1
|
Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM, Tischfield JA, Kreek MJ, Yu L. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A 1998; 95:9608-13. [PMID: 9689128 PMCID: PMC21386 DOI: 10.1073/pnas.95.16.9608] [Citation(s) in RCA: 804] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1998] [Accepted: 06/15/1998] [Indexed: 02/08/2023] Open
Abstract
Opioid drugs play important roles in the clinical management of pain, as well as in the development and treatment of drug abuse. The mu opioid receptor is the primary site of action for the most commonly used opioids, including morphine, heroin, fentanyl, and methadone. By sequencing DNA from 113 former heroin addicts in methadone maintenance and 39 individuals with no history of drug or alcohol abuse or dependence, we have identified five different single-nucleotide polymorphisms (SNPs) in the coding region of the mu opioid receptor gene. The most prevalent SNP is a nucleotide substitution at position 118 (A118G), predicting an amino acid change at a putative N-glycosylation site. This SNP displays an allelic frequency of approximately 10% in our study population. Significant differences in allele distribution were observed among ethnic groups studied. The variant receptor resulting from the A118G SNP did not show altered binding affinities for most opioid peptides and alkaloids tested. However, the A118G variant receptor binds beta-endorphin, an endogenous opioid that activates the mu opioid receptor, approximately three times more tightly than the most common allelic form of the receptor. Furthermore, beta-endorphin is approximately three times more potent at the A118G variant receptor than at the most common allelic form in agonist-induced activation of G protein-coupled potassium channels. These results show that SNPs in the mu opioid receptor gene can alter binding and signal transduction in the resulting receptor and may have implications for normal physiology, therapeutics, and vulnerability to develop or protection from diverse diseases including the addictive diseases.
Collapse
|
research-article |
27 |
804 |
2
|
Perry JW, Mansour K, Lee IYS, Wu XL, Bedworth PV, Chen CT, Ng D, Marder SR, Miles P, Wada T, Tian M, Sasabe H. Organic Optical Limiter with a Strong Nonlinear Absorptive Response. Science 1996. [DOI: 10.1126/science.273.5281.1533] [Citation(s) in RCA: 621] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
29 |
621 |
3
|
Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997; 278:114-7. [PMID: 9311914 DOI: 10.1126/science.278.5335.114] [Citation(s) in RCA: 457] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apoptosis of mouse neocortical neurons induced by serum deprivation or by staurosporine was associated with an early enhancement of delayed rectifier (IK) current and loss of total intracellular K+. This IK augmentation was not seen in neurons undergoing excitotoxic necrosis or in older neurons resistant to staurosporine-induced apoptosis. Attenuating outward K+ current with tetraethylammonium or elevated extracellular K+, but not blockers of Ca2+, Cl-, or other K+ channels, reduced apoptosis, even if associated increases in intracellular Ca2+ concentration were prevented. Furthermore, exposure to the K+ ionophore valinomycin or the K+-channel opener cromakalim induced apoptosis. Enhanced K+ efflux may mediate certain forms of neuronal apoptosis.
