1
|
Langacker P, Luo M. Implications of precision electroweak experiments for mt, rho 0, sin2 theta W, and grand unification. Int J Clin Exp Med 1991; 44:817-822. [PMID: 10013935 DOI: 10.1103/physrevd.44.817] [Citation(s) in RCA: 741] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
34 |
741 |
2
|
Tsao J, Chapman MS, Agbandje M, Keller W, Smith K, Wu H, Luo M, Smith TJ, Rossmann MG, Compans RW. The three-dimensional structure of canine parvovirus and its functional implications. Science 1991; 251:1456-64. [PMID: 2006420 DOI: 10.1126/science.2006420] [Citation(s) in RCA: 376] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The three-dimensional atomic structure of a single-stranded DNA virus has been determined. Infectious virions of canine parvovirus contain 60 protein subunits that are predominantly VP-2. The central structural motif of VP-2 has the same topology (an eight-stranded antiparallel beta barrel) as has been found in many other icosahedral viruses but represents only about one-third of the capsid protein. There is a 22 angstrom (A) long protrusion on the threefold axes, a 15 A deep canyon circulating about each of the five cylindrical structures at the fivefold axes, and a 15 A deep depression at the twofold axes. By analogy with rhinoviruses, the canyon may be the site of receptor attachment. Residues related to the antigenic properties of the virus are found on the threefold protrusions. Some of the amino termini of VP-2 run to the exterior in full but not empty virions, which is consistent with the observation that some VP-2 polypeptides in full particles can be cleaved by trypsin. Eleven nucleotides are seen in each of 60 symmetry-related pockets on the interior surface of the capsid and together account for 13 percent of the genome.
Collapse
|
|
34 |
376 |
3
|
Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A 2000; 97:10637-42. [PMID: 10962025 PMCID: PMC27077 DOI: 10.1073/pnas.170292997] [Citation(s) in RCA: 330] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2000] [Indexed: 11/18/2022] Open
Abstract
The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to beta-glucuronidase (GUS) to study their activity pattern. The FIS2GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEAGUS has a pattern of activity similar to that of FIS2GUS, but FIEGUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2GUS, MEAGUS, and FIEGUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.
Collapse
|
research-article |
25 |
330 |
4
|
Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1999; 96:296-301. [PMID: 9874812 PMCID: PMC15133 DOI: 10.1073/pnas.96.1.296] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have cloned two genes, FIS1 and FIS2, that control both fertilization independent seed development and postpollination embryo development in Arabidopsis. These genes confer female gametophytic phenotypes. FIS2 encodes a protein with a C2H2 zinc-finger motif and three putative nuclear localization signals, indicating that it is likely to be a transcription factor. FIS1 encodes a protein with homology to the Drosophila Polycomb group gene Enhancer-of-zeste and is identical to the recently described Arabidopsis gene MEDEA. FIS1 is a protein with a number of putative functional domains, including the SET domain present in Enhancer-of-zeste-related proteins. Comparison of the position of the lesions in the fis1 and medea mutant alleles indicates that fis1 is a null allele producing a truncated polypeptide lacking all the protein domains whereas the deduced protein from medea lacks only the SET domain. We present a model of the role of FIS1 and FIS2 gene products in seed development.
Collapse
|
research-article |
26 |
327 |
5
|
Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 1986; 233:1286-93. [PMID: 3018924 DOI: 10.1126/science.3018924] [Citation(s) in RCA: 325] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
WIN 51711 and WIN 52084 are structurally related, antiviral compounds that inhibit the replication of rhino (common cold) viruses and related picornaviruses. They prevent the pH-mediated uncoating of the viral RNA. The compounds consist of a 3-methylisoxazole group that inserts itself into the hydrophobic interior of the VP1 beta-barrel, a connecting seven-membered aliphatic chain, and a 4-oxazolinylphenoxy group (OP) that covers the entrance to an ion channel in the floor of the "canyon." Viral disassembly may be inhibited by preventing the collapse of the VP1 hydrophobic pocket or by blocking the flow of ions into the virus interior.
