1
|
Arbabi-Ghahroudi M. Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Front Immunol 2017; 8:1589. [PMID: 29209322 PMCID: PMC5701970 DOI: 10.3389/fimmu.2017.01589] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Tremendous effort has been expended over the past two and a half decades to understand many aspects of camelid heavy chain antibodies, from their biology, evolution, and immunogenetics to their potential applications in various fields of research and medicine. In this article, I present a historical perspective on the development of camelid single-domain antibodies (sdAbs or VHHs, also widely known as nanobodies) since their discovery and discuss the advantages and disadvantages of these unique molecules in various areas of research, industry, and medicine. Commercialization of camelid sdAbs exploded in 2001 with a flurry of patents issued to the Vrije Universiteit Brussel (VUB) and later taken on by the Vlaams Interuniversitair Instituut voor Biotechnologie (VIB) and, after 2002, the VIB-founded spin-off company, Ablynx. While entrepreneurial spirit has certainly catalyzed the exploration of nanobodies as marketable products, IP restrictions may be partially responsible for the relatively long time span between the discovery of these biomolecules and their entry into the pharmaceutical market. It is now anticipated that the first VHH-based antibody drug, Caplacizumab, a bivalent anti-vWF antibody for treating rare blood clotting disorders, may be approved and commercialized in 2018 or shortly thereafter. This elusive first approval, along with the expiry of key patents, may substantially alter the scientific and biomedical landscape surrounding camelid sdAbs and pave the way for their emergence as mainstream biotherapeutics.
Collapse
|
Journal Article |
8 |
133 |
2
|
Abstract
Maximizing the expression yields of recombinant whole antibodies and antibody fragments such as Fabs, single-chain Fvs and single-domain antibodies is highly desirable since it leads to lower production costs. Various eukaryotic and prokaryotic expression systems have been exploited to accommodate antibody expression but Escherichia coli systems have enjoyed popularity, in particular with respect to antibody fragments, because of their low cost and convenience. In many instances, product yields have been less than adequate and intrinsic and extrinsic variables have been investigated in an effort to improve yields. This review deals with various aspects of antibody expression in E. coli with a particular focus on single-domain antibodies.
Collapse
|
Review |
19 |
133 |
3
|
Hussack G, Arbabi-Ghahroudi M, van Faassen H, Songer JG, Ng KKS, MacKenzie R, Tanha J. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem 2011; 286:8961-76. [PMID: 21216961 DOI: 10.1074/jbc.m110.198754] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
115 |
4
|
Arbabi-Ghahroudi M, To R, Gaudette N, Hirama T, Ding W, MacKenzie R, Tanha J. Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic isoelectric points. Protein Eng Des Sel 2008; 22:59-66. [DOI: 10.1093/protein/gzn071] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
17 |
67 |
5
|
Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015; 6:755. [PMID: 26300850 PMCID: PMC4523942 DOI: 10.3389/fmicb.2015.00755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.
Collapse
|
Review |
10 |
65 |
6
|
To R, Hirama T, Arbabi-Ghahroudi M, MacKenzie R, Wang P, Xu P, Ni F, Tanha J. Isolation of monomeric human V(H)s by a phage selection. J Biol Chem 2005; 280:41395-403. [PMID: 16221664 DOI: 10.1074/jbc.m509900200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human V(H) domains are promising molecules in applications involving antibodies, in particular, immunotherapy because of their human origin. However, they are, in general, prone to aggregation. Therefore, various strategies have been employed to acquire monomeric human V(H)s. We had previously discovered that filamentous phages displaying engineered monomeric V(H) domains gave rise to significantly larger plaques on bacterial lawns than phages displaying wild type V(H)s with aggregation tendencies. Using plaque size as the selection criterion and a phage-displayed naïve human V(H) library we identified 15 V(H)s that were monomeric. Additionally, the V(H)s demonstrated good expression yields, good refolding properties following thermal denaturation, resistance to aggregation during long incubation at 37 degrees C, and to trypsin at 37 degrees C. These 15 V(H)s should serve as good scaffolds for developing immunotherapeutics, and the selection method employed here should have general utility for isolating proteins with desirable biophysical properties.