Collapse
|
|
28 |
457 |
4
|
Forrest M, Sun SY, Hajdu R, Bergstrom J, Card D, Doherty G, Hale J, Keohane C, Meyers C, Milligan J, Mills S, Nomura N, Rosen H, Rosenbach M, Shei GJ, Singer II, Tian M, West S, White V, Xie J, Proia RL, Mandala S. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther 2004; 309:758-68. [PMID: 14747617 DOI: 10.1124/jpet.103.062828] [Citation(s) in RCA: 283] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lysolipid with pleiotropic functions mediated through a family of G protein-coupled receptors, S1P(1,2,3,4,5). Physiological effects of S1P receptor agonists include regulation of cardiovascular function and immunosuppression via redistribution of lymphocytes from blood to secondary lymphoid organs. The phosphorylated metabolite of the immunosuppressant agent FTY720 (2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol) and other phosphonate analogs with differential receptor selectivity were investigated. No significant species differences in compound potency or rank order of activity on receptors cloned from human, murine, and rat sources were observed. All synthetic analogs were high-affinity agonists on S1P(1), with IC(50) values for ligand binding between 0.3 and 14 nM. The correlation between S1P(1) receptor activation and the ED(50) for lymphocyte reduction was highly significant (p < 0.001) and lower for the other receptors. In contrast to S1P(1)-mediated effects on lymphocyte recirculation, three lines of evidence link S1P(3) receptor activity with acute toxicity and cardiovascular regulation: compound potency on S1P(3) correlated with toxicity and bradycardia; the shift in potency of phosphorylated-FTY720 for inducing lymphopenia versus bradycardia and hypertension was consistent with affinity for S1P(1) relative to S1P(3); and toxicity, bradycardia, and hypertension were absent in S1P(3)(-/-) mice. Blood pressure effects of agonists in anesthetized rats were complex, whereas hypertension was the predominant effect in conscious rats and mice. Immunolocalization of S1P(3) in rodent heart revealed abundant expression on myocytes and perivascular smooth muscle cells consistent with regulation of bradycardia and hypertension, whereas S1P(1) expression was restricted to the vascular endothelium.
Collapse
|
|
21 |
283 |
5
|
Abstract
Female-specific splicing of Drosophila doublesex (dsx) pre-mRNA is regulated by the products of the transformer (tra) and transformer 2 (tra2) genes. In this paper we show that Tra and Tra2 act by recruiting general splicing factors to a regulatory element located downstream of a female-specific 3' splice site. Remarkably, Tra, Tra2, and members of the serine/arginine-rich (SR) family of general splicing factors are sufficient to commit dsx pre-mRNA to female-specific splicing, and individual SR proteins differ significantly in their ability to participate in commitment complex formation. Characterization of the proteins associated with affinity-purified complex formed on dsx pre-mRNA reveals the presence of Tra, Tra2, SR proteins, and additional unidentified components. We conclude that Tra, Tra2, and SR proteins are essential components of a splicing enhancer complex.
Collapse
|
|
32 |
270 |
6
|
Chen Y, Fan Y, Liu J, Mestek A, Tian M, Kozak CA, Yu L. Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett 1994; 347:279-83. [PMID: 8034018 DOI: 10.1016/0014-5793(94)00560-5] [Citation(s) in RCA: 268] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A cDNA was isolated from rat brain by low stringency hybridization with the rat mu opioid receptor cDNA. Sequence analysis of this clone indicated that it contains an open reading frame capable of encoding a 367 amino acid protein. The deduced amino acid sequence of this protein shows high degrees of homology to all three opioid receptors, mu, kappa, and delta, suggesting that it is a member of the opioid receptor gene family. RNA blot analysis detected high level expression of the receptor mRNA in the brain. Southern blot analysis suggests that it is a single-copy gene, and mapping studies localized the gene on mouse chromosome 2. Despite the high sequence homologies between this protein and the other opioid receptors, expression studies of this clone in COS-7 cells did not show binding to [3H]diprenorphine, a ligand that binds to the other three opioid receptors. Furthermore, co-expression of this receptor with a G protein-activated potassium channel in Xenopus oocytes did not show functional coupling upon stimulation with mu, kappa and delta agonists. Given the similar degrees of high homology to the mu, kappa and delta opioid receptors and the lack of apparent affinity for their ligands, this receptor does not appear to belong to any of the three known classes of opioid receptors. Rather, it represents a novel member of the opioid receptor gene family, not identified from previous pharmacological studies.
