1
|
Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY, Sherman MB, Geissler PL, Fletcher DA, Hayden CC. Membrane bending by protein-protein crowding. Nat Cell Biol 2012; 14:944-9. [PMID: 22902598 DOI: 10.1038/ncb2561] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 07/12/2012] [Indexed: 02/07/2023]
Abstract
Curved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation. Thus, at present, we lack a sufficient physical explanation of how protein attachment bends membranes efficiently. On the basis of studies of epsin1 and AP180, proteins involved in clathrin-mediated endocytosis, we propose a third general mechanism for bending fluid cellular membranes: protein-protein crowding. By correlating membrane tubulation with measurements of protein densities on membrane surfaces, we demonstrate that lateral pressure generated by collisions between bound proteins drives bending. Whether proteins attach by inserting a helix or by binding lipid heads with an engineered tag, protein coverage above ~20% is sufficient to bend membranes. Consistent with this crowding mechanism, we find that even proteins unrelated to membrane curvature, such as green fluorescent protein (GFP), can bend membranes when sufficiently concentrated. These findings demonstrate a highly efficient mechanism by which the crowded protein environment on the surface of cellular membranes can contribute to membrane shape change.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
406 |
2
|
Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC. Intrinsically disordered proteins drive membrane curvature. Nat Commun 2015. [PMID: 26204806 PMCID: PMC4515776 DOI: 10.1038/ncomms8875] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. Proteins that bend membranes often contain curvature-promoting structural motifs such as wedges or crescent-shaped domains. Busch et al. report that intrinsically disordered domains can also drive membrane curvature and provide evidence that steric pressure driven by protein crowding mediates this effect.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
176 |
3
|
Serysheva II, Orlova EV, Chiu W, Sherman MB, Hamilton SL, van Heel M. Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. NATURE STRUCTURAL BIOLOGY 1995; 2:18-24. [PMID: 7719847 DOI: 10.1038/nsb0195-18] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We exploit the random orientations of ice-embedded molecules imaged in an electron cryomicroscope to determine the three-dimensional structure of the Ca(2+)-release channel from the sarcoplasmic reticulum (SR) in its closed state, without tilting the specimen holder. Our new reconstruction approach includes an exhaustive search of all different characteristic projection images in the micrographs and the assignment of Euler angle orientations to these views. The 30 A map implied reveals a structure in which the transmembrane region exhibits no apparent opening on the SR lumen side. The extended cytoplasmic region has a hollow appearance and consists, in each monomer, of a clamp-shaped and a handle-shaped domain.
Collapse
|
|
30 |
164 |
4
|
Tsetsarkin KA, Chen R, Sherman MB, Weaver SC. Chikungunya virus: evolution and genetic determinants of emergence. Curr Opin Virol 2012; 1:310-7. [PMID: 21966353 DOI: 10.1016/j.coviro.2011.07.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chikungunya virus (CHIKV) causes a severe and often persistent arthralgic disease that is occasionally fatal. A mosquito-borne virus, CHIKV exists in enzootic, non-human primate cycles in Africa, but occasionally emerges into urban, human cycles to cause major