blockade. Calcium influx might involve glutamate receptors, which in animals are ligand-gated cation channels and are present in the Arabidopsis genome. We show that glutamate depolymerizes microtubules and depolarizes the plasma membrane. These responses, and also the inhibition of root elongation, occur within the first few min of treatment, but are evoked more rapidly by glutamate than by aluminum. Microtubule depolymerization and membrane depolarization, induced by either glutamate or aluminum, are blocked by a specific antagonist of ionotropic glutamate receptors, 2-amino-5-phosphonopentanoate; whereas an antagonist of an aluminum-gated anion channel blocks the two responses to aluminum but not to glutamate. For growth, microtubule integrity, and membrane potential, responses to combined glutamate and aluminum were not greater than to glutamate alone. We propose that signaling in response to aluminum is initiated by efflux of a glutamate-like ligand through an anion channel and the binding of this ligand to a glutamate receptor.
Collapse
|
|
22 |
116 |
8
|
Min J, Mesika A, Sivaguru M, Van Veldhoven PP, Alexander H, Futerman AH, Alexander S. (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol Cancer Res 2007; 5:801-12. [PMID: 17699106 DOI: 10.1158/1541-7786.mcr-07-0100] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Resistance to chemotherapeutic drugs often limits their clinical efficacy. Previous studies have implicated the bioactive sphingolipid sphingosine-1-phosphate (S-1-P) in regulating sensitivity to cisplatin [cis-diamminedichloroplatinum(II)] and showed that modulating the S-1-P lyase can alter cisplatin sensitivity. Here, we show that the members of the sphingosine kinase (SphK1 and SphK2) and dihydroceramide synthase (LASS1/CerS1, LASS4/CerS4, and LASS5/CerS5) enzyme families each have a unique role in regulating sensitivity to cisplatin and other drugs. Thus, expression of SphK1 decreases sensitivity to cisplatin, carboplatin, doxorubicin, and vincristine, whereas expression of SphK2 increases sensitivity. Expression of LASS1/CerS1 increases the sensitivity to all the drugs tested, whereas LASS5/CerS5 only increases sensitivity to doxorubicin and vincristine. LASS4/CerS4 expression has no effect on the sensitivity to any drug tested. Reflecting this, we show that the activation of the p38 mitogen-activated protein (MAP) kinase is increased only by LASS1/CerS1, and not by LASS4/CerS4 or LASS5/CerS5. Cisplatin was shown to cause a specific translocation of LASS1/CerS1, but not LASS4/CerS4 or LASS5/CerS5, from the endoplasmic reticulum (ER) to the Golgi apparatus. Supporting the hypothesis that this translocation is mechanistically involved in the response to cisplatin, we showed that expression of SphK1, but not SphK2, abrogates both the increased cisplatin sensitivity in cells stably expressing LASS1/CerS and the translocation of the LASS1/CerS1. The data suggest that the enzymes of the sphingolipid metabolic pathway can be manipulated to improve sensitivity to the widely used drug cisplatin.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
89 |
9
|
Sivaguru M, Durgam S, Ambekar R, Luedtke D, Fried G, Stewart A, Toussaint KC. Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging. OPTICS EXPRESS 2010; 18:24983-24993. [PMID: 21164843 DOI: 10.1364/oe.18.024983] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fourier transform-second harmonic generation (FT-SHG) imaging is used as a technique for evaluating collagenase-induced injury in horse tendons. The differences in collagen fiber organization between normal and injured tendon are quantified. Results indicate that the organization of collagen fibers is regularly oriented in normal tendons and randomly organized in injured tendons. This is further supported through the use of additional metrics, in particular, the number of dark (no/minimal signal) and isotropic (no preferred fiber orientation) regions in the images, and the ratio of forward-to-backward second-harmonic intensity. FT-SHG microscopy is also compared with the conventional polarized light microscopy and is shown to be more sensitive to assessing injured tendons than the latter. Moreover, sample preparation artifacts that affect the quantitative evaluation of collagen fiber organization can be circumvented by using FT-SHG microscopy. The technique has potential as an assessment tool for evaluating the impact of various injuries that affect collagen fiber organization.
