1
|
Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C, Lamit LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, Lajeunesse MJ, Milligan BG, Karst J, Hoeksema JD. Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol 2016; 16:122. [PMID: 27287440 PMCID: PMC4902977 DOI: 10.1186/s12862-016-0698-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Local adaptation, the differential success of genotypes in their native versus foreign environment, arises from various evolutionary processes, but the importance of concurrent abiotic and biotic factors as drivers of local adaptation has only recently been investigated. Local adaptation to biotic interactions may be particularly important for plants, as they associate with microbial symbionts that can significantly affect their fitness and may enable rapid evolution. The arbuscular mycorrhizal (AM) symbiosis is ideal for investigations of local adaptation because it is globally widespread among most plant taxa and can significantly affect plant growth and fitness. Using meta-analysis on 1170 studies (from 139 papers), we investigated the potential for local adaptation to shape plant growth responses to arbuscular mycorrhizal inoculation. RESULTS The magnitude and direction for mean effect size of mycorrhizal inoculation on host biomass depended on the geographic origin of the soil and symbiotic partners. Sympatric combinations of plants, AM fungi, and soil yielded large increases in host biomass compared to when all three components were allopatric. The origin of either the fungi or the plant relative to the soil was important for explaining the effect of AM inoculation on plant biomass. If plant and soil were sympatric but allopatric to the fungus, the positive effect of AM inoculation was much greater than when all three components were allopatric, suggesting potential local adaptation of the plant to the soil; however, if fungus and soil were sympatric (but allopatric to the plant) the effect of AM inoculation was indistinct from that of any allopatric combinations, indicating maladaptation of the fungus to the soil. CONCLUSIONS This study underscores the potential to detect local adaptation for mycorrhizal relationships across a broad swath of the literature. Geographic origin of plants relative to the origin of AM fungal communities and soil is important for describing the effect of mycorrhizal inoculation on plant biomass, suggesting that local adaptation represents a powerful factor for the establishment of novel combinations of fungi, plants, and soils. These results highlight the need for subsequent investigations of local adaptation in the mycorrhizal symbiosis and emphasize the importance of routinely considering the origin of plant, soil, and fungal components.
Collapse
|
Meta-Analysis |
9 |
104 |
2
|
Rudgers JA, Afkhami ME, Rúa MA, Davitt AJ, Hammer S, Huguet VM. A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology 2009; 90:1531-9. [DOI: 10.1890/08-0116.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
|
16 |
102 |
3
|
Chaudhary VB, Rúa MA, Antoninka A, Bever JD, Cannon J, Craig A, Duchicela J, Frame A, Gardes M, Gehring C, Ha M, Hart M, Hopkins J, Ji B, Johnson NC, Kaonongbua W, Karst J, Koide RT, Lamit LJ, Meadow J, Milligan BG, Moore JC, Pendergast IV TH, Piculell B, Ramsby B, Simard S, Shrestha S, Umbanhowar J, Viechtbauer W, Walters L, Wilson GWT, Zee PC, Hoeksema JD. MycoDB, a global database of plant response to mycorrhizal fungi. Sci Data 2016; 3:160028. [PMID: 27163938 PMCID: PMC4862322 DOI: 10.1038/sdata.2016.28] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/23/2016] [Indexed: 11/12/2022] Open
Abstract
Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems.
Collapse
|
Dataset |
9 |
60 |
4
|
Hoeksema JD, Bever JD, Chakraborty S, Chaudhary VB, Gardes M, Gehring CA, Hart MM, Housworth EA, Kaonongbua W, Klironomos JN, Lajeunesse MJ, Meadow J, Milligan BG, Piculell BJ, Pringle A, Rúa MA, Umbanhowar J, Viechtbauer W, Wang YW, Wilson GWT, Zee PC. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun Biol 2018; 1:116. [PMID: 30271996 PMCID: PMC6123707 DOI: 10.1038/s42003-018-0120-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/24/2018] [Indexed: 11/09/2022] Open
Abstract
Most plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.
