1
|
Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, Hussey GA, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat Commun 2022; 13:5926. [PMID: 36319618 PMCID: PMC9626559 DOI: 10.1038/s41467-022-33395-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
86 |
2
|
Neil JA, Matsuzawa-Ishimoto Y, Kernbauer-Hölzl E, Schuster SL, Sota S, Venzon M, Dallari S, Galvao Neto A, Hine A, Hudesman D, Loke P, Nice TJ, Cadwell K. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat Microbiol 2019; 4:1737-1749. [PMID: 31182797 PMCID: PMC6871771 DOI: 10.1038/s41564-019-0470-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Products derived from bacterial members of the gut microbiota evoke immune signalling pathways of the host that promote immunity and barrier function in the intestine. How immune reactions to enteric viruses support intestinal homeostasis is unknown. We recently demonstrated that infection by murine norovirus (MNV) reverses intestinal abnormalities following depletion of bacteria, indicating that an intestinal animal virus can provide cues to the host that are typically attributed to the microbiota. Here, we elucidate mechanisms by which MNV evokes protective responses from the host. We identify an important role for the viral protein NS1/2 in establishing local replication and a type I interferon (IFN-I) response in the colon. We further show that IFN-I acts on intestinal epithelial cells to increase the proportion of CCR2-dependent macrophages and interleukin (IL)-22-producing innate lymphoid cells, which in turn promote pSTAT3 signalling in intestinal epithelial cells and protection from intestinal injury. In addition, we demonstrate that MNV provides a striking IL-22-dependent protection against early-life lethal infection by Citrobacter rodentium. These findings demonstrate novel ways in which a viral member of the microbiota fortifies the intestinal barrier during chemical injury and infectious challenges.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
71 |
3
|
Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC. Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. CHEMOSPHERE 2010; 81:1352-1357. [PMID: 20817256 DOI: 10.1016/j.chemosphere.2010.08.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/31/2010] [Accepted: 08/08/2010] [Indexed: 05/29/2023]
Abstract
Insecticide impact on non-target species, such as insect predators and parasitoids, is an ever-growing concern in agriculture and recent studies have been shifting focus from lethal to sub-lethal effects since they may prevail in field conditions, although more difficult to assess. Synthetic insecticides are the main concern, but the recent spread of biopesticide use in agriculture draws attention, particularly the main botanical insecticide currently in use - azadirachtin. Here we assessed the lethal and behavioral sub-lethal response of predatory larvae of the lacewing species Chrysoperla externa and Ceraeochrysa cubana to two frequently used synthetic insecticides, malathion and permethrin, and to the bioinsecticide azadirachtin. The recommended field concentration of the synthetic insecticides led to low survival time of lacewing larvae from both species, in contrast with azadirachtin. However, all three compounds led to 100% mortality of the lacewing larvae from both species. Insecticide repellence (i.e., avoidance without contact) was similar for both synthetic insecticides in both species, but azadirachtin was a stronger repellent for C. externa, but not C. cubana. In addition, insecticide irritability (i.e., avoidance after contact) occurred in both lacewing species to all three insecticides tested. The notion that natural compounds are safer than synthetic compounds to non-target species is refuted in the present study, which also detected significant irritability to all of the insecticides regardless of their origin, and species-specific repellence elicited particularly by azadirachtin. Therefore, bioinsecticides should not be exempted from risk assessment, and non-target sub-lethal effects should not be neglected when considering potential insecticide use in agriculture.
Collapse
|
|
15 |
71 |
4
|
Venzon M, Janssen A, Pallini A, Sabelis MW. Diet of a polyphagous arthropod predator affects refuge seeking of its thrips prey. Anim Behav 2000; 60:369-375. [PMID: 11007646 DOI: 10.1006/anbe.2000.1483] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antipredator behaviour of prey costs time and energy, at the expense of other activities. However, not all predators are equally dangerous to all prey; some may have switched to feeding on another prey species, making them effectively harmless. To minimize costs, prey should therefore invest in antipredator behaviour only when dangerous predators are around. To distinguish these from harmless predators, prey may use cues related to predation on conspecifics, such as odours released by a predator that has recently eaten conspecific prey or alarm pheromones released by attacked prey. We studied refuge use by a herbivorous/omnivorous thrips, Frankliniella occidentalis, in response to odours associated with a generalist predatory bug, Orius laevigatus, fed either with conspecific thrips or with other prey. The refuge used by thrips larvae is the web produced by its competitor, the two-spotted spider mite, Tetranychus urticae, where thrips larvae experience lower predation risk because the predatory bug is hindered by the web. Thrips larvae moved into this refuge when odours associated with predatory bugs that had previously fed on thrips were present, whereas odours from predatory bugs that had fed on other prey had less effect. We discuss the consequences of this antipredator behaviour for population dynamics. Copyright 2000 The Association for the Study of Animal Behaviour.