Collapse
|
|
39 |
325 |
6
|
Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, Palmenberg AC. The atomic structure of Mengo virus at 3.0 A resolution. Science 1987; 235:182-91. [PMID: 3026048 DOI: 10.1126/science.3026048] [Citation(s) in RCA: 298] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of Mengo virus, a representative member of the cardio picornaviruses, is substantially different from the structures of rhino- and polioviruses. The structure of Mengo virus was solved with the use of human rhinovirus 14 as an 8 A resolution structural approximation. Phase information was then extended to 3 A resolution by use of the icosahedral symmetry. This procedure gives promise that many other virus structures also can be determined without the use of the isomorphous replacement technique. Although the organization of the major capsid proteins VP1, VP2, and VP3 of Mengo virus is essentially the same as in rhino- and polioviruses, large insertions and deletions, mostly in VP1, radically alter the surface features. In particular, the putative receptor binding "canyon" of human rhinovirus 14 becomes a deep "pit" in Mengo virus because of polypeptide insertions in VP1 that fill part of the canyon. The minor capsid peptide, VP4, is completely internal in Mengo virus, but its association with the other capsid proteins is substantially different from that in rhino- or poliovirus. However, its carboxyl terminus is located at a position similar to that in human rhinovirus 14 and poliovirus, suggesting the same autocatalytic cleavage of VP0 to VP4 and VP2 takes place during assembly in all these picornaviruses.
Collapse
|
|
38 |
298 |
7
|
Köhrmann M, Luo M, Kaether C, DesGroseillers L, Dotti CG, Kiebler MA. Microtubule-dependent recruitment of Staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol Biol Cell 1999; 10:2945-53. [PMID: 10473638 PMCID: PMC25535 DOI: 10.1091/mbc.10.9.2945] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP-labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 microm/min with a maximum velocity of 24. 3 microm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.
Collapse
|
research-article |
26 |
248 |
8
|
Sha B, Phillips SE, Bankaitis VA, Luo M. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein. Nature 1998; 391:506-10. [PMID: 9461221 DOI: 10.1038/35179] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The yeast phosphatidylinositol-transfer protein (Sec14) catalyses exchange of phosphatidylinositol and phosphatidylcholine between membrane bilayers in vitro. In vivo, Sec14 activity is essential for vesicle budding from the Golgi complex. Here we report a three-dimensional structure for Sec14 at 2.5 A resolution. Sec14 consists of twelve alpha-helices, six beta-strands, eight 3(10)-helices and has two distinct domains. The carboxy-terminal domain forms a hydrophobic pocket which, in the crystal structure, is occupied by two molecules of n-octyl-beta-D-glucopyranoside and represents the phospholipid-binding domain. This pocket is reinforced by a string motif whose disruption in a sec14 temperature-sensitive mutant results in destabilization of the phospholipid-binding domain. Finally, we have identified an unusual surface helix that may play a critical role in driving Sec14-mediated phospholipid exchange. From this structure, we derive the first molecular clues into how a phosphatidylinositol-transfer protein functions.
Collapse
|
|
27 |
219 |
9
|
Wickham L, Duchaîne T, Luo M, Nabi IR, DesGroseillers L. Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol Cell Biol 1999; 19:2220-30. [PMID: 10022909 PMCID: PMC84015 DOI: 10.1128/mcb.19.3.2220] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staufen (Stau) is a double-stranded RNA (dsRNA)-binding protein involved in mRNA transport and localization in Drosophila. To understand the molecular mechanisms of mRNA transport in mammals, we cloned human (hStau) and mouse (mStau) staufen cDNAs. In humans, four transcripts arise by differential splicing of the Stau gene and code for two proteins with different N-terminal extremities. In vitro, hStau and mStau bind dsRNA via each of two full-length dsRNA-binding domains and tubulin via a region similar to the microtubule-binding domain of MAP-1B, suggesting that Stau cross-links cytoskeletal and RNA components. Immunofluorescent double labeling of transfected mammalian cells revealed that Stau is localized to the rough endoplasmic reticulum (RER), implicating this RNA-binding protein in mRNA targeting to the RER, perhaps via a multistep process involving microtubules. These results are the first demonstration of the association of an RNA-binding protein in addition to ribosomal proteins, with the RER, implicating this class of proteins in the transport of RNA to its site of translation.