Collapse
|
|
15 |
78 |
10
|
Deb K, Sivaguru M, Yong HY, Roberts RM. RETRACTED: Cdx2 gene expression and trophectoderm lineage specification in mouse embryos. Science 2006; 311:992-6. [PMID: 16484492 DOI: 10.1126/science.1120925] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Controversy exists as to whether individual blastomeres from two-cell-stage mouse embryos have identical developmental properties and fate. We show that the transcription factor Cdx2 is expressed in the nuclei of cells derived from the late-dividing but not the first-dividing blastomere of two-cell embryos and, by lineage tracing and RNA interference knock-down experiments, that this lagging cell is the precursor of trophectoderm. Cdx2 mRNA is localized toward the vegetal pole of oocytes, reorients after fertilization, and becomes concentrated in the late-dividing, two-cell-stage blastomere. The asymmetrical distribution of Cdx2 gene products in the oocyte and embryo defines the lineage to trophectoderm.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
71 |
11
|
Andème-Onzighi C, Sivaguru M, Judy-March J, Baskin TI, Driouich A. The reb1-1 mutation of Arabidopsis alters the morphology of trichoblasts, the expression of arabinogalactan-proteins and the organization of cortical microtubules. PLANTA 2002; 215:949-58. [PMID: 12355155 DOI: 10.1007/s00425-002-0836-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2001] [Accepted: 05/23/2002] [Indexed: 05/21/2023]
Abstract
The root epidermal bulger 1 ( reb1) mutant of Arabidopsis thaliana (L.) Heynh. is characterized by a reduced elongation rate of the primary root and by the bulging of many, but not all, root epidermal cells. In this study, we investigated cell wall structure of root epidermal cells in reb1-1 by using serial sectioning, and light and electron microscopy in combination with immuno-cytochemistry and polysaccharide staining. We found that: (i) Cell bulging in the mutant was initiated in the zone of elongation of the root, and occurred exclusively in trichoblasts. (ii) reb1-1 and wild-type root cells stained identically with anti-pectin antibodies, such as JIM5. In contrast, the anti-arabinogalactan-protein antibodies, JIM14 and LM2, stained all epidermal cells in the wild type and trichoblasts preferentially, but in reb1-1 they stained the atrichoblasts only. (iii) Compared to the wild type, mutant trichoblasts had a thinner outer epidermal cell wall, which presented abnormal periodic acid-thio carbohydrazide silver proteinate (PATAg) staining. In addition, we investigated the organization of cortical microtubules in a reb1-1 mutant line expressing a green-fluorescent protein fused to a microtubule-binding domain from human microtubule-associated protein 4. Microtubules in the swollen trichoblasts of reb1-1 were either disordered or absent entirely. Together our findings indicate that the reb1-1 mutation results in an abnormal trichoblast cell wall, and suggest that cell surface arabinogalactan-proteins are required for anisotropic expansion and for orienting cortical microtubules.