Collapse
|
Journal Article |
20 |
45 |
7
|
Hussack G, Keklikian A, Alsughayyir J, Hanifi-Moghaddam P, Arbabi-Ghahroudi M, van Faassen H, Hou ST, Sad S, MacKenzie R, Tanha J. A V(L) single-domain antibody library shows a high-propensity to yield non-aggregating binders. Protein Eng Des Sel 2012; 25:313-8. [PMID: 22490957 DOI: 10.1093/protein/gzs014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A synthetic human V(L) phage display library, created by the randomization of all complementarity-determining regions (CDRs) in a V(L) scaffold, was panned against three test antigens to determine the propensity of the library to yield non-aggregating binders. A total of 22 binders were isolated against the test antigens and the majority (20) were monomeric. Thus, human V(L) repertoires provide an efficient source of non-aggregating binders and represent an attractive alternative to human V(H) repertoires, which are notorious for containing high proportions of aggregating species. Moreover, the solubility of V(L)s, in contrast to V(H)s, appears much less CDR dependent.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
27 |
8
|
Hussack G, Riazi A, Ryan S, van Faassen H, MacKenzie R, Tanha J, Arbabi-Ghahroudi M. Protease-resistant single-domain antibodies inhibit Campylobacter jejuni motility. Protein Eng Des Sel 2014; 27:191-8. [PMID: 24742504 DOI: 10.1093/protein/gzu011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Camelid heavy-chain antibody variable domains (VHHs) are emerging as potential antimicrobial reagents. We have engineered a previously isolated VHH (FlagV1M), which binds Campylobacter jejuni flagella, for greater thermal and proteolytic stability. Mutants of FlagV1M were obtained from an error-prone polymerase chain reaction library that was panned in the presence of gastrointestinal (GI) proteases. Additional FlagV1M mutants were obtained through disulfide-bond engineering. Each approach produced VHHs with enhanced thermal stability and protease resistance. When the beneficial mutations from both approaches were combined, a hyperstabilized VHH was created with superior stability. The hyperstabilized VHH bound C. jejuni flagella with wild-type affinity and was capable of potently inhibiting C. jejuni motility in assays performed after sequential digestion with three major GI proteases, demonstrating the remarkable stability imparted to the VHH by combining our engineering approaches.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
26 |
9
|
Arbabi-Ghahroudi M, MacKenzie R, Tanha J. Selection of non-aggregating VH binders from synthetic VH phage-display libraries. Methods Mol Biol 2009; 525:187-216, xiii. [PMID: 19252860 DOI: 10.1007/978-1-59745-554-1_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The particular interest in VH antibody fragments stems from the fact that they can rival their "naturally occurring" single-domain antibody (sdAb) counterparts (camelid VHHs and shark VNARs) with regard to such desirable characteristics as stability, solubility, expression, and ability to penetrate cryptic epitopes and outperform them in terms of less immunogenicity, a much valued property in human immunotherapy applications. However, human VHs are typically prone to aggregation. Various approaches for developing non-aggregating human VHs with binding specificities have relied on a combination of recombinant DNA technology and phage-display technology. VH gene libraries are constructed synthetically by randomizing the CDRs of a single VH scaffold fused to a gene encoding a phage coat protein. Recombinant phage expressing the resulting VH libraries in fusion with the pIII protein is propagated in Escherichia coli. Monoclonal phage displaying VHs with specificities for target antigens are isolated from the libraries by a process called panning. The exertion of stability pressure in addition to binding pressure during panning ensures that the isolated VH binders are also non-aggregating. The genes encoding the desired VHs selected from the libraries are packaged within the phage particles, linking genotype and phenotype, hence making possible the identification of the selected VHs through identifying its physically linked genotype. Here, we describe the application of recombinant DNA and phage-display technologies for the construction of a phage-displayed human VH library, the panning of the library against a protein, and the expression, purification, and characterization of non-aggregating VHs isolated by panning.