Collapse
|
research-article |
26 |
204 |
10
|
Sha B, Luo M. Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. NATURE STRUCTURAL BIOLOGY 1997; 4:239-44. [PMID: 9164466 DOI: 10.1038/nsb0397-239] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Matrix protein (M1) of influenza virus is a bifunctional protein that mediates the encapsidation of RNA-nucleoprotein cores into the membrane envelope. It is therefore required that M1 binds both membrane and RNA simultaneously. The X-ray crystal structure of the N-terminal portion of type A influenza virus M1-amino acid residues 2-158-has been determined at 2.08 A resolution at pH 4.0. The protein forms a dimer. A highly positively charged region on the dimer surface is suitably positioned to bind RNA while the hydrophobic surface opposite the RNA binding region may be involved in interactions with the membrane. The membrane-binding hydrophobic surface could be buried or exposed after a conformational change.
Collapse
|
Comparative Study |
28 |
167 |
11
|
Worden HM, Logan JA, Worden JR, Beer R, Bowman K, Clough SA, Eldering A, Fisher BM, Gunson MR, Herman RL, Kulawik SS, Lampel MC, Luo M, Megretskaia IA, Osterman GB, Shephard MW. Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: Methods and initial results. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007258] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
18 |
163 |
12
|
Steiner RA, Hohmann JG, Holmes A, Wrenn CC, Cadd G, Juréus A, Clifton DK, Luo M, Gutshall M, Ma SY, Mufson EJ, Crawley JN. Galanin transgenic mice display cognitive and neurochemical deficits characteristic of Alzheimer's disease. Proc Natl Acad Sci U S A 2001; 98:4184-9. [PMID: 11259657 PMCID: PMC31200 DOI: 10.1073/pnas.061445598] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2000] [Indexed: 11/18/2022] Open
Abstract
Galanin is a neuropeptide with multiple inhibitory actions on neurotransmission and memory. In Alzheimer's disease (AD), increased galanin-containing fibers hyperinnervate cholinergic neurons within the basal forebrain in association with a decline in cognition. We generated transgenic mice (GAL-tg) that overexpress galanin under the control of the dopamine beta-hydroxylase promoter to study the neurochemical and behavioral sequelae of a mouse model of galanin overexpression in AD. Overexpression of galanin was associated with a reduction in the number of identifiable neurons producing acetylcholine in the horizontal limb of the diagonal band. Behavioral phenotyping indicated that GAL-tgs displayed normal general health and sensory and motor abilities; however, GAL-tg mice showed selective performance deficits on the Morris spatial navigational task and the social transmission of food preference olfactory memory test. These results suggest that elevated expression of galanin contributes to the neurochemical and cognitive impairments characteristic of AD.
Collapse
|
research-article |
24 |
145 |
13
|
Badger J, Minor I, Kremer MJ, Oliveira MA, Smith TJ, Griffith JP, Guerin DM, Krishnaswamy S, Luo M, Rossmann MG. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc Natl Acad Sci U S A 1988; 85:3304-8. [PMID: 2835768 PMCID: PMC280197 DOI: 10.1073/pnas.85.10.3304] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The binding to human rhinovirus 14 of a series of eight antiviral agents that inhibit picornaviral uncoating after entry into host cells has been characterized crystallographically. All of these bind into the same hydrophobic pocket within the viral protein VP1 beta-barrel structure, although the orientation and position of each compound within the pocket was found to differ. The compounds cause the protein shell to be less flexible, thereby inhibiting disassembly. Although the antiviral potency of these compounds varies by 120-fold, they all induce the same conformational changes on the virion. The interactions of these compounds with the viral capsid are consistent with their observed antiviral activities against human rhinovirus 14 drug-resistant mutants and other rhinovirus serotypes. Crystallographic studies of one of these mutants confirm the partial sequencing data and support the finding that this is a single mutation that occurs within the binding pocket.