Collapse
|
Comparative Study |
23 |
65 |
12
|
Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H. Aluminum inhibits the H(+)-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. PLANT PHYSIOLOGY 2001; 126:1381-90. [PMID: 11500538 PMCID: PMC117139 DOI: 10.1104/pp.126.4.1381] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Revised: 02/11/2001] [Accepted: 04/24/2001] [Indexed: 05/18/2023]
Abstract
Although aluminum (AL) toxicity has been widely studied in monocotyledonous crop plants, the mechanism of Al impact on economically important dicotyledonous plants is poorly understood. Here, we report the spatial pattern of Al-induced root growth inhibition, which is closely associated with inhibition of H(+)-ATPase activity coupled with decreased surface negativity of plasma membrane (PM) vesicles isolated from apical 5-mm root segments of squash (Cucurbita pepo L. cv Tetsukabuto) plants. High-sensitivity growth measurements indicated that the central elongation zone, located 2 to 4 mm from the tip, was preferentially inhibited where high Al accumulation was found. The highest positive shifts (depolarization) in zeta potential of the isolated PM vesicles from 0- to 5-mm regions of Al-treated roots were corresponded to pronounced inhibition of H(+)-ATPase activity. The depolarization of PM vesicles isolated from Al-treated roots in response to added Al in vitro was less than that of control roots, suggesting, particularly in the first 5-mm root apex, a tight Al binding to PM target sites or irreversible alteration of PM properties upon Al treatment to intact plants. In line with these data, immunolocalization of H(+)-ATPase revealed decreases in tissue-specific H(+)-ATPase in the epidermal and cortex cells (2--3 mm from tip) following Al treatments. Our report provides the first circumstantial evidence for a zone-specific depolarization of PM surface potential coupled with inhibition of H(+)-ATPase activity. These effects may indicate a direct Al interaction with H(+)-ATPase from the cytoplasmic side of the PM.
Collapse
|
research-article |
24 |
63 |
13
|
Roqueta-Rivera M, Abbott TL, Sivaguru M, Hess RA, Nakamura MT. Deficiency in the omega-3 fatty acid pathway results in failure of acrosome biogenesis in mice. Biol Reprod 2011; 85:721-32. [PMID: 21653892 DOI: 10.1095/biolreprod.110.089524] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An omega-3 fatty acid, docosahexaenoic acid (DHA), is enriched in testicular membrane phospholipids, but its function is not well understood. The Fads2 gene encodes an enzyme required for the endogenous synthesis of DHA. Using Fads2-null mice (Fads2-/-), we found in our preceding studies that DHA deficiency caused the arrest of spermiogenesis and male infertility, both of which were reversed by dietary DHA. In this study, we investigated a cellular mechanism underlying the DHA essentiality in spermiogenesis. Periodic acid-Schiff staining and acrosin immunohistochemistry revealed the absence of acrosomes in Fads2-/- round spermatids. Acrosin, an acrosomal marker, was scattered throughout the cytoplasm of the Fads2-/- spermatids, and electron microscopy showed that proacrosomal granules were formed on the trans-face of the Golgi. However, excessive endoplasmic reticulum and vesicles were present on the cis-face of the Golgi in Fads2-/- spermatids. The presence of proacrosomal vesicles but lack of a developed acrosome in Fads2-/- spermatids suggested failed vesicle fusion. Syntaxin 2, a protein involved in vesicle fusion, colocalized with acrosin in the acrosome of wild-type mice. In contrast, syntaxin 2 remained scattered in reticular structures and showed no extensive colocalization with acrosin in the Fads2-/- spermatids, suggesting failed fusion with acrosin-containing vesicles or failed transport and release of syntaxin 2 vesicles from Golgi. Dietary supplementation of DHA in Fads2-/- mice restored an intact acrosome. In conclusion, acrosome biogenesis under DHA deficiency is halted after release of proacrosomal granules. Misplaced syntaxin 2 suggests an essential role of DHA in proper delivery of membrane proteins required for proacrosomal vesicle fusion.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
59 |
14
|
Sivaguru M, Urban MA, Fried G, Wesseln CJ, Mander L, Punyasena SW. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microsc Res Tech 2016; 81:101-114. [DOI: 10.1002/jemt.22732] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 11/07/2022]
|
|
9 |
52 |
15
|
Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H. Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). PLANT & CELL PHYSIOLOGY 2005; 46:812-6. [PMID: 15769806 DOI: 10.1093/pcp/pci083] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aluminum (Al)-activated malate transporter (ALMT1) was recently identified from wheat (Triticum aestivum). Heterologous expression of ALMT1 led to higher malate exudation that is associated with enhanced Al tolerance in transgenic plants. Here, we show the first direct evidence that ALMT1 is localized in the plasma membrane of Al-tolerant wheat. Phase partitioning experiments showed that this transporter was associated with the plasma membrane fraction. ALMT1 was detected in an Al-tolerant wheat line even without Al treatments. Analysis of transient expression of ALMT1::green fluorescent protein (GFP) in onion and tobacco cells further confirmed this ALMT1 localization.