Collapse
|
|
25 |
69 |
5
|
Venzon M, Bernard-Raichon L, Klein J, Axelrad JE, Hussey GA, Sullivan AP, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Wilder E, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J. Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation. RESEARCH SQUARE 2021:rs.3.rs-726620. [PMID: 34341786 PMCID: PMC8328072 DOI: 10.21203/rs.3.rs-726620/v1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate that the gut microbiome is directly affected by SARS-CoV-2 infection in a dose-dependent manner in a mouse model, causally linking viral infection and gut microbiome dysbiosis. Comparison with stool samples collected from 97 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients suggest that bacteria translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID 19.
Collapse
|
Preprint |
4 |
16 |
6
|
Togni PHB, Venzon M, Lagôa ACG, Sujii ER. Brazilian Legislation Leaning Towards Fast Registration of Biological Control Agents to Benefit Organic Agriculture. NEOTROPICAL ENTOMOLOGY 2019; 48:175-185. [PMID: 30847779 DOI: 10.1007/s13744-019-00675-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 05/26/2023]
Abstract
Brazil is one of the main users of chemical pesticides in the world. These products threaten human and environmental health, and many of them are prohibited in countries other than Brazil. This paradigm exists in contrast with worldwide efforts to make the need for food production compatible with biodiversity conservation, preservation of ecosystem services, and human health. In this scenario, the development of sustainable methods for crop production and pest management such as organic agriculture and biological control are necessary. Herein, we describe how the process of registration of natural enemy-based products in organic agriculture is simpler and faster than the conventional route of chemical insecticides and can favor the development of the biological control market in Brazil. Since the regulatory mechanisms have been established in Brazil for organic agriculture, the number of biological control products registered has increased exponentially. Today, 50 companies and associations are marketing 16 species/isolates and 95 natural enemy-based products. Although this scenario presents a series of new opportunities to increase and stimulate a more sustainable agriculture in the country, biological control is not always aligned with the aims and philosophy of organic agriculture and agroecology. Therefore, we also argue that new research efforts are needed on understanding how conservation biological control strategies can be integrated with augmentation biological control to promote a sustainable agriculture under the concepts of organic agriculture and agroecology.
Collapse
|
Review |
6 |
11 |
7
|
Venzon M, Janssen A, Sabelis MW. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. EXPERIMENTAL & APPLIED ACAROLOGY 2001; 25:785-808. [PMID: 12455871 DOI: 10.1023/a:1020443401985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The theory of intraguild predation (IGP) largely studies effects on equilibrium densities of predators and prey, while experiments mostly concern transient dynamics. We studied the effects of an intraguild (IG) predator, the bug Orius laevigatus, on the population dynamics of IG-prey, the predatory mite Phytoseiulus persimilis, and a shared prey, the phytophagous two-spotted spider mite Tetranychus urticae, as well as on the performance of cucumber plants in a greenhouse. The interaction of the predatory mite and the spider mite is highly unstable, and ends either by herbivores overexploiting the plant or predators exterminating the herbivores. We studied the effect of IGP on the transient dynamics of this system, and compared the dynamics with that predicted by a simple population-dynamical model with IGP added. Behavioural studies showed that the predatory bug and the predatory mite were both attracted to plants infested by spider mites and that the two predators did not avoid plants occupied by the other predator. Observations on foraging behaviour of the predatory bug showed that it attacks and kills large numbers of predatory mites and spider mites. The model predicts strong effects of predation and prey preference by the predatory bugs on the dynamics of predatory mites and spider mites. However, experiments in which the predatory bug was added to populations of predatory mites and spider mites had little or no effect on numbers of both mite species, and cucumber plant and fruit weight.