Collapse
|
research-article |
37 |
144 |
14
|
Abstract
To define the relationship between glomerular activation patterns and neuronal olfactory responses in the main olfactory bulb, intracellular recordings were combined with optical imaging of intrinsic signals. Response correlation maps (RCMs) were constructed by correlating the fluctuations in membrane potential and firing rate during odorant presentations with patterns of glomerular activation. The RCMs indicated that mitral/tufted cells were excited by activation of a focal region surrounding their principal glomerulus and generally inhibited by activation of more distant regions. However, the structure of the RCMs and the relative contribution of excitatory and inhibitory glomerular input evolved and even changed sign during and after odorant application. These data suggest a dynamic center-surround organization of mitral/tufted cell receptive fields.
Collapse
|
|
24 |
139 |
15
|
Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, Nicklin MJ, Wimmer E. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci U S A 1987; 84:21-5. [PMID: 3467351 PMCID: PMC304133 DOI: 10.1073/pnas.84.1.21] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mature picornaviral proteins are derived by progressive, posttranslational cleavage of a precursor polyprotein. These cleavages play a role in the control of virus functions. Although the processed termini are separated by as much as 75 A in the native virus capsid, the fold and arrangement of polypeptide chains in a protomer before proteolysis are likely to be similar to that found in the mature virus. The three-dimensional structures of rhinovirus and Mengo virus suggest that the cleavage sites within the protomeric precursor are in structurally flexible regions. The final proteolytic processing event, maturation of the virion peptide VP0 (also called peptide 1AB) appears to occur by an unusual autocatalytic serine protease-type mechanism possibly involving viral RNA basic groups that would serve as proton-abstractors during the cleavage reaction.
Collapse
|
research-article |
38 |
139 |
16
|
Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, Peacock WJ. Control of early seed development. Annu Rev Cell Dev Biol 2002; 17:677-99. [PMID: 11687501 DOI: 10.1146/annurev.cellbio.17.1.677] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Seed development requires coordinated expression of embryo and endosperm and has contributions from both sporophytic and male and female gametophytic genes. Genetic and molecular analyses in recent years have started to illuminate how products of these multiple genes interact to initiate seed development. Imprinting or differential expression of paternal and maternal genes seems to be involved in controlling seed development, presumably by controlling gene expression in developing endosperm. Epigenetic processes such as chromatin remodeling and DNA methylation affect imprinting of key seed-specific genes; however, the identity of many of these genes remains unknown. The discovery of FIS genes has illuminated control of autonomous endosperm development, a component of apomixis, which is an important developmental and agronomic trait. FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes. These results define some exciting future areas of research in seed development.
Collapse
|
Review |
23 |
129 |
17
|
Mouland AJ, Mercier J, Luo M, Bernier L, DesGroseillers L, Cohen EA. The double-stranded RNA-binding protein Staufen is incorporated in human immunodeficiency virus type 1: evidence for a role in genomic RNA encapsidation. J Virol 2000; 74:5441-51. [PMID: 10823848 PMCID: PMC112028 DOI: 10.1128/jvi.74.12.5441-5451.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human Staufen (hStau), a double-stranded RNA (dsRNA)-binding protein that is involved in mRNA transport, is incorporated in human immunodeficiency virus type 1 (HIV-1) and in other retroviruses, including HIV-2 and Moloney murine leukemia virus. Sucrose and Optiprep gradient analyses reveal cosedimentation of hStau with purified HIV-1, while subtilisin assays demonstrate that it is internalized. hStau incorporation in HIV-1 is selective, is dependent on an intact functional dsRNA-binding domain, and quantitatively correlates with levels of encapsidated HIV-1 genomic RNA. By coimmunoprecipitation and reverse transcription-PCR analyses, we demonstrate that hStau is associated with HIV-1 genomic RNA in HIV-1-expressing cells and purified virus. Overexpression of hStau enhances virion incorporation levels, and a corresponding, threefold increase in HIV-1 genomic RNA encapsidation levels. This coordinated increase in hStau and genomic RNA packaging had a significant negative effect on viral infectivity. This study is the first to describe hStau within HIV-1 particles and provides evidence that hStau binds HIV-1 genomic RNA, indicating that it may be implicated in retroviral genome selection and packaging into assembling virions.