Collapse
|
|
20 |
51 |
16
|
Sivaguru M, Mander L, Fried G, Punyasena SW. Capturing the surface texture and shape of pollen: a comparison of microscopy techniques. PLoS One 2012; 7:e39129. [PMID: 22720050 PMCID: PMC3373610 DOI: 10.1371/journal.pone.0039129] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/18/2012] [Indexed: 11/20/2022] Open
Abstract
Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (~250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed.
Collapse
|
Comparative Study |
13 |
48 |
17
|
Dong Y, Kumar CG, Chia N, Kim PJ, Miller PA, Price ND, Cann IKO, Flynn TM, Sanford RA, Krapac IG, Locke RA, Hong PY, Tamaki H, Liu WT, Mackie RI, Hernandez AG, Wright CL, Mikel MA, Walker JL, Sivaguru M, Fried G, Yannarell AC, Fouke BW. Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environ Microbiol 2013; 16:1695-708. [PMID: 24238218 DOI: 10.1111/1462-2920.12325] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/31/2013] [Indexed: 01/12/2023]
Abstract
A low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure). These highly porous and permeable quartz arenite sandstones are directly analogous to reservoirs around the world targeted for large-scale hydrocarbon extraction, as well as subsurface gas and carbon storage. A new downhole low-contamination subsurface sampling probe was used to collect in situ formation water samples for microbial environmental metagenomic analyses. Multiple lines of evidence suggest that this H. sulfidaeris-dominated subsurface microbial community is indigenous and not derived from drilling mud microbial contamination. Data to support this includes V1-V3 pyrosequencing of formation water and drilling mud, as well as comparison with previously published microbial analyses of drilling muds in other sites. Metabolic pathway reconstruction, constrained by the geology, geochemistry and present-day environmental conditions of the Mt. Simon Sandstone, implies that H. sulfidaeris-dominated subsurface microbial community may utilize iron and nitrogen metabolisms and extensively recycle indigenous nutrients and substrates. The presence of aromatic compound metabolic pathways suggests this microbial community can readily adapt to and survive subsurface hydrocarbon migration.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
44 |
18
|
Hao Y, Kuang Z, Walling BE, Bhatia S, Sivaguru M, Chen Y, Gaskins HR, Lau GW. Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2. Cell Microbiol 2011; 14:401-15. [PMID: 22103442 DOI: 10.1111/j.1462-5822.2011.01727.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The redox-active exotoxin pyocyanin (PCN) can be recovered in 100 µM concentrations in the sputa of bronchiectasis patients chronically infected with Pseudomonas aeruginosa (PA). However, the importance of PCN within bronchiectatic airways colonized by PA remains unrecognized. Recently, we have shown that PCN is required for chronic PA lung infection in mice, and that chronic instillation of PCN induces goblet cell hyperplasia (GCH), pulmonary fibrosis, emphysema and influx of immune cells in mouse airways. Many of these pathological features are strikingly similar to the mouse airways devoid of functional FoxA2, a transcriptional repressor of GCH and mucus biosynthesis. In this study, we postulate that PCN causes and exacerbates GCH and mucus hypersecretion in bronchiectatic airways chronically infected by PA by inactivating FoxA2. We demonstrate that PCN represses the expression of FoxA2 in mouse airways and in bronchial epithelial cells cultured at an air-liquid interface or conventionally, resulting in GCH, increased MUC5B mucin gene expression and mucus hypersecretion. Immunohistochemical and inhibitor studies indicate that PCN upregulates the expression of Stat6 and EGFR, both of which in turn repress the expression of FoxA2. These studies demonstrate that PCN induces GCH and mucus hypersecretion by inactivating FoxA2.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
42 |
19
|