Collapse
|
|
31 |
268 |
7
|
Tayal AH, Tian M, Kelly KM, Jones SC, Wright DG, Singh D, Jarouse J, Brillman J, Murali S, Gupta R. Atrial fibrillation detected by mobile cardiac outpatient telemetry in cryptogenic TIA or stroke. Neurology 2008; 71:1696-701. [PMID: 18815386 DOI: 10.1212/01.wnl.0000325059.86313.31] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
17 |
243 |
8
|
Griffin JW, Li CY, Ho TW, Tian M, Gao CY, Xue P, Mishu B, Cornblath DR, Macko C, McKhann GM, Asbury AK. Pathology of the motor-sensory axonal Guillain-Barré syndrome. Ann Neurol 1996; 39:17-28. [PMID: 8572662 DOI: 10.1002/ana.410390105] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The concept of a severe motor-sensory neuropathy of acute onset caused by an immune attack on the axon ("axonal" Guillain-Barré syndrome) has been advanced primarily based on electrodiagnostic and limited pathological data, but remains controversial. At autopsy some cases demonstrate unusually severe inflammatory demyelinating neuropathy. There are conflicting data about whether antecedent Campylobacter jejuni infection is associated with "axonal" Guillain-Barré syndrome. We report 4 individuals from Hebei Province, China, who died 7, 7, 18, and 60 days after onset of a syndrome diagnosed clinically as Guillain-Barré syndrome. High titers of antibodies recognizing C. jejuni, consistent with recent infection, were found in the 2 patients tested. At autopsy the 3 with early disease had ongoing wallerian-like degeneration of fibers in the ventral and dorsal roots and in the peripheral nerves, with only minimal demyelination or lymphocytic infiltration. All 3 had numerous macrophages in the periaxonal space of myelinated internodes, and rare intraaxonal macrophages as well. Examination of the patient having the syndrome for 60 days confirmed the extensive loss of large fibers in the spinal roots and nerves, and the paucity of demyelination and remyelination. These observations confirm predictions that some patients with severe motor-sensory Guillain-Barré syndrome, as defined clinically, have predominantly axonal lesions of both motor and sensory fibers, even in the early stages of the disease, and that axonal Guillain-Barré syndrome can follow C. jejuni infection. The pathology supports the possibility that such cases of motor-sensory axonal Guillain-Barré syndrome represent the most severe end of a spectrum of immune attack directed toward epitopes on the axon.
Collapse
|
|
29 |
242 |
9
|
Griffin JW, Li CY, Ho TW, Xue P, Macko C, Gao CY, Yang C, Tian M, Mishu B, Cornblath DR. Guillain-Barré syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain 1995; 118 ( Pt 3):577-95. [PMID: 7600080 DOI: 10.1093/brain/118.3.577] [Citation(s) in RCA: 238] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The pathology of the Guillain-Barré syndrome remains controversial, and autopsied cases available for study by contemporary techniques are uncommon. Large numbers of cases clinically diagnosed as Guillain-Barré syndrome occur in northern China. In this study we examined the neuropathological changes in 12 autopsied cases from Hebei Province, China. Eleven died early in the course of their disease. In all cases tissue was specially handled and fixed for electron microscopy and for immunocytochemistry. Three of these 12 cases had typical acute inflammatory demyelinating polyneuropathy (AIDP) with lymphocytic infiltration and macrophage-mediated demyelination, reproducing the pathological picture most often reported in Guillain-Barré syndrome in North America, Europe, and Australia. Six cases had predominantly axonal involvement, characterized by Wallerian-like degeneration of nerve fibres, with only minimal demyelination and with minimal inflammation in five. Three cases, even though paralysed at the time of death, had only very mild changes in the spinal roots and sciatic nerves. Within the group of six predominantly axonal cases, there were important differences both in the severity of the abnormalities and in the classes of fibres involved. Three cases had extensive Wallerian-like degeneration of sensory as well as motor fibres [acute motor-sensory axonal neuropathy (AMSAN)], while in the other three cases the fibre degeneration affected the motor nerve fibres almost exclusively. These latter cases establish a structural basis for the clinical and electrophysiological picture termed the acute motor axonal neuropathy (AMAN) pattern. In both the AMAN and the AMSAN patterns, a prominent feature was the presence of macrophages within the periaxonal space, surrounding or displacing the axon, and surrounded by an intact myelin sheath. These studies show that the early pathological changes in cases clinically diagnosed as the Guillain-Barré syndrome are diverse and not restricted to the well-known pattern of AIDP, and that the predominant pathological patterns may differ in different parts of the world. The differences in pathological findings between acute inflammatory demyelinating polyneuropathy and the axonal patterns are likely to reflect differences in the pathogenetic mechanisms. The periaxonal macrophages in the axonal patterns suggest that an important epitope may be localized to the axolemma or periaxonal space. The mild cases indicate that severe paralysis can occur early in Guillain-Barré syndrome without prominent structural changes along the nerve, suggesting that physiological block or nerve terminal changes may be implicated.