Collapse
|
|
24 |
9 |
8
|
Pimenta M, Mata RA, Venzon M, Cunha DNC, Fontes EMG, Pires CSS, Sujii ER. Survival and preference of cotton boll weevil adults for alternative food sources. BRAZ J BIOL 2016; 76:387-95. [PMID: 26934148 DOI: 10.1590/1519-6984.16214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Plants that have potential as alternative food source (floral nectar, pollen and plant tissues) to the boll weevil during the intercropping season were evaluated considering the prevalent conditions of Cerrado in the Central Brazil. Initially, we tested the nutritional adequacy for the survival of the insect of flower resource (pollen and nectar) provided by eight plant species (fennel, mexican sunflower, castor bean, okra, hibiscus, sorghum, pigeonpea and sunn hemp). Subsequently, we tested if the resources provided by the selected plants continued to be exploited by the boll weevil in the presence of cotton plant, its main food source average longevity of boll weevil adults was significantly longer when they were fed on hibiscus' flowers (166.6 ± 74.4) and okra flowers (34.7 ± 28.9) than when they fed on flowers of other six species. Subsequently, the preference of the boll weevil in the use of resources was compared between okra or hibiscus and cotton plants, in dual choice experiments. Boll weevils preferred plants of the three species in the reproductive stages than those in vegetative stages. Although the cotton plant in the reproductive stage was the most preferred plant of all, boll weevils preferred flowering okra and hibiscus than cotton at the vegetative stage.
Collapse
|
|
9 |
8 |
9
|
Venzon M, Bernard-Raichon L, Klein J, Axelrad JE, Zhang C, Hussey GA, Sullivan AP, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, Putzel G, Pironti A, Wilder E, Thorpe LE, Littman DR, Dittmann M, Stapleford KA, Shopsin B, Torres VJ, Ko AI, Iwasaki A, Cadwell K, Schluter J. Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.07.15.452246. [PMID: 35262080 PMCID: PMC8902880 DOI: 10.1101/2021.07.15.452246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.
Collapse
|
Preprint |
3 |
8 |
10
|
Venzon M, Cadwell K. COVID-19 and the Forgotten Organ: Prolonged Changes to the Metabolic Output of the Gut Microbiome. Gastroenterology 2022; 162:394-396. [PMID: 34800482 PMCID: PMC8596650 DOI: 10.1053/j.gastro.2021.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
|
Editorial |
3 |
6 |
11
|
Togni PHB, Souza LM, Sicsú PR, Costa VA, Amaral DSSL, Franco AC, Sujii ER, Venzon M. Coccinellidae Parasitoids in Brazil: Neglected Species in a Mega-Diverse Country. NEOTROPICAL ENTOMOLOGY 2015; 44:528-532. [PMID: 26123056 DOI: 10.1007/s13744-015-0309-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Current knowledge on coccinellids is primarily focused on their role as natural enemies of soft-bodied insects. However, there is a great diversity of coccinellid parasitoid species that are less studied. Here, we describe new records of coccinellid parasitoids with emphasis on new host-parasitoid interactions in 11 sample sites in Brazil. We collected 122 coccinellid individuals parasitized by six species of parasitoids in the Cerrado and in the Atlantic Rainforest biomes. New records of coccinellid parasitoids and host associations, expansion of habitat ranges and interactions are discussed focusing on the lack of basic information on these interactions in Brazil.