Collapse
|
|
16 |
25 |
10
|
Arbabi-Ghahroudi M, Tanha J, MacKenzie R. Isolation of monoclonal antibody fragments from phage display libraries. Methods Mol Biol 2009; 502:341-64. [PMID: 19082566 DOI: 10.1007/978-1-60327-565-1_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Techniques developed over the past 20 years for the display of foreign peptides and proteins on the surfaces of filamentous bacteriophages have been a major driving force in the rapid development of recombinant antibody technology in recent years. With phage display of antibodies as one of its key components, recombinant antibody technology has led to the development of an increasing number of therapeutic monoclonal antibodies. Antibody gene libraries are fused to a gene encoding a phage coat protein. Recombinant phage expressing the resulting antibody libraries in fusion with the coat protein are propagated in Escherichia coli. Phage displaying monoclonal antibodies with specificities for target antigens are isolated from the libraries by a process called panning. The genes encoding the desired antibodies selected from the libraries are packaged within the phage particles, linking genotype and phenotype. Here, we describe the application of this technology to the construction of a phage-displayed single-domain antibody (sdAb) library based on the heavy chain antibody repertoire of a llama, the panning of the library against a peptide antigen and the expression, purification, and characterization of sdAbs isolated by panning.
Collapse
|
|
16 |
22 |
11
|
Henry KA, Sulea T, van Faassen H, Hussack G, Purisima EO, MacKenzie CR, Arbabi-Ghahroudi M. A Rational Engineering Strategy for Designing Protein A-Binding Camelid Single-Domain Antibodies. PLoS One 2016; 11:e0163113. [PMID: 27631624 PMCID: PMC5025174 DOI: 10.1371/journal.pone.0163113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/04/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcal protein A (SpA) and streptococcal protein G (SpG) affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs) in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs) are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species.
Collapse
|
Journal Article |
9 |
19 |
12
|
Baral TN, Chao SY, Li S, Tanha J, Arbabi-Ghahroudi M, Zhang J, Wang S. Crystal structure of a human single domain antibody dimer formed through V(H)-V(H) non-covalent interactions. PLoS One 2012; 7:e30149. [PMID: 22253912 PMCID: PMC3257273 DOI: 10.1371/journal.pone.0030149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022] Open
Abstract
Single-domain antibodies (sdAbs) derived from human VH are considered to be less soluble and prone to aggregate which makes it difficult to determine the crystal structures. In this study, we isolated and characterized two anti-human epidermal growth factor receptor-2 (HER2) sdAbs, Gr3 and Gr6, from a synthetic human VH phage display library. Size exclusion chromatography and surface plasmon resonance analyses demonstrated that Gr3 is a monomer, but that Gr6 is a strict dimer. To understand this different molecular behavior, we solved the crystal structure of Gr6 to 1.6 Å resolution. The crystal structure revealed that the homodimer assembly of Gr6 closely mimics the VH-VL heterodimer of immunoglobulin variable domains and the dimerization interface is dominated by hydrophobic interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
13 |
13
|
Doyle PJ, Saeed H, Hermans A, Gleddie SC, Hussack G, Arbabi-Ghahroudi M, Seguin C, Savard ME, MacKenzie CR, Hall JC. Intracellular expression of a single domain antibody reduces cytotoxicity of 15-acetyldeoxynivalenol in yeast. J Biol Chem 2009; 284:35029-39. [PMID: 19783651 PMCID: PMC2787364 DOI: 10.1074/jbc.m109.045047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/08/2009] [Indexed: 11/06/2022] Open
Abstract
15-Acetyldeoxynivalenol (15-AcDON) is a low molecular weight sesquiterpenoid trichothecene mycotoxin associated with Fusarium ear rot of maize and Fusarium head blight of small grain cereals. The accumulation of mycotoxins such as deoxynivalenol (DON) and 15-AcDON within harvested grain is subject to stringent regulation as both toxins pose dietary health risks to humans and animals. These toxins inhibit peptidyltransferase activity, which in turn limits eukaryotic protein synthesis. To assess the ability of intracellular antibodies (intrabodies) to modulate mycotoxin-specific cytotoxocity, a gene encoding a camelid single domain antibody fragment (V(H)H) with specificity and affinity for 15-AcDON was expressed in the methylotropic yeast Pichia pastoris. Cytotoxicity and V(H)H immunomodulation were assessed by continuous measurement of cellular growth. At equivalent doses, 15-AcDON was significantly more toxic to wild-type P. pastoris than was DON. In turn, DON was orders of magnitude more toxic than 3-acetyldeoxynivalenol. Intracellular expression of a mycotoxin-specific V(H)H within P. pastoris conveyed significant (p = 0.01) resistance to 15-AcDON cytotoxicity at doses ranging from 20 to 100 mug.ml(-1). We also documented a biochemical transformation of DON to 15-AcDON to account for the attenuation of DON cytotoxicity at 100 and 200 mug.ml(-1). The proof of concept established within this eukaryotic system suggests that in planta V(H)H expression may lead to enhanced tolerance to mycotoxins and thereby limit Fusarium infection of commercial agricultural crops.