Collapse
|
Case Reports |
30 |
238 |
10
|
Abstract
Neuronal death induced by activating N-methyl-D-aspartate (NMDA) receptors has been linked to Ca2+ and Na+ influx through associated channels. Whole-cell recording from cultured mouse cortical neurons revealed a NMDA-evoked outward current, INMDA-K, carried by K+ efflux at membrane potentials positive to -86 millivolts. Cortical neurons exposed to NMDA in medium containing reduced Na+ and Ca2+ (as found in ischemic brain tissue) lost substantial intracellular K+ and underwent apoptosis. Both K+ loss and apoptosis were attenuated by increasing extracellular K+, even when voltage-gated Ca2+ channels were blocked. Thus NMDA receptor-mediated K+ efflux may contribute to neuronal apoptosis after brain ischemia.
Collapse
|
|
26 |
192 |
11
|
Tian M, Alt FW. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem 2000; 275:24163-72. [PMID: 10811812 DOI: 10.1074/jbc.m003343200] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulin (Ig) heavy chain class switch recombination (CSR) mediates isotype switching during B cell development. CSR occurs between switch (S) regions that precede each Ig heavy chain constant region gene. Various studies have demonstrated that transcription plays an essential role in CSR in vivo. In this study, we show that in vitro transcription of S regions in their physiological orientation induces the formation of stable R loops. Furthermore, we show that the nucleotide excision repair nucleases XPF-ERCC1 and XPG can cleave the R loops formed in the S regions. Based on these findings, we propose that CSR is initiated via a mechanism that involves transcription-dependent S region cleavage by DNA structure-specific endonucleases that function in general DNA repair processes. Such a mechanism also may underlie transcription-dependent mutagenic processes such as somatic hypermutation, and contribute to genomic instability in general.
Collapse
|
|
25 |
166 |
12
|
Abstract
Positive control of the sex-specific alternative splicing of doublesex (dsx) precursor messenger RNA (pre-mRNA) in Drosophila melanogaster involves the activation of a female-specific 3' splice site by the products of the transformer (tra) and transformer-2 (tra-2) genes. The mechanisms of this process were investigated in an in vitro system in which the female-specific 3' splice site could be activated by recombinant Tra or Tra-2 (or both). An exon sequence essential for regulation in vivo was shown to be both necessary and sufficient for activation in vitro. Nuclear proteins in addition to Tra and Tra-2 were found to bind specifically to this exon sequence. Therefore, Tra and Tra-2 may act by promoting the assembly of a multiprotein complex on the exon sequence. This complex may facilitate recognition of the adjacent 3' splice site by the splicing machinery.