Collapse
|
research-article |
7 |
58 |
5
|
Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada KI, Parr CL, Adair EC, Adu-Bredu S, Alam MA, Alvarez-Garzón C, Apgaua D, Aragón R, Ardon M, Arndt SK, Ashton LA, Barber NA, Beauchêne J, Berg MP, Beringer J, Boer MM, Bonet JA, Bunney K, Burkhardt TJ, Carvalho D, Castillo-Figueroa D, Cernusak LA, Cheesman AW, Cirne-Silva TM, Cleverly JR, Cornelissen JHC, Curran TJ, D'Angioli AM, Dallstream C, Eisenhauer N, Evouna Ondo F, Fajardo A, Fernandez RD, Ferrer A, Fontes MAL, Galatowitsch ML, González G, Gottschall F, Grace PR, Granda E, Griffiths HM, Guerra Lara M, Hasegawa M, Hefting MM, Hinko-Najera N, Hutley LB, Jones J, Kahl A, Karan M, Keuskamp JA, Lardner T, Liddell M, Macfarlane C, Macinnis-Ng C, Mariano RF, Méndez MS, Meyer WS, Mori AS, Moura AS, Northwood M, Ogaya R, Oliveira RS, Orgiazzi A, Pardo J, Peguero G, Penuelas J, Perez LI, Posada JM, Prada CM, Přívětivý T, Prober SM, Prunier J, Quansah GW, Resco de Dios V, Richter R, Robertson MP, Rocha LF, Rúa MA, Sarmiento C, Silberstein RP, Silva MC, Siqueira FF, Stillwagon MG, Stol J, Taylor MK, Teste FP, Tng DYP, Tucker D, Türke M, Ulyshen MD, Valverde-Barrantes OJ, van den Berg E, et alZanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada KI, Parr CL, Adair EC, Adu-Bredu S, Alam MA, Alvarez-Garzón C, Apgaua D, Aragón R, Ardon M, Arndt SK, Ashton LA, Barber NA, Beauchêne J, Berg MP, Beringer J, Boer MM, Bonet JA, Bunney K, Burkhardt TJ, Carvalho D, Castillo-Figueroa D, Cernusak LA, Cheesman AW, Cirne-Silva TM, Cleverly JR, Cornelissen JHC, Curran TJ, D'Angioli AM, Dallstream C, Eisenhauer N, Evouna Ondo F, Fajardo A, Fernandez RD, Ferrer A, Fontes MAL, Galatowitsch ML, González G, Gottschall F, Grace PR, Granda E, Griffiths HM, Guerra Lara M, Hasegawa M, Hefting MM, Hinko-Najera N, Hutley LB, Jones J, Kahl A, Karan M, Keuskamp JA, Lardner T, Liddell M, Macfarlane C, Macinnis-Ng C, Mariano RF, Méndez MS, Meyer WS, Mori AS, Moura AS, Northwood M, Ogaya R, Oliveira RS, Orgiazzi A, Pardo J, Peguero G, Penuelas J, Perez LI, Posada JM, Prada CM, Přívětivý T, Prober SM, Prunier J, Quansah GW, Resco de Dios V, Richter R, Robertson MP, Rocha LF, Rúa MA, Sarmiento C, Silberstein RP, Silva MC, Siqueira FF, Stillwagon MG, Stol J, Taylor MK, Teste FP, Tng DYP, Tucker D, Türke M, Ulyshen MD, Valverde-Barrantes OJ, van den Berg E, van Logtestijn RSP, Veen GFC, Vogel JG, Wardlaw TJ, Wiehl G, Wirth C, Woods MJ, Zalamea PC. Termite sensitivity to temperature affects global wood decay rates. Science 2022; 377:1440-1444. [PMID: 36137034 DOI: 10.1126/science.abo3856] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.
Collapse
|
|
3 |
29 |
6
|
Cronin JP, Rúa MA, Mitchell CE. Why Is Living Fast Dangerous? Disentangling the Roles of Resistance and Tolerance of Disease. Am Nat 2014; 184:172-87. [DOI: 10.1086/676854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
11 |
28 |
7
|
Rúa MA, Umbanhowar J, Hu S, Burkey KO, Mitchell CE. Elevated CO2 spurs reciprocal positive effects between a plant virus and an arbuscular mycorrhizal fungus. THE NEW PHYTOLOGIST 2013; 199:541-549. [PMID: 23594373 DOI: 10.1111/nph.12273] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
Plants form ubiquitous associations with diverse microbes. These interactions range from parasitism to mutualism, depending partly on resource supplies that are being altered by global change. While many studies have considered the separate effects of pathogens and mutualists on their hosts, few studies have investigated interactions among microbial mutualists and pathogens in the context of global change. Using two wild grass species as model hosts, we grew individual plants under ambient or elevated CO(2), and ambient or increased soil phosphorus (P) supply. Additionally, individuals were grown with or without arbuscular mycorrhizal inoculum, and after 2 wk, plants were inoculated or mock-inoculated with a phloem-restricted virus. Under elevated CO(2), mycorrhizal association increased the titer of virus infections, and virus infection reciprocally increased the colonization of roots by mycorrhizal fungi. Additionally, virus infection decreased plant allocation to root biomass, increased leaf P, and modulated effects of CO(2) and P addition on mycorrhizal root colonization. These results indicate that plant mutualists and pathogens can alter each other's success, and predict that these interactions will respond to increased resource availability and elevated CO(2). Together, our findings highlight the importance of interactions among multiple microorganisms for plant performance under global change.