Tasan I, Sustackova G, Zhang L, Kim J, Sivaguru M, HamediRad M, Wang Y, Genova J, Ma J, Belmont AS, Zhao H. CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci. Nucleic Acids Res 2019; 46:e100. [PMID: 29912475 PMCID: PMC6158506 DOI: 10.1093/nar/gky501] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Nuclear organization has an important role in determining genome function; however, it is not clear how spatiotemporal organization of the genome relates to functionality. To elucidate this relationship, a method for tracking any locus of interest is desirable. Recently clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or transcription activator-like effectors were adapted for imaging endogenous loci; however, they are mostly limited to visualization of repetitive regions. Here, we report an efficient and scalable method named SHACKTeR (Short Homology and CRISPR/Cas9-mediated Knock-in of a TetO Repeat) for live cell imaging of specific chromosomal regions without the need for a pre-existing repetitive sequence. SHACKTeR requires only two modifications to the genome: CRISPR/Cas9-mediated knock-in of an optimized TetO repeat and its visualization by TetR-EGFP expression. Our simplified knock-in protocol, utilizing short homology arms integrated by polymerase chain reaction, was successful at labeling 10 different loci in HCT116 cells. We also showed the feasibility of knock-in into lamina-associated, heterochromatin regions, demonstrating that these regions prefer non-homologous end joining for knock-in. Using SHACKTeR, we were able to observe DNA replication at a specific locus by long-term live cell imaging. We anticipate the general applicability and scalability of our method will enhance causative analyses between gene function and compartmentalization in a high-throughput manner.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
41 |
20
|
Sivaguru M, Saw JJ, Williams JC, Lieske JC, Krambeck AE, Romero MF, Chia N, Schwaderer AL, Alcalde RE, Bruce WJ, Wildman DE, Fried GA, Werth CJ, Reeder RJ, Yau PM, Sanford RA, Fouke BW. Geobiology reveals how human kidney stones dissolve in vivo. Sci Rep 2018; 8:13731. [PMID: 30213974 PMCID: PMC6137216 DOI: 10.1038/s41598-018-31890-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/29/2018] [Indexed: 11/26/2022] Open
Abstract
More than 10% of the global human population is now afflicted with kidney stones, which are commonly associated with other significant health problems including diabetes, hypertension and obesity. Nearly 70% of these stones are primarily composed of calcium oxalate, a mineral previously assumed to be effectively insoluble within the kidney. This has limited currently available treatment options to painful passage and/or invasive surgical procedures. We analyze kidney stone thin sections with a combination of optical techniques, which include bright field, polarization, confocal and super-resolution nanometer-scale auto-fluorescence microscopy. Here we demonstrate using interdisciplinary geology and biology (geobiology) approaches that calcium oxalate stones undergo multiple events of dissolution as they crystallize and grow within the kidney. These observations open a fundamentally new paradigm for clinical approaches that include in vivo stone dissolution and identify high-frequency layering of organic matter and minerals as a template for biomineralization in natural and engineered settings.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
39 |
21
|
Sivaguru M, Liu J, Kochian LV. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:297-307. [PMID: 23865685 DOI: 10.1111/tpj.12290] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 05/08/2023]
Abstract
Aluminum (Al) toxicity is one of the major limiting factors for crop production on acid soils that comprise significant portions of the world's lands. Aluminum resistance in the cereal crop Sorghum bicolor is mainly achieved by Al-activated root apical citrate exudation, which is mediated by the plasma membrane localized citrate efflux transporter encoded by SbMATE. Here we precisely localize tissue- and cell-specific Al toxicity responses as well as SbMATE gene and protein expression in root tips of an Al-resistant near-isogenic line (NIL). We found that Al induced the greatest cell damage and generation of reactive oxygen species specifically in the root distal transition zone (DTZ), a region 1-3 mm behind the root tip where transition from cell division to cell elongation occurs. These findings indicate that the root DTZ is the primary region of root Al stress. Furthermore, Al-induced SbMATE gene and protein expression were specifically localized to the epidermal and outer cortical cell layers of the DTZ in the Al-resistant NIL, and the process was precisely coincident with the time course of Al induction of SbMATE expression and the onset of the recovery of roots from Al-induced damage. These findings show that SbMATE gene and protein expression are induced when and where the root cells experience the greatest Al stress. Hence, Al-resistant sorghum plants have evolved an effective strategy to precisely localize root citrate exudation to the specific site of greatest Al-induced root damage, which minimizes plant carbon loss while maximizing protection of the root cells most susceptible to Al damage.