Collapse
|
|
33 |
159 |
13
|
Armstrong WE, Smith BN, Tian M. Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. J Physiol 1994; 475:115-28. [PMID: 8189384 PMCID: PMC1160359 DOI: 10.1113/jphysiol.1994.sp020053] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Intracellular recordings were made from supraoptic neurones in vitro from hypothalamic explants prepared from adult male rats. Neurones were injected with biotinylated markers, and of thirty-nine labelled neurones, nineteen were identified immunocytochemically as containing oxytocin-neurophysin and twenty as containing vasopressin-neurophysin. 2. Vasopressin and oxytocin neurones did not differ in their resting membrane potential, input resistance, membrane time constant, action potential height from threshold, action potential width at half-amplitude, and spike hyperpolarizing after-potential amplitude. Both cell types exhibited spike broadening during brief, evoked spike trains (6-8 spikes), but the degree of broadening was slightly greater for vasopressin neurones. When hyperpolarized below -75 mV, all but one neurone exhibited a transient outward rectification to depolarizing pulses, which delayed the occurrence of the first spike. 3. Both cell types exhibited a long after-hyperpolarizing potential (AHP) following brief spike trains evoked either with a square wave pulse or using 5 ms pulses in a train. There were no significant differences between cell types in the size of the AHP evoked with nine spikes, or in the time constant of its decay. The maximal AHP evoked by a 180 ms pulse was elicited by an average of twelve to thirteen spikes, and neither the size of this maximal AHP nor its time constant of decay were different for the two cell types. 4. In most oxytocin and vasopressin neurones the AHP, and concomitantly spike frequency adaptation, were markedly reduced by the bee venom apamin and by d-tubocurarine, known blockers of a Ca(2+)-mediated K+ conductance. However, a minority of neurones, of both cell types, were relatively resistant to both agents. 5. In untreated neurones, 55% of vasopressin neurones and 32% of oxytocin neurones exhibited a depolarizing after-potential (DAP) after individual spikes or, more commonly, after brief trains of spikes evoked with current pulses. For each neurone with a DAP, bursts of spikes could be evoked if the membrane potential was sufficiently depolarized such that the DAP reached spike threshold. In four out of five vasopressin neurones a DAP became evident only after pharmacological blockade of the AHP, whereas in six oxytocin neurones tested no such masking was found. 6. The firing patterns of neurones were examined at rest and after varying the membrane potential with continuous current injection. No identifying pattern was strictly associated with either cell type, and a substantial number of neurones were silent at rest.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
research-article |
31 |
144 |
14
|
Tian M, Broxmeyer HE, Fan Y, Lai Z, Zhang S, Aronica S, Cooper S, Bigsby RM, Steinmetz R, Engle SJ, Mestek A, Pollock JD, Lehman MN, Jansen HT, Ying M, Stambrook PJ, Tischfield JA, Yu L. Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J Exp Med 1997; 185:1517-22. [PMID: 9126934 PMCID: PMC2196276 DOI: 10.1084/jem.185.8.1517] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1997] [Indexed: 02/04/2023] Open
Abstract
The mu opioid receptor is thought to be the cellular target of opioid narcotics such as morphine and heroin, mediating their effects in both pain relief and euphoria. Its involvement is also implicated in a range of diverse biological processes. Using a mouse model in which the receptor gene was disrupted by targeted homologous recombination, we explored the involvement of this receptor in a number of physiological functions. Mice homozygous for the disrupted gene developed normally, but their motor function was altered. Drug-naive homozygotes displayed reduced locomotor activity, and morphine did not induce changes in locomotor activity observed in wild-type mice. Unexpectedly, lack of a functional receptor resulted in changes in both the host defense system and the reproductive system. We observed increased proliferation of granulocyte-macrophage, erythroid, and multipotential progenitor cells in both bone marrow and spleen, indicating a link between hematopoiesis and the opioid system, both of which are stress-responsive systems. Unexpected changes in sexual function in male homozygotes were also observed, as shown by reduced mating activity, a decrease in sperm count and motility, and smaller litter size. Taken together, these results suggest a novel role of the mu opioid receptor in hematopoiesis and reproductive physiology, in addition to its known involvement in pain relief.