Collapse
|
research-article |
16 |
13 |
14
|
Hussack G, Arbabi-Ghahroudi M, Mackenzie CR, Tanha J. Isolation and characterization of Clostridium difficile toxin-specific single-domain antibodies. Methods Mol Biol 2012; 911:211-39. [PMID: 22886255 DOI: 10.1007/978-1-61779-968-6_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Camelidae single-domain antibodies (VHHs) are a unique class of small binding proteins that are promising inhibitors of targets relevant to infection and immunity. With VHH selection from hyperimmunized phage display libraries now routine and the fact that VHHs possess long, extended complementarity-determining region (CDR3) loop structures that can access traditionally immunosilent epitopes, VHH-based inhibition of targets such as bacterial toxins are being explored. Toxin A and toxin B are high molecular weight exotoxins (308 kDa and 269 kDa, respectively) secreted by Clostridium difficile that are the causative agents of C. difficile-associated diseases in humans and in animals. Here, we provide protocols for the rapid generation of C. difficile toxin A- and toxin B-specific VHHs by llama immunization and recombinant antibody/phage display technology approaches and for further characterization of the VHHs with respect to toxin-binding affinity and specificity and the conformational nature of their epitopes.
Collapse
|
|
13 |
13 |
15
|
Bertrand MJ, Abran M, Maafi F, Busseuil D, Merlet N, Mihalache-Avram T, Geoffroy P, Tardif PL, Abulrob A, Arbabi-Ghahroudi M, Ni F, Sirois M, L'Allier PL, Rhéaume É, Lesage F, Tardif JC. In Vivo Near-Infrared Fluorescence Imaging of Atherosclerosis Using Local Delivery of Novel Targeted Molecular Probes. Sci Rep 2019; 9:2670. [PMID: 30804367 PMCID: PMC6389905 DOI: 10.1038/s41598-019-38970-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
This study aimed to evaluate the feasibility and accuracy of a technique for atherosclerosis imaging using local delivery of relatively small quantities (0.04-0.4 mg/kg) of labeled-specific imaging tracers targeting ICAM-1 and unpolymerized type I collagen or negative controls in 13 rabbits with atheroma induced by balloon injury in the abdominal aorta and a 12-week high-cholesterol diet. Immediately after local infusion, in vivo intravascular ultrasonography (IVUS)-NIRF imaging was performed at different time-points over a 40-minute period. The in vivo peak NIRF signal was significantly higher in the molecular tracer-injected rabbits than in the control-injected animals (P < 0.05). Ex vivo peak NIRF signal was significantly higher in the ICAM-1 probe-injected rabbits than in controls (P = 0.04), but not in the collagen probe-injected group (P = 0.29). NIRF signal discrimination following dual-probe delivery was also shown to be feasible in a single animal and thus offers the possibility of combining several distinct biological imaging agents in future studies. This innovative imaging strategy using in vivo local delivery of low concentrations of labeled molecular tracers followed by IVUS-NIRF catheter-based imaging holds potential for detection of vulnerable human coronary artery plaques.