Collapse
MESH Headings
- Binding Sites
- Cell Line
- Centrifugation, Density Gradient
- Cloning, Molecular
- Drosophila Proteins
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Genome, Viral
- HIV-1/chemistry
- HIV-1/genetics
- HIV-1/metabolism
- HIV-1/pathogenicity
- HIV-2/chemistry
- HIV-2/metabolism
- Humans
- Moloney murine leukemia virus/chemistry
- Moloney murine leukemia virus/metabolism
- Mutation/genetics
- Precipitin Tests
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/analysis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/analysis
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Substrate Specificity
- Subtilisin/metabolism
- Transfection
- Virus Assembly
Collapse
|
research-article |
25 |
126 |
18
|
Phillips SE, Sha B, Topalof L, Xie Z, Alb JG, Klenchin VA, Swigart P, Cockcroft S, Martin TF, Luo M, Bankaitis VA. Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol Cell 1999; 4:187-97. [PMID: 10488334 DOI: 10.1016/s1097-2765(00)80366-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi secretory function. It is widely accepted, though unproven, that phosphatidylinositol transfer between membranes represents the physiological activity of phosphatidylinositol transfer proteins (PITPs). We report that Sec14pK66,239A is inactivated for phosphatidylinositol, but not phosphatidylcholine (PC), transfer activity. As expected, Sec14pK66,239A fails to meet established criteria for a PITP in vitro and fails to stimulate phosphoinositide production in vivo. However, its expression efficiently rescues the lethality and Golgi secretory defects associated with sec14-1ts and sec14 null mutations. This complementation requires neither phospholipase D activation nor the involvement of a novel class of minor yeast PITPs. These findings indicate that PI binding/transfer is remarkably dispensable for Sec14p function in vivo.
Collapse
|
|
26 |
114 |
19
|
Georgiadis MM, Luo M, Gaur RK, Delaplane S, Li X, Kelley MR. Evolution of the redox function in mammalian apurinic/apyrimidinic endonuclease. Mutat Res 2008; 643:54-63. [PMID: 18579163 DOI: 10.1016/j.mrfmmm.2008.04.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 11/26/2022]
Abstract
Human apurinic/apyrimidinic endonuclease (hApe1) encodes two important functional activities: an essential base excision repair (BER) activity and a redox activity that regulates expression of a number of genes through reduction of their transcription factors, AP-1, NFkappaB, HIF-1alpha, CREB, p53 and others. The BER function is highly conserved from prokaryotes (E. coli exonuclease III) to humans (hApe1). Here, we provide evidence supporting a redox function unique to mammalian Apes. An evolutionary analysis of Ape sequences reveals that, of the 7 Cys residues, Cys 93, 99, 208, 296, and 310 are conserved in both mammalian and non-mammalian vertebrate Apes, while Cys 65 is unique to mammalian Apes. In the zebrafish Ape (zApe), selected as the vertebrate sequence most distant from human, the residue equivalent to Cys 65 is Thr 58. The wild-type zApe enzyme was tested for redox activity in both in vitro EMSA and transactivation assays and found to be inactive, similar to C65A hApe1. Substitution of Thr 58 with Cys in zApe, however, resulted in a redox active enzyme, suggesting that a Cys residue in this position is indeed critical for redox function. In order to further probe differences between redox active and inactive enzymes, we have determined the crystal structures of vertebrate redox inactive enzymes, the C65A human Ape1 enzyme and the zApe enzyme at 1.9 and 2.3A, respectively. Our results provide new insights on the redox function and highlight a dramatic gain-of-function activity for Ape1 in mammals not found in non-mammalian vertebrates or lower organisms.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
108 |
20
|
Kobasa D, Kodihalli S, Luo M, Castrucci MR, Donatelli I, Suzuki Y, Suzuki T, Kawaoka Y. Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase. J Virol 1999; 73:6743-51. [PMID: 10400772 PMCID: PMC112759 DOI: 10.1128/jvi.73.8.6743-6751.1999] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/1999] [Accepted: 05/04/1999] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses possess two glycoprotein spikes on the virion surface: hemagglutinin (HA), which binds to oligosaccharides containing terminal sialic acid, and neuraminidase (NA), which removes terminal sialic acid from oligosaccharides. Hence, the interplay between these receptor-binding and receptor-destroying functions assumes major importance in viral replication. In contrast to the well-characterized role of HA in host range restriction of influenza viruses, there is only limited