Collapse
|
research-article |
28 |
139 |
15
|
Manis JP, van der Stoep N, Tian M, Ferrini R, Davidson L, Bottaro A, Alt FW. Class switching in B cells lacking 3' immunoglobulin heavy chain enhancers. J Exp Med 1998; 188:1421-31. [PMID: 9782119 PMCID: PMC2213411 DOI: 10.1084/jem.188.8.1421] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1998] [Revised: 07/28/1998] [Indexed: 12/30/2022] Open
Abstract
The 40-kb region downstream of the most 3' immunoglobulin (Ig) heavy chain constant region gene (Calpha) contains a series of transcriptional enhancers speculated to play a role in Ig heavy chain class switch recombination (CSR). To elucidate the function of this putative CSR regulatory region, we generated mice with germline mutations in which one or the other of the two most 5' enhancers in this cluster (respectively referred to as HS3a and HS1,2) were replaced either with a pgk-neor cassette (referred to as HS3aN and HS1,2N mutations) or with a loxP sequence (referred to as HS3aDelta and HS1,2Delta, respectively). B cells homozygous for the HS3aN or HS1,2N mutations had severe defects in CSR to several isotypes. The phenotypic similarity of the two insertion mutations, both of which were cis-acting, suggested that inhibition might result from pgk-neor cassette gene insertion rather than enhancer deletion. Accordingly, CSR returned to normal in B cells homozygous for the HS3aDelta or HS1,2Delta mutations. In addition, induced expression of the specifically targeted pgk-neor genes was regulated similarly to that of germline CH genes. Our findings implicate a 3' CSR regulatory locus that appears remarkably similar in organization and function to the beta-globin gene 5' LCR and which we propose may regulate differential CSR via a promoter competition mechanism.
Collapse
|
research-article |
27 |
121 |
16
|
Tian M, Jacobson C, Gee SH, Campbell KP, Carbonetto S, Jucker M. Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci 1996; 8:2739-47. [PMID: 8996823 DOI: 10.1111/j.1460-9568.1996.tb01568.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dystroglycan is a core component of the dystrophin receptor complex in skeletal muscle which links the extracellular matrix to the muscle cytoskeleton. Dystrophin, dystrophin-related protein (DRP, utrophin) and dystroglycan are present not only in muscles but also in the brain. Dystrophin is expressed in certain neuronal populations while DRP is associated with perivascular astrocytes. To gain insights into the function and molecular interactions of dystroglycan in the brain, we examined the localization of alpha- and beta-dystroglycan at the cellular and subcellular levels in the rat cerebellum. In blood vessels, we find alpha-dystroglycan associated with the laminin alpha 2-chain-rich parenchymal vascular basement membrane and beta-dystroglycan associated with the endfeet of perivascular astrocytes. We also show that alpha-dystroglycan purified from the brain binds alpha 2-chain-containing laminin-2. These observations suggest a dystroglycan-mediated linkage between DRP in perivascular astrocytic endfeet and laminin-2 in the parenchymal basement membrane similar to that described in skeletal muscle. This linkage of the astrocytic endfeet to the vascular basement membrane is likely to be important for blood vessel formation and stabilization and for maintaining the integrity of the blood-brain barrier. In addition to blood vessel labelling, we show that alpha-dystroglycan in the rat cerebellum is associated with the surface of Purkinje cell bodies, dendrites and dendritic spines. Dystrophin has previously been localized to the inner surface of the plasma membrane of Purkinje cells and is enriched at postsynaptic sites. Thus, the present results also support the hypothesis that dystrophin interacts with dystroglycan in cerebellar Purkinje neurons.
Collapse
|
|
29 |
114 |
17
|
Abstract
The Drosophila proteins Transformer (Tra) and Transformer2 (Tra2) regulate the sex-specific alternative splicing of Drosophila doublesex (dsx) pre-mRNA by specifically binding to a splicing enhancer (dsx repeat element; dsxRE) located 300 nucleotides (nt) downstream from a female-specific 3' splice site. In this paper we show that the dsxRE can function as a Tra and Tra2-independent splicing enhancer in vitro when located within 150 nucleotides of the 3' splice site. Based on the relative levels of SR proteins that bind stably to the dsxRE in the presence or absence of Tra and Tra2, we propose that the constitutive splicing activity of the dsxRE is mediated by its weak interactions with SR proteins and possibly other general splicing factors. In contrast, Tra and Tra2 allow the dsxRE to function at a distance from the intron by stabilizing the interactions between these proteins and the dsxRE.