Collapse
|
|
12 |
25 |
8
|
Yamamichi M, Meunier CL, Peace A, Prater C, Rúa MA. Rapid evolution of a consumer stoichiometric trait destabilizes consumer-producer dynamics. OIKOS 2015. [DOI: 10.1111/oik.02388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
10 |
24 |
9
|
Hilker FM, Allen LJS, Bokil VA, Briggs CJ, Feng Z, Garrett KA, Gross LJ, Hamelin FM, Jeger MJ, Manore CA, Power AG, Redinbaugh MG, Rúa MA, Cunniffe NJ. Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya. PHYTOPATHOLOGY 2017; 107:1095-1108. [PMID: 28535127 DOI: 10.1094/phyto-03-17-0080-fi] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons. The model allows for transmission via vectors, soil, and seed, as well as exogenous sources of infection. Following model parameterization, we predict how management affects disease prevalence and crop performance over multiple seasons. Resource-rich farmers with large holdings can achieve good control by combining clean seed and insect control. However, crop rotation is often required to effect full control. Resource-poor farmers with smaller holdings must rely on rotation and roguing, and achieve more limited control. For both types of farmer, unless management is synchronized over large areas, exogenous sources of infection can thwart control. As well as providing practical guidance, our modeling framework is potentially informative for other cropping systems in which coinfection has devastating effects. Our work also emphasizes how mathematical modeling can inform management of an emerging disease even when epidemiological information remains scanty. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
|
|
8 |
18 |
10
|
Hamelin FM, Allen LJS, Bokil VA, Gross LJ, Hilker FM, Jeger MJ, Manore CA, Power AG, Rúa MA, Cunniffe NJ. Coinfections by noninteracting pathogens are not independent and require new tests of interaction. PLoS Biol 2019; 17:e3000551. [PMID: 31794547 PMCID: PMC6890165 DOI: 10.1371/journal.pbio.3000551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts should be the product of the individual prevalences. Independence consequently underpins the wide range of methods for detecting pathogen interactions from cross-sectional survey data. However, the very simplest of epidemiological models challenge the underlying assumption of statistical independence. Even if pathogens do not interact, death of coinfected hosts causes net prevalences of individual pathogens to decrease simultaneously. The induced positive correlation between prevalences means the proportion of coinfected hosts is expected to be higher than multiplication would suggest. By modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we develop a pair of novel tests of interaction that properly account for nonindependence between pathogens causing lifelong infection. Our tests allow us to reinterpret data from previous studies including pathogens of humans, plants, and animals. Our work demonstrates how methods to identify interactions between pathogens can be updated using simple epidemic models. If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts can be obtained by simply multiplying the individual prevalences. However, even simple epidemiological models show this to be untrue. This study develops new tests for interaction between pathogens that account for this surprising lack of statistical independence.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
18 |
11
|
Whitaker BK, Rúa MA, Mitchell CE. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen. THE NEW PHYTOLOGIST 2015; 207:760-768. [PMID: 25782030 DOI: 10.1111/nph.13369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition.