information on the role of NA substrate specificity in viral replication among different animal species. We therefore investigated the substrate specificities of NA for linkages between N-acetyl sialic acid and galactose (NeuAcalpha2-3Gal and NeuAcalpha2-6Gal) and for different molecular species of sialic acids (N-acetyl and N-glycolyl sialic acids) in influenza A viruses isolated from human, avian, and pig hosts. Substrate specificity assays showed that all viruses had similar specificities for NeuAcalpha2-3Gal, while the activities for NeuAcalpha2-6Gal ranged from marginal, as represented by avian and early N2 human viruses, to high (although only one-third the activity for NeuAcalpha2-3Gal), as represented by swine and more recent N2 human viruses. Using site-specific mutagenesis, we identified in the earliest human virus with a detectable increase in NeuAcalpha2-6Gal specificity a change at position 275 (from isoleucine to valine) that enhanced the specificity for this substrate. Valine at position 275 was maintained in all later human viruses as well as swine viruses. A similar examination of N-glycolylneuraminic acid (NeuGc) specificity showed that avian viruses and most human viruses had low to moderate activity for this substrate, with the exception of most human viruses isolated between 1967 and 1969, whose NeuGc specificity was as high as that of swine viruses. The amino acid at position 431 was found to determine the level of NeuGc specificity of NA: lysine conferred high NeuGc specificity, while proline, glutamine, and glutamic acid were associated with lower NeuGc specificity. Both residues 275 and 431 lie close to the enzymatic active site but are not directly involved in the reaction mechanism. This finding suggests that the adaptation of NA to different substrates occurs by a mechanism of amino acid substitutions that subtly alter the conformation of NA in and around the active site to facilitate the binding of different species of sialic acid.
Collapse
|
research-article |
26 |
106 |
21
|
Abstract
Diabetes is a state of increased oxidant stress and there is evidence that oxidation may play a role in the genesis of complications. Gliclazide, a sulfonylurea hypoglycemic drug, has been shown to possess free radical scavenging properties. This study examined the effects of in vitro supplementation with gliclazide and other sulfonylureas as on low-density lipoprotein (LDL) oxidation and the total plasma antioxidant capacity (TPAC). In a separate study, the effects of 10 months of oral gliclazide therapy on oxidative parameters were assessed in 44 type 2 diabetic patients. Gliclazide, but not glibenclamide, glimepiride, glipizide or tolbutamide, inhibited LDL oxidation and enhanced TPAC. With the addition of 1 microM gliclazide, oxidation lag time increased from 53.6+/-2.6 to 113.6+/-5.1 min (p<0.001), and TPAC increased from 1. 09+/-0.11 to 1.23+/-0.11 mM (p<0.01). Administration of either modified release or standard gliclazide to type 2 diabetic patients resulted in a fall in 8-isoprostanes, a marker of lipid oxidation, and an increase in the antioxidant parameters TPAC, SOD and thiols. These studies show that gliclazide possesses antioxidant properties that produce measurable clinical effects at therapeutic doses.
Collapse
|
|
25 |
102 |
22
|
Dubcovsky J, Luo M, Dvorak J. Differentiation between homoeologous chromosomes 1A of wheat and 1Am of Triticum monococcum and its recognition by the wheat Ph1 locus. Proc Natl Acad Sci U S A 1995; 92:6645-9. [PMID: 11607556 PMCID: PMC41575 DOI: 10.1073/pnas.92.14.6645] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In most allopolyploid plants, only homogenetic chromosome pairing occurs in meiosis, as a result of the recognition of genome differentiation by the genetic system regulating meiotic chromosome pairing. The nature of differentiation between chromosomes of closely related genomes is examined here by investigating recombination between wheat chromosome 1A and the closely related homoeologous chromosome 1Am of Triticum monococcum. The recognition of the differentiation between these chromosomes by the Ph1 locus, which prevents heterogenetic chromosome pairing in wheat, is also investigated. Chromosomes 1A and 1Am are shown to be colinear, and it is concluded that they are differentiated "substructurally." This substructural differentiation is argued to be recognized by the Ph1 locus. In the absence of Ph1, the distribution and frequencies of crossing over between the 1A and 1Am homoeologues were similar to the distribution and frequencies of crossing over between 1A homologues. The cytogenetic and evolutionary significance of these findings is discussed.