Collapse
|
Comparative Study |
31 |
113 |
18
|
Yao QZ, Tian M, Tsou CL. Comparison of the rates of inactivation and conformational changes of creatine kinase during urea denaturation. Biochemistry 1984; 23:2740-4. [PMID: 6466613 DOI: 10.1021/bi00307a032] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The denaturation of creatine kinase in urea solutions of different concentrations has been studied by following the changes in the ultraviolet absorbance and intrinsic fluorescence as well as by the exposure of hidden SH groups. In concentrated urea solutions, the denaturation of the enzyme results in negative peaks at 285 nm with shoulders at 280 and 290 nm and positive peaks at 244 and 302 nm in the denatured minus native enzyme difference spectrum. The fluorescence emission maximum of the enzyme red shifts with increasing intensity in urea solutions of increasing concentrations. At least part of these changes can be attributed to direct effects of urea on the exposed Tyr and Trp residues as shown by experiments with model compounds. The inactivation of this enzyme has been followed and compared with the conformational changes observed during urea denaturation. A marked decrease in enzyme activity is already evident at low urea concentrations before significant conformational changes can be detected by the exposure of hidden SH groups or by ultraviolet absorbance and fluorescence changes. At higher urea concentrations, the enzyme is inactivated at rates 3 orders of magnitude faster than the rates of conformational changes. The above results are in accord with those reported previously for guanidine denaturation of this enzyme [Yao, Q., Hou, L., Zhou, H., & Tsou, C.-L. (1982) Sci. Sin. (Engl. Ed.) 25, 1186-1193] and can best be explained by assuming that the active site of this enzyme is situated near the surface of the enzyme molecule and is sensitive to very slight conformational changes.
Collapse
|
|
41 |
108 |
19
|
Ouyang L, Luo Y, Tian M, Zhang SY, Lu R, Wang JH, Kasimu R, Li X. Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif 2015; 47:506-15. [PMID: 25377084 DOI: 10.1111/cpr.12143] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 02/05/2023] Open
Abstract
Natural products are chemical compounds or substances produced naturally by living organisms. With the development of modern technology, more and more plant extracts have been found to be useful to medical practice. Both micromolecules and macromolecules have been reported to have the ability to inhibit tumour progression, a novel weapon to fight cancer by targeting its 10 characteristic hallmarks. In this review, we focus on summarizing plant natural compounds and their derivatives with anti-tumour properties, into categories, according to their potential therapeutic strategies against different types of human cancer. Taken together, we present a well-grounded review of these properties, hoping to shed new light on discovery of novel anti-tumour therapeutic drugs from known plant natural sources.
Collapse
|
Review |
10 |
96 |
20
|
Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, Yu JL, Köster A, Baez M, Schoepp DD. Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology 2002; 43:251-9. [PMID: 12213279 DOI: 10.1016/s0028-3908(02)00079-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pre-synaptic metabotropic glutamate (mGlu) receptors modulate neuronal excitability by controlling glutamate and gamma-aminobutyric acid (GABA) release. The mGlu8 receptor is predominantly found in pre-synaptic terminals and its expression is highly restricted. To study the role of this receptor, mGlu8 receptor-deficient mice were generated. Here we report that naïve mGlu8 receptor-deficient mice showed increased anxiety-related behavior in the elevated plus maze in low illumination conditions (red light). Open arm avoidance and risk assessment behavior were both significantly increased in mutant mice. Increased stressfulness of the testing conditions abolished this behavioral difference. Fluorescent light or prior restraint stress decreased the open arm activity of wild-type mice, while the open arm activity of mutant mice was essentially unaffected, leading to similar values in both strains. The total number of arm entries or closed arm entries was not significantly different between strains, indicating that the lack of mGlu8 receptor does not affect locomotor activity. No gross behavioral changes, or changes in the function of the autonomic nervous system or somatomotor systems were observed in mutant mice. Moreover, no significant differences in seizure susceptibility were detected between strains. Our results suggest that mGlu8 receptor may play a role in responses to novel stressful environment.