Collapse
|
research-article |
6 |
12 |
16
|
Makvandi-Nejad S, Fjällman T, Arbabi-Ghahroudi M, MacKenzie CR, Hall JC. Selection and expression of recombinant single domain antibodies from a hyper-immunized library against the hapten azoxystrobin. J Immunol Methods 2011; 373:8-18. [PMID: 21777591 DOI: 10.1016/j.jim.2011.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
Three V(H)Hs against the model hapten, azoxystrobin (MW 403), were isolated from a hyper-immunized phage-displayed V(H)H library. This library was constructed by isolating the V(H)H-coding genes from the lymphocytes collected from a Llama glama that was immunized with azoxystrobin conjugated to bovine serum albumin (BSA). Six rounds of panning were performed against azoxystrobin conjugated to either ovalbumin (OVA) or rabbit serum albumin (RSA) to enrich clones containing V(H)Hs specific to the hapten. After screening 95 clones, three V(H)Hs (A27, A72, and A85) with different amino acid sequences were identified, expressed in soluble format in Escherichia coli HB2151, and purified using nickel-immobilized metal affinity chromatography. Competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA) showed that A27 and A85 were specific to azoxystrobin while A72 was not. The IC(50) values of A27 and A85 V(H)Hs were 7.2 and 2.0μM, respectively. To our knowledge A85 is one of the highest affinity V(H)Hs that has yet been isolated against a hydrophobic hapten such as azoxystrobin.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
12 |
17
|
Gene RW, Kumaran J, Aroche C, van Faassen H, Hall JC, MacKenzie CR, Arbabi-Ghahroudi M. High affinity anti-Internalin B VHH antibody fragments isolated from naturally and artificially immunized repertoires. J Immunol Methods 2015; 416:29-39. [DOI: 10.1016/j.jim.2014.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/25/2022]
|
|
10 |
11 |
18
|
Henry KA, Nguyen TD, Baral TN, Hussack G, Raphael S, Arbabi-Ghahroudi M, Robert A, Durocher Y, Wu C, Jaramillo ML, MacKenzie CR. Biparatopic single-domain antibodies against Axl achieve ultra-high affinity through intramolecular engagement. Biochem Biophys Res Commun 2021; 562:154-161. [PMID: 34058562 DOI: 10.1016/j.bbrc.2021.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Overexpression of Axl, a TAM-family receptor tyrosine kinase, plays key roles in the formation, growth, and spread of tumors as well as resistance to targeted therapies and chemotherapies. We identified novel llama VHHs against human Axl using multiple complementary phage display selection strategies and characterized a subset of high-affinity VHHs. The VHHs targeted multiple sites in Ig-like domains 1 and 2 of the Axl extracellular domain, including an immunodominant epitope overlapping the site of Gas6 interaction and two additional non-Gas6 competitive epitopes recognized by murine monoclonal antibodies. Only a subset of VHHs cross-reacted with cynomolgus monkey Axl and none recognized mouse Axl. As fusions to human IgG1 Fc, VHH-Fcs bound Axl+ tumor cell lines and mertansine-loaded VHH-Fcs were cytotoxic in vitro against Axl+ cells in proportion to their binding affinities. Engineered biparatopic VHH-VHH heterodimers bound Axl avidly, and a subset of molecules showed dramatically enhanced association rates indicative of intramolecular binding. These VHHs may have applications as modular elements of biologic drugs such as antibody-drug conjugates.
Collapse
|
Journal Article |
4 |
6 |
19
|
Kumaran J, Mackenzie CR, Arbabi-Ghahroudi M. Semiautomated panning of naive camelidae libraries and selection of single-domain antibodies against peptide antigens. Methods Mol Biol 2012; 911:105-24. [PMID: 22886248 DOI: 10.1007/978-1-61779-968-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the identification of vast numbers of novel proteins through genomic and proteomic initiatives, the need for efficient processes to characterize and target them has increased. Antibodies are naturally designed molecules that can fulfill this need, and in vitro methodologies for isolating them from either immune or naïve sources have been extensively developed. However, access to pure protein antigens for screening purposes is a major hurdle due to the limitations associated with recombinant production of eukaryotic proteins. Consequently, rational peptide design based on proteomic methodologies such as protein modeling, secondary sequence prediction, and hydrophobicity/hydrophilicity prediction, in combination with other bioinformatics data, is being explored as a viable solution to isolate specific antibodies against difficult antigens. Single-domain antibodies are becoming the ideal antibody format due to their structural advantages and ease of production compared to conventional antibodies and antibody fragments derived from conventional antibodies. For screening purposes, phage display technology is a well-established technique. With this technique, a repertoire of antibody fragments can be displayed on the surface of filamentous phages (f1, fd, M13) followed by screening against various antigenic targets. Furthermore, the technique can be expanded to a high-throughput scale using a magnetic-based, in-solution panning protocol which allows for the screening of multiple target antigens simultaneously. In this chapter, we describe a semiautomated panning method to screen a naïve Camelidae library against rationally designed peptide antigens, followed by preliminary characterization of isolated binders.