Collapse
|
|
10 |
17 |
12
|
Rúa MA, Pollina EC, Power AG, Mitchell CE. The role of viruses in biological invasions: friend or foe? Curr Opin Virol 2011; 1:68-72. [DOI: 10.1016/j.coviro.2011.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/21/2011] [Accepted: 05/26/2011] [Indexed: 01/01/2023]
|
|
14 |
17 |
13
|
Rúa MA, Wilson EC, Steele S, Munters AR, Hoeksema JD, Frank AC. Associations between Ectomycorrhizal Fungi and Bacterial Needle Endophytes in Pinus radiata: Implications for Biotic Selection of Microbial Communities. Front Microbiol 2016; 7:399. [PMID: 27065966 PMCID: PMC4815291 DOI: 10.3389/fmicb.2016.00399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/14/2016] [Indexed: 02/01/2023] Open
Abstract
Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors - biotic or abiotic - in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic species interactions and environmental filtering are important for structuring microbial communities but emphasize the need for more research into these interactions.
Collapse
|
research-article |
9 |
17 |
14
|
Rúa MA, Moore B, Hergott N, Van L, Jackson CR, Hoeksema JD. Ectomycorrhizal Fungal Communities and Enzymatic Activities Vary across an Ecotone between a Forest and Field. J Fungi (Basel) 2015; 1:185-210. [PMID: 29376908 PMCID: PMC5753110 DOI: 10.3390/jof1020185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022] Open
Abstract
Extracellular enzymes degrade macromolecules into soluble substrates and are important for nutrient cycling in soils, where microorganisms, such as ectomycorrhizal (ECM) fungi, produce these enzymes to obtain nutrients. Ecotones between forests and fields represent intriguing arenas for examining the effect of the environment on ECM community structure and enzyme activity because tree maturity, ECM composition, and environmental variables may all be changing simultaneously. We studied the composition and enzymatic activity of ECM associated with loblolly pine (Pinus taeda) across an ecotone between a forest where P. taeda is established and an old field where P. taeda saplings had been growing for <5 years. ECM community and environmental characteristics influenced enzyme activity in the field, indicating that controls on enzyme activity may be intricately linked to the ECM community, but this was not true in the forest. Members of the Russulaceae were associated with increased phenol oxidase activity and decreased peroxidase activity in the field. Members of the Atheliaceae were particularly susceptible to changes in their abiotic environment, but this did not mediate differences in enzyme activity. These results emphasize the complex nature of factors that dictate the distribution of ECM and activity of their enzymes across a habitat boundary.
Collapse
|
research-article |
10 |
13 |
15
|
Rúa MA, Lamit LJ, Gehring C, Antunes PM, Hoeksema JD, Zabinski C, Karst J, Burns C, Woods MJ. Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments. MYCORRHIZA 2018; 28:187-195. [PMID: 29181636 DOI: 10.1007/s00572-017-0811-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses.
Collapse
|
|
7 |
4 |
16
|
Hoeksema JD, Bever JD, Chakraborty S, Chaudhary VB, Gardes M, Gehring CA, Hart MM, Housworth EA, Kaonongbua W, Klironomos JN, Lajeunesse MJ, Meadow J, Milligan BG, Piculell BJ, Pringle A, Rúa MA, Umbanhowar J, Viechtbauer W, Wang YW, Wilson GWT, Zee PC. Erratum: Author Correction: Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun Biol 2018; 1:142. [PMID: 30273421 PMCID: PMC6127152 DOI: 10.1038/s42003-018-0143-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
[This corrects the article DOI: 10.1038/s42003-018-0120-9.].
Collapse
|
Published Erratum |
7 |
2 |
17
|
Simonis MC, Hartzler LK, Campbell J, Carter TC, Cooper LN, Cross K, Etchison K, Hemberger T, King RA, Reynolds RJ, Samar Y, Scafini MR, Stankavich S, Turner GG, Rúa MA. Long-term spring through fall capture data of Eptesicus fuscus in the eastern USA before and after white-nose syndrome. Data Brief 2023; 49:109353. [PMID: 37600136 PMCID: PMC10439297 DOI: 10.1016/j.dib.2023.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Emerging infectious diseases threaten wildlife populations. Without well monitored wildlife systems, it is challenging to determine accurate population and ecosystem losses following disease emergence. North American temperate bats present a unique opportunity for studying the broad impacts of wildlife disease emergence, as their federal monitoring programs were prioritized in the USA throughout the 20th century and they are currently threatened by the invasive fungal pathogen, Pseudogymnoascus destructans (Pd), which causes white-nose syndrome. Here we provide a long-term dataset for capture records of Eptesicus fuscus (big brown bat) across the eastern USA, spanning 16 years before and 14 years after Pd invasion into North America. These data represent 30,496 E. fuscus captures across 3,567 unique sites. We encourage the use of this dataset for quantifying impacts of wildlife disease and other threats to wildlife (e.g., climate change) with the incorporation of other available data. We welcome additional data contributions for E. fuscus captures across North and Central America as well as the inclusion of other variables into the dataset that contribute to the quantification of wildlife health.