Collapse
|
Comparative Study |
23 |
84 |
21
|
Kim AH, Sheline CT, Tian M, Higashi T, McMahon RJ, Cousins RJ, Choi DW. L-type Ca(2+) channel-mediated Zn(2+) toxicity and modulation by ZnT-1 in PC12 cells. Brain Res 2000; 886:99-107. [PMID: 11119691 DOI: 10.1016/s0006-8993(00)02944-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In view of evidence that Zn(2+) neurotoxicity contributes to some forms of pathological neuronal death, we developed a model of Zn(2+) neurotoxicity in a cell line amenable to genetic manipulations. Exposure to 500 microM ZnCl(2) for 15 min under depolarizing conditions resulted in modest levels of PC12 cell death, that was reduced by the L-type Ca(2+) channel antagonist, nimodipine, and increased by the L-type Ca(2+) channel opener, S(-)-Bay K 8644. At lower insult levels (200 micrometer Zn(2+)+Bay K 8644), Zn(2+)-induced death appeared apoptotic under electron microscopy and was sensitive to the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-CH(2)F (Z-VAD); at higher insult levels (1000 microM+Bay K 8644), cells underwent necrosis insensitive to Z-VAD. To test the hypothesis that the plasma membrane transporter, ZnT-1, modulates Zn(2+) neurotoxicity, we generated stable PC12 cell lines overexpressing wild type or dominant negative forms of rat ZnT-1 (rZnT-1). Clones T9 and T23 overexpressing wild type rZnT-1 exhibited enhanced Zn(2+) efflux and reduced vulnerability to Zn(2+)-induced death compared to the parental line, whereas clones D5 and D16 expressing dominant negative rZnT-1 exhibited the opposite characteristics.
Collapse
|
|
25 |
82 |
22
|
Jiang QL, Zhang S, Tian M, Zhang SY, Xie T, Chen DY, Chen YJ, He J, Liu J, Ouyang L, Jiang X. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif 2014; 48:17-28. [PMID: 25488051 DOI: 10.1111/cpr.12155] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate-binding proteins of non-immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer-related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti-tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway- involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti-cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy.
Collapse
|
Review |
11 |
82 |
23
|
Ming W, Tian M, van de Grampel RD, Melis F, Jia X, Loos J, van der Linde R. Low Surface Energy Polymeric Films from Solventless Liquid Oligoesters and Partially Fluorinated Isocyanates. Macromolecules 2002. [DOI: 10.1021/ma020650i] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
67 |
24
|
Jucker M, Tian M, Norton DD, Sherman C, Kusiak JW. Laminin alpha 2 is a component of brain capillary basement membrane: reduced expression in dystrophic dy mice. Neuroscience 1996; 71:1153-61. [PMID: 8684619 DOI: 10.1016/0306-4522(95)00496-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study we demonstrate low level expression of the laminin alpha 2 chain in brain and localize the alpha 2 protein to the capillary basement membrane. While in peripheral basement membranes the laminin alpha 1 and alpha 2 chains have an almost mutually exclusive distribution, the present results suggest both alpha 1 and alpha 2 in the cerebral capillary basement membrane. Towards elucidating the function of alpha 2 in brain, we have performed ultrastructural analysis of the capillary basement membrane in dystrophic dy mice, which show a 70-90% and > 95% reduction of alpha 2 messenger RNA compared to heterozygous and wild-type mice, respectively, and show a nearly total absence of the alpha 2 protein by immunofluorescence. In contrast to the muscle and Schwann cell basement membrane, where alpha 2 deficiency causes structural basement membrane abnormalities, the present results show that the lack of the alpha 2 subunit in the cerebral capillary basement membrane is not detrimental to its structure. This observation might be explained by the fact that the cerebral capillary basement membrane expresses both alpha chains and therefore exhibits structural redundancy.
Collapse
|
|
29 |
61 |
25
|
Tian M, Wang XD, Zhang T. Hexaaluminates: a review of the structure, synthesis and catalytic performance. Catal Sci Technol 2016. [DOI: 10.1039/c5cy02077h] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure and catalytic applications of hexaaluminates.
Collapse
|
|
9 |
57 |