Collapse
|
|
12 |
36 |
22
|
Khaw YM, Cunningham C, Tierney A, Sivaguru M, Inoue M. Neutrophil-selective deletion of Cxcr2 protects against CNS neurodegeneration in a mouse model of multiple sclerosis. J Neuroinflammation 2020; 17:49. [PMID: 32019585 PMCID: PMC7001284 DOI: 10.1186/s12974-020-1730-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic debilitating immune-mediated disease of the central nervous system (CNS) driven by demyelination and gray matter neurodegeneration. We previously reported an experimental autoimmune encephalomyelitis (EAE) MS mouse model with elevated serum CXCL1 that developed severe and prolonged neuron damage. Our findings suggested that CXCR2 signaling may be important in neuronal damage, thus implicating neutrophils, which express CXCR2 in abundance, as a potential cell type involved. The goals of this study were to determine if CXCR2 signaling in neutrophils mediate neuronal damage and to identify potential mechanisms of damage. Methods EAE was induced in wild-type control and neutrophil-specific Cxcr2 knockout (Cxcr2 cKO) mice by repeated high-dose injections of heat-killed Mycobacterium tuberculosis and MOG35–55 peptide. Mice were examined daily for motor deficit. Serum CXCL1 level was determined at different time points throughout disease development. Neuronal morphology in Golgi-Cox stained lumbar spinal cord ventral horn was assessed using recently developed confocal reflection super-resolution technique. Immune cells from CNS and lymphoid organs were quantified by flow cytometry. CNS-derived neutrophils were co-cultured with neuronal crest cells and neuronal cell death was measured. Neutrophils isolated from lymphoid organs were examined for expression of reactive oxygen species (ROS) and ROS-related genes. Thioglycolate-activated neutrophils were isolated, treated with recombinant CXCL1, and measured for ROS production. Results Cxcr2 cKO mice had less severe disease symptoms at peak and late phase when compared to control mice with similar levels of CNS-infiltrating neutrophils and other immune cells despite high levels of circulating CXCL1. Additionally, Cxcr2 cKO mice had significantly reduced CNS neuronal damage in the ventral horn of the spinal cord. Neutrophils isolated from control EAE mice induced vast neuronal cell death in vitro when compared with neutrophils isolated from Cxcr2 cKO EAE mice. Neutrophils isolated from control EAE mice, but not Cxcr2 cKO mice, exhibited elevated ROS generation, in addition to heightened Ncf1 and Il1b transcription. Furthermore, recombinant CXCL1 was sufficient to significantly increase neutrophils ROS production. Conclusions CXCR2 signal in neutrophils is critical in triggering CNS neuronal damage via ROS generation, which leads to prolonged EAE disease. These findings emphasize that CXCR2 signaling in neutrophils may be a viable target for therapeutic intervention against CNS neuronal damage.
Collapse
|
Journal Article |
5 |
36 |
23
|
Ezaki B, Sivaguru M, Ezaki Y, Matsumoto H, Gardner RC. Acquisition of aluminum tolerance in Saccharomyces cerevisiae by expression of the BCB or NtGDI1 gene derived from plants. FEMS Microbiol Lett 1999; 171:81-7. [PMID: 10077831 DOI: 10.1111/j.1574-6968.1999.tb13415.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Eleven aluminum stress-induced genes derived from plants (wheat, Arabidopsis and tobacco) were introduced into Saccharomyces cerevisiae to test if expression of these genes confers Al tolerance. Al sensitivity tests showed that expression of two genes, either an Arabidopsis gene for blue copper binding protein (BCB), or a tobacco gene for the GDP dissociation inhibitor (NtGDI1), conferred Al tolerance. Determinations of total content and localization of Al ions in these transformants suggested that the BCB gene product functions in restricting Al uptake, while expression of the NtGDI1 gene promotes release of Al ions after uptake.