Collapse
|
|
13 |
4 |
20
|
Henry KA, Hussack G, Kumaran J, Gilbert M, MacKenzie CR, Sulea T, Arbabi-Ghahroudi M. Role of the non-hypervariable FR3 D-E loop in single-domain antibody recognition of haptens and carbohydrates. J Mol Recognit 2019; 32:e2805. [PMID: 31423671 DOI: 10.1002/jmr.2805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022]
Abstract
Single-domain antibodies (sdAbs), the variable domains of camelid heavy chain-only antibodies, are generally thought to poorly recognize nonproteinaceous small molecules and carbohydrates in comparison with conventional antibodies. However, the structures of anti-methotrexate, anti-triclocarban and anti-cortisol sdAbs revealed unexpected contributions of the non-hypervariable "CDR4" loop, formed between β-strands D and E of framework region 3, in binding. Here, we investigated the potential role of CDR4 in sdAb binding to a hapten, 15-acetyl-deoxynivalenol (15-AcDON), and to carbohydrates. We constructed and panned a phage-displayed library in which CDR4 of the 15-AcDON-specific sdAb, NAT-267, was extended and randomized. From this library, we identified one sdAb, MA-232, bearing a 14-residue insertion in CDR4 and showing improved binding to 15-AcDON by ELISA and surface plasmon resonance. On the basis of these results, we constructed a second set of phage-displayed libraries in which the CDR4 and other regions of three hapten- or carbohydrate-binding sdAbs were diversified. With the goal of identifying sdAbs with novel glycan-binding specificities, we panned the library against four tumor-associated carbohydrate antigens but were unable to enrich binding phages. Thus, we conclude that while CDR4 may play a role in binding of some rare hapten-specific sdAbs, diversifying this region through molecular engineering is probably not a general solution to sdAb carbohydrate recognition in the absence of a paired VL domain.
Collapse
|
|
6 |
3 |
21
|
Alturki NA, Henry KA, MacKenzie CR, Arbabi-Ghahroudi M. Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands. Methods Mol Biol 2015; 1348:167-89. [PMID: 26424272 DOI: 10.1007/978-1-4939-2999-3_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Generation of antibodies against desired epitopes on folded proteins may be hampered by various characteristics of the target protein, including antigenic and immunogenic dominance of irrelevant epitopes and/or steric occlusion of the desired epitope. In such cases, peptides encompassing linear epitopes of the native protein represent attractive alternative reagents for immunization and screening. Peptide antigens are typically prepared by fusing or conjugating the peptide of interest to a carrier protein. The utility of such antigens depends on many factors including the peptide's amino acid sequence, display valency, display format (synthetic conjugate vs. recombinant fusion) and characteristics of the carrier. Here we provide detailed protocols for: (1) preparation of DNA constructs encoding peptides fused to verotoxin (VT) multimerization domain; (2) expression, purification, and characterization of the multivalent peptide-VT ligands; (3) concurrent panning of a non-immune phage-displayed camelid VHH library against the peptide-VT ligands and native protein; and (4) identification of VHHs enriched via panning using next-generation sequencing techniques. These methods are simple, rapid and can be easily adapted to yield custom peptide-VT ligands that appear to maintain the antigenic structures of the peptide. However, we caution that peptide sequences should be chosen with great care, taking into account structural, immunological, and biophysical information on the protein of interest.
Collapse
|
|
10 |
2 |
22
|
Trempe F, Rossotti MA, Maqbool T, MacKenzie CR, Arbabi-Ghahroudi M. Llama DNA Immunization and Isolation of Functional Single-Domain Antibody Binders. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2446:37-70. [PMID: 35157268 DOI: 10.1007/978-1-0716-2075-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic immunization is a simple, cost-effective, and powerful tool for inducing innate and adaptive immune responses to combat infectious diseases and difficult-to-treat illnesses. DNA immunization is increasingly used in the generation of monoclonal antibodies against targets for which pure proteins are unavailable or are difficult to express and purify (e.g., ion channels and receptors, transmembrane proteins, and emerging infectious pathogens). Genetic immunization has been successfully utilized in small inbred laboratory animals (mostly rodents); however, low immunogenicity of DNA/RNA injected into large mammals, including humans, is still a major challenge. Here, we provide a method for the genetic immunization of llamas, using a combination of biolistic transfection with a gene gun and intradermal injection with a DERMOJET® device, to elicit heavy-chain IgG responses against epidermal growth factor receptor (EGFR). We show the technique can be used to generate single-domain antibodies (VHHs) with nanomolar affinities to EGFR. We provide methods for gene gun bullet preparation, llama immunization, serology, phage-display library construction and panning, and VHH characterization.