Collapse
|
research-article |
30 |
99 |
23
|
Luo M, Rinsland CP, Rodgers CD, Logan JA, Worden H, Kulawik S, Eldering A, Goldman A, Shephard MW, Gunson M, Lampel M. Comparison of carbon monoxide measurements by TES and MOPITT: Influence of a priori data and instrument characteristics on nadir atmospheric species retrievals. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007663] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
18 |
96 |
24
|
Harris A, Forouhar F, Qiu S, Sha B, Luo M. The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 2001; 289:34-44. [PMID: 11601915 DOI: 10.1006/viro.2001.1119] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influenza matrix protein (M1) forms a protein layer under the viral membrane and is essential for viral stability and integrity. M1 mediates the encapsidation of the viral RNPs into the viral membrane by its membrane and RNP-binding activities. In order to understand the roles of M1-M1 protein interactions in forming the M1 layer, X-ray crystallographic studies of a M1 fragment (1-162) were carried out at neutral pH and compared with an acidic pH structure. At neutral pH the asymmetric unit was a stacked dimer of M1. A long molecular ribbon of neutral stacked dimers was formed by translation as dictated by the P1 space group. The elongated ribbon had a positively charged stripe on one side of the ribbon. A similar M1-M1 stacking interface was also found in the acidic asymmetric unit. However, within the acidic stacked dimer the molecules were not straight, but rotated in relation to each other by slightly changing the M1-M1 stacking interface. The acidic structure possessed an additional M1-M1 twofold interface. Protein docking confirmed that the M1-M1 stacking and M1-M1 twofold interfaces could be used to form a double ribbon of M1 molecules. By iterative repetition of the rotated relationship among the M1 molecules, a helix of M1 was generated. These studies suggest that M1 has the ability to form straight or bent elongated ribbons and helices. These oligomers are consistent with previous electron microscopic studies of M1, which demonstrated that isolated M1 formed elongated and flexible ribbons when isolated from what appeared to be a helical shell of M1 in the influenza virus.
Collapse
|
|
24 |
95 |
25
|
Luo TH, Zhao Y, Li G, Yuan WT, Zhao JJ, Chen JL, Huang W, Luo M. A genome-wide search for type II diabetes susceptibility genes in Chinese Hans. Diabetologia 2001; 44:501-6. [PMID: 11357482 DOI: 10.1007/s001250051649] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS The aim of the study was to search for Type II (non-insulin-dependent) diabetes mellitus susceptibility genes in a Chinese population. METHODS A genome-wide scan was carried out using non-parametric linkage analyses. We studied 102 families (478 family members) who were Chinese Hans residing in east and south-east China, including 282 diabetic patients, among them 142 independent affected sibpairs were available for genotyping. A total of 247 fluorescence labelled microsatellite markers, with an average resolution of 15 cM, were amplified. GENEHUNTER was used for the non-parametric linkage analyses. RESULTS Two loci on chromosome 9 D9S171 and D9S175 showed suggestive evidence for linkage, with an NPL-score of 3.286 and 2.939 respectively, and a p value of 1.19 x 10(-4) and 4.47 x 10(-4). A locus on the long arm of chromosome 20, D20S196 showed a rise in the non-parametric-linkage score (from 1.517 to 2.922) and a corresponding decrease in the p value from 0.04 to 6.5 x 10(-4) when families with lower BMI were analysed alone. Other loci with weaker evidence for linkage were also observed. CONCLUSIONS Our results suggest that chromosome 9 contains genes involved in the susceptibility to Type II diabetes in an eastern and southeastern Chinese Han population, and chromosome 20 could hide genes linked to Type II diabetes in families with a lower BMI. Other regions could also hide susceptibility genes with minor effects.
Collapse
|
|
24 |
93 |