Collapse
|
|
26 |
33 |
24
|
Cam A, Sivaguru M, Gonzalez de Mejia E. Endocytic mechanism of internalization of dietary peptide lunasin into macrophages in inflammatory condition associated with cardiovascular disease. PLoS One 2013; 8:e72115. [PMID: 24039740 PMCID: PMC3764169 DOI: 10.1371/journal.pone.0072115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States. Diet influences risk factors associated with CVD and atherosclerosis, a major vascular disease that arises from inflammation. Lunasin, a peptide derived from plant foods such as soybeans, contains a unique Arg-Gly-Asp cell-adhesion motif and inhibits the pathways involved in the inflammatory cascade. The objective was to determine the mechanism by which lunasin is internalized into human THP-1 macrophages, investigate the expression of endocytic membrane proteins in inflammatory conditions and to identify the pathways involved. While lipopolysaccharide (10 nM), vitronectin (130 nM) and a combination of these two molecules enhanced lunasin uptake and increased basal αVβ3 integrin expression, lunasin reduced αVβ3 expression by 25.5, 26.8 and 49.2%, respectively. The pretreatment of cells with brefeldin A (71 µM), an inhibitor of protein trafficking, inhibited lunasin internalization by up to 99.8%. Lunasin increased caveolin-1 expression by up to 204.8%, but did not modulate clathrin. The pretreatment of macrophages with nystatin (54 µM), an inhibitor of caveolae-dependent endocytosis, reduced lunasin internalization. The presence of amantadine (1 mM) and amiloride (1 mM), inhibitors of clathrin-mediated endocytosis and macropinocytosis, abolished lunasin cell entry. Lunasin elicited a transient reduction in intracellular levels of Ca2+ in LPS-induced macrophages. The results suggest that internalization of lunasin into macrophages is amplified in inflammatory conditions and is primarily mediated by endocytic mechanisms that involve integrin signaling, clathrin-coated structures and macropinosomes. Lunasin may be responsible for attenuation of CVD risk factors by interacting with pathways involved in endocytosis and inflammation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
32 |
25
|
Ahn SJ, Sivaguru M, Chung GC, Rengel Z, Matsumoto H. Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:1959-1966. [PMID: 12177136 DOI: 10.1093/jxb/erf049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is generally understood that the inhibition of growth of root apices is the initial effect caused by aluminium (Al) toxicity. The correlation between impaired H+-fluxes across the plasma membrane (PM) and Al-induced growth inhibition, Al accumulation and callose formation in root apices of squash (Cucurbita pepo L. cv. Tetsukabuto) is reported here. The root inhibition was dependent on Al concentration, and the duration of exposure, with the damage occurring preferentially in regions with high Al accumulation and callose formation. Using the fluorescent Al indicator (Morin), Al was localized in the cell walls of the root-tip cells after 3 h and in the whole root-tip cells after 6 h of the Al treatment (50 micro M). The inhibition of H+-pumping rate in the highly purified PM vesicles obtained from the Al-treated apical root portions (1 cm) coincided with the inhibition of root growth under Al stress. Furthermore, H+-ATPase activity of PM vesicles prepared from the control root apices was strongly inhibited by Al in vitro in a dose-dependent manner. Approximately 50% inhibition was observed when PM vesicles were preincubated at Al concentration as low as 10 micro M followed by the enzyme assay in the medium without Al. Using the pH indicator (bromocresol purple), it is shown that surface pH of the control (0 Al) root apices was strongly alkalized from the starting pH of 4.5 in a time-dependent manner. By contrast, the surface pH changed only slightly in the Al-treated root apices. The changes in surface pH mediated by altered dynamics of H+ efflux and influx across the root tip PM play an important role in root growth as affected by Al.
Collapse
|
|
23 |
31 |