Collapse
|
|
3 |
1 |
23
|
Rossotti MA, Trempe F, van Faassen H, Hussack G, Arbabi-Ghahroudi M. Isolation and Characterization of Single-Domain Antibodies from Immune Phage Display Libraries. Methods Mol Biol 2023; 2702:107-147. [PMID: 37679618 DOI: 10.1007/978-1-0716-3381-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Naturally occurring heavy chain antibodies (HCAbs) in Camelidae species were a surprise discovery in 1993 by Hamers et al. Since that time, antibody fragments derived from HCAbs have garnered considerable attention by researchers and biotechnology companies. Due to their biophysico-chemical advantages over conventional antibody fragments, camelid single-domain antibodies (sdAbs, VHHs, nanobodies) are being increasingly utilized as viable immunotherapeutic modalities. Currently there are multiple VHH-based therapeutic agents in different phases of clinical trials in various formats such as bi- and multivalent, bi- and multi-specific, CAR-T, and antibody-drug conjugates. The first approved VHH, a bivalent humanized VHH (caplacizumab), was approved for treating rare blood clotting disorders in 2018 by the EMA and the FDA in 2019. This was followed by the approval of an anti-BCMA VHH-based CAR-T cell product in 2022 (ciltacabtagene autoleucel; CARVYKTI™) and more recently a trivalent antitumor necrosis factor alpha-based VHH drug (ozoralizumab; Nanozora®) in Japan for the treatment of rheumatoid arthritis. In this chapter we provide protocols describing the latest developments in isolating antigen-specific VHHs including llama immunization, construction of phage-displayed libraries, phage panning and screening of the soluble VHHs by ELISA, affinity measurements by surface plasmon resonance, functional cell binding by flow cytometry, and additional validation by immunoprecipitation. We present and discuss comprehensive, step-by-step methods for isolating and characterization of antigen-specific VHHs. This includes protocols for expression, biotinylation, purification, and characterization of the isolated VHHs. To demonstrate the feasibility of the entire strategy, we present examples of VHHs previously isolated and characterized in our laboratory.
Collapse
|
|
2 |
|
24
|
Wang S, Baral TN, Chao S, Li S, Tanha J, Arbabi-Ghahroudi M, Zhang J. Crystal structure of a dimeric anti-HER2 human single domain antibody. Acta Crystallogr A 2011. [DOI: 10.1107/s0108767311092348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
14 |
|
25
|
McComb S, Arbabi-Ghahroudi M, Hay KA, Keller BA, Faulkes S, Rutherford M, Nguyen T, Shepherd A, Wu C, Marcil A, Aubry A, Hussack G, Pinto DM, Ryan S, Raphael S, van Faassen H, Zafer A, Zhu Q, Maclean S, Chattopadhyay A, Gurnani K, Gilbert R, Gadoury C, Iqbal U, Fatehi D, Jezierski A, Huang J, Pon RA, Sigrist M, Holt RA, Nelson BH, Atkins H, Kekre N, Yung E, Webb J, Nielsen JS, Weeratna RD. Discovery and preclinical development of a therapeutically active nanobody-based chimeric antigen receptor targeting human CD22. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200775. [PMID: 38596311 PMCID: PMC10914482 DOI: 10.1016/j.omton.2024.200775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/11/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22. Immunization of an adult Llama glama with CD22 protein, sdAb-cDNA library construction, and phage panning yielded >20 sdAbs with diverse epitope and binding properties. Expressing CD22-sdAb-CAR in Jurkat cells drove varying CD22-specific reactivity not correlated with antibody affinity. Changing CD28- to CD8-transmembrane design increased CAR persistence and expression in vitro. CD22-sdAb-CAR candidates showed similar CD22-dependent CAR-T expansion in vitro, although only membrane-proximal epitope targeting CD22-sdAb-CARs activated direct cytolytic killing and extended survival in a lymphoma xenograft model. Based on enhanced survival in blinded xenograft studies, a lead CD22sdCAR-T was selected, achieving comparable complete responses to a benchmark short linker m971-scFv CAR-T in high-dose experiments. Finally, immunohistochemistry and flow cytometry confirm tissue and cellular-level specificity of the lead CD22-sdAb. This presents a complete report on preclinical development of a novel CD22sdCAR therapeutic.
Collapse
|
research-article |
1 |
|