Collapse
|
data-paper |
2 |
|
18
|
Addison SL, Rúa MA, Smaill SJ, Singh BK, Wakelin SA. Partner or perish: tree microbiomes and climate change. TRENDS IN PLANT SCIENCE 2024; 29:1029-1040. [PMID: 38641475 DOI: 10.1016/j.tplants.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/21/2024]
Abstract
Understanding the complex relationships between plants, their microbiomes, and environmental changes is crucial for improving growth and survival, especially for long-lived tree species. Trees, like other plants, maintain close associations with a multitude of microorganisms on and within their tissues, forming a 'holobiont'. However, a comprehensive framework for detailed tree-microbiome dynamics, and the implications for climate adaptation, is currently lacking. This review identifies gaps in the existing literature, emphasizing the need for more research to explore the coevolution of the holobiont and the full extent of climate change impact on tree growth and survival. Advancing our knowledge of plant-microbial interactions presents opportunities to enhance tree adaptability and mitigate adverse impacts of climate changes on trees.
Collapse
|
Review |
1 |
|
19
|
Simonis MC, Hartzler LK, Turner GG, Scafini MR, Johnson JS, Rúa MA. Long‐term exposure to an invasive fungal pathogen decreases
Eptesicus fuscus
body mass with increasing latitude. Ecosphere 2023. [DOI: 10.1002/ecs2.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
|
2 |
|
20
|
Flanigan KAS, Czuba MI, Riesgo VR, Rúa MA, Stevenson LM, Willing J. Developmental exposure to corn grown on Lake Erie dredged material: a preliminary analysis. Front Behav Neurosci 2023; 17:987239. [PMID: 37153937 PMCID: PMC10160390 DOI: 10.3389/fnbeh.2023.987239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
While corn is considered to be a healthy food option, common agricultural practices, such as the application of soil amendments, might be introducing contaminants of concern (COC) into corn plants. The use of dredged material, which contain contaminants such as heavy metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), as a soil amendment is increasing. Contaminants from these amendments can accumulate in corn kernels harvested from plants grown on these sediments and potentially biomagnify in organisms that consume them. The extent to which secondary exposure to such contaminants in corn affect the mammalian central nervous system has been virtually unexplored. In this preliminary study, we examine the effects of exposure to corn grown in dredge amended soil or a commercially available feed corn on behavior and hippocampal volume in male and female rats. Perinatal exposure to dredge-amended corn altered behavior in the open-field and object recognition tasks in adulthood. Additionally, dredge-amended corn led to a reduction in hippocampal volume in male but not female adult rats. These results suggest the need for future studies examining how dredge-amended crops and/or commercially available feed corn may be exposing animals to COC that can alter neurodevelopment in a sex-specific manner. This future work will provide insight into the potential long-term consequences of soil amendment practices on the brain and behavior.
Collapse
|
brief-report |
2 |
|
21
|
Rúa MA, Hoeksema JD. Interspecific selection in a diverse mycorrhizal symbiosis. Sci Rep 2024; 14:12151. [PMID: 38802437 PMCID: PMC11130337 DOI: 10.1038/s41598-024-62815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Coevolution describes evolutionary change in which two or more interacting species reciprocally drive each other's evolution, potentially resulting in trait diversification and ecological speciation. Much progress has been made in analysis of its dynamics and consequences, but relatively little is understood about how coevolution works in multispecies interactions, i.e., those with diverse suites of species on one or both sides of an interaction. Interactions among plant hosts and their mutualistic ectomycorrhizal fungi (ECM) may provide an ecologically unique arena to examine the nature of selection in multispecies interactions. Using native genotypes of Monterey pine (Pinus radiata), we performed a common garden experiment at a field site that contains native stands to investigate selection from ECM fungi on pine traits. We planted seedlings from all five native populations, as well as inter-population crosses to represent intermediate phenotypes/genotypes, and measured seedling traits and ECM fungal traits to evaluate the potential for evolution in the symbiosis. We then combined field estimates of selection gradients with estimates of heritability and genetic variance-covariance matrices for multiple traits of the mutualism to determine which fungal traits drive plant fitness variation. We found evidence that certain fungal operational taxonomic units, families and species-level morphological traits by which ECM fungi acquire and transport nutrients exert selection on plant traits related to growth and allocation patterns. This work represents the first field-based, community-level study measuring multispecific coevolutionary selection in nutritional symbioses.