Collapse
|
|
10 |
2 |
12
|
Venzon M, Das R, Luciano DJ, Burnett J, Park HS, Devlin JC, Kool ET, Belasco JG, Hubbard EJA, Cadwell K. Microbial byproducts determine reproductive fitness of free-living and parasitic nematodes. Cell Host Microbe 2022; 30:786-797.e8. [PMID: 35413267 PMCID: PMC9187612 DOI: 10.1016/j.chom.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
Trichuris nematodes reproduce within the microbiota-rich mammalian intestine and lay thousands of eggs daily, facilitating their sustained presence in the environment and hampering eradication efforts. Here, we show that bacterial byproducts facilitate the reproductive development of nematodes. First, we employed a pipeline using the well-characterized, free-living nematode C. elegans to identify microbial factors with conserved roles in nematode reproduction. A screen for E. coli mutants that impair C. elegans fertility identified genes in fatty acid biosynthesis and ethanolamine utilization pathways, including fabH and eutN. Additionally, Trichuris muris eggs displayed defective hatching in the presence of fabH- or eutN-deficient E. coli due to reduced arginine or elevated aldehydes, respectively. T. muris reared in gnotobiotic mice colonized with these E. coli mutants displayed morphological defects and failed to lay viable eggs. These findings indicate that microbial byproducts mediate evolutionarily conserved transkingdom interactions that impact the reproductive fitness of distantly related nematodes.
Collapse
|
research-article |
3 |
|
13
|
Basso J, Linden R, Ibaldi M, Venzon M, Schwartsmann G. 1128P Genotypic and phenotypic evaluation of the pharmacokinetics of irinotecan and its relationship with the occurrence of toxicity in the treatment of cancer. Ann Oncol 2021. [DOI: 10.1016/j.annonc.2021.08.770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
|
4 |
|
14
|
Robertson A, Sall J, Venzon M, Olivas JJ, Zheng X, Cammer M, Antao N, Zhou C, Devlin JC, Saes Thur R, Bethony J, Nejsum P, Shopsin B, Torres VJ, Liang FX, Cadwell K. Bacterial contact induces polar plug disintegration to mediate whipworm egg hatching. PLoS Pathog 2023; 19:e1011647. [PMID: 37738244 PMCID: PMC10550136 DOI: 10.1371/journal.ppat.1011647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/04/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.
Collapse
|
research-article |
2 |
|
15
|
Perez AL, Martins EF, Venzon M. Biology and host selection stage of Symmetrischema dulce Povolny (Lepidoptera: Gelechiidae) in chili pepper. NEOTROPICAL ENTOMOLOGY 2019; 48:772-778. [PMID: 31123942 DOI: 10.1007/s13744-019-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The pepper-fruit-borer Symmetrischema dulce Povolny (Lepidoptera: Gelechiidae) is an important chili pepper pest causing significant yield losses. However, chili pepper has insufficient crop protection support and primary information about S. dulce is scarce. In the present study, we aimed to study the biology and ecology of S. dulce in pepper plants (Capsicum frutescens L.) focusing to support integrated pest management programs. In the field, we sampled ripe and unripe chili pepper fruits in three different plant strata. In the laboratory, we established colonies of the S. dulce and we recorded the duration, viability, morphology of each life stage, and number of larval instars. We conducted experiments to evaluate insect reproduction, whereby we registered the pre-oviposition and oviposition period, daily oviposition rate, and sex ratio. From these results, we estimated the reproductive success of S. dulce through the intrinsic population growth rate. The higher occurrence of S. dulce was in unripe fruits with no difference between plant strata. Egg stage lasted 4 days with 94% viability, and larval phase lasted on average 10.72 days and presented four instars with viability of 66.6%. Pupal stage lasted 9.61 days with viability of 94.73%. The adult stage lasted 24.14 days with a pre-oviposition period of 3 days and oviposition period of 13.85 days. The intrinsic growth rate (rm) recorded was 0.0035. Our results suggest that the biology of S. dulce has similarities with other Lepidoptera, but its peculiarities in reproductive parameters are essential for future programs of pest management.
Collapse
|
|
6 |
|
16
|
Robertson A, Sall J, Venzon M, Olivas JJ, Zheng X, Cammer M, Antao N, Thur RS, Bethony J, Nejsum P, Torres VJ, Liang FX, Cadwell K. Bacterial contact induces polar plug disintegration to mediate whipworm egg hatching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532458. [PMID: 36993552 PMCID: PMC10054943 DOI: 10.1101/2023.03.13.532458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris . Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Although unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs, egg hatching was most efficient in the presence of bacteria that bound poles with high density such as Staphylococcus aureus . Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.
Collapse
|
Preprint |
2 |
|