Collapse
|
research-article |
1 |
|
22
|
Addison SL, Yan Z, Carlin T, Rúa MA, Smaill SJ, Daley K, Singh BK, Wakelin SA. Unravelling Changes in the Pinus radiata Root and Soil Microbiomes as a Function of Aridity. GLOBAL CHANGE BIOLOGY 2025; 31:e70165. [PMID: 40200676 PMCID: PMC11979571 DOI: 10.1111/gcb.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
Increased aridity is emerging as a key impact of climate change in terrestrial ecosystems globally. Forest biomes are particularly vulnerable to the impacts of changing environmental conditions due to their long-lived and sessile nature. Microbiomes have coevolved with plants under changing environmental conditions with shared fitness outcomes. However, both the movement of plants via domestication and rapid pace of environmental change may impact the ability of plants to recruit microbial symbionts that support environmental stress tolerance. This study investigates the effects of aridity on tree-root microbiome symbiosis, focusing on the widely planted Pinus radiata. By sampling a broad geographic range and diverse environmental gradients, we reveal how aridity, soil and climatic variables shape microbial communities in P. radiata roots and soils. Our findings highlight that while aridity significantly predicts microbial community assembly, other environmental variables such as soil pH and organic carbon, strongly influence bacterial diversity. Groups of both bacterial and fungal taxa were identified as conditionally present with aridity, underscoring their importance in P. radiata resilience under increasingly environmental stress. Based on the transition of current mesic ecosystems to arid conditions under climate change, we found these arid associated taxa vary in their frequency in bulk soils projected to become arid. These results highlight the risk that these taxa will need to be recruited by other means. Ecological filtering by the host and environmental conditions fosters a "friends with benefits" relationship, wherein certain microbial taxa provide key benefits, such as extension of phenotypic tolerance to water limitation, to the host. Both bacterial and fungal communities are shaped more by stochastic than deterministic assembly processes, suggesting a complex interplay of host and environmental factors in community structure formation. The insights gained have implications for understanding the resilience of tree species and the ecosystem services they provide under future climate scenarios.
Collapse
|
research-article |
1 |
|
23
|
Simonis M, Rúa M, Cooper L, Wenstrup J, Lei D, Hartzler L. Captive Big Brown Bats (
Eptesicus fuscus
) Display Hypothermia and Hypometabolism. FASEB J 2021. [DOI: 10.1096/fasebj.2021.35.s1.04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
4 |
|
24
|
Simonis MC, Hartzler LK, Turner GG, Scafini MR, Johnson JS, Rúa MA. Capture rates of Eptesicus fuscus increase following white-nose syndrome across the eastern US. Ecol Evol 2024; 14:e11523. [PMID: 38932974 PMCID: PMC11199122 DOI: 10.1002/ece3.11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Emerging infectious diseases threaten wildlife globally. While the effects of infectious diseases on hosts with severe infections and high mortality rates often receive considerable attention, effects on hosts that persist despite infection are less frequently studied. To understand how persisting host populations change in the face of disease, we quantified changes to the capture rates of Eptesicus fuscus (big brown bats), a persisting species susceptible to infection by the invasive fungal pathogen Pseudogymnoascus destructans (Pd; causative agent for white-nose syndrome), across the eastern US using a 30-year dataset. Capture rates of male and female E. fuscus increased from preinvasion to pathogen establishment years, with greater increases to the capture rates of females than males. Among females, capture rates of pregnant and post-lactating females increased by pathogen establishment. We outline potential mechanisms for these broad demographic changes in E. fuscus capture rates (i.e., increases to foraging from energy deficits created by Pd infection, increases to relative abundance, or changes to reproductive cycles), and suggest future research for identifying mechanisms for increasing capture rates across the eastern US. These data highlight the importance of understanding how populations of persisting host species change following pathogen invasion across a broad spatial scale. Understanding changes to population composition following pathogen invasion can identify broad ecological patterns across space and time, and open new avenues for research to identify drivers of those patterns.
Collapse
|
research-article |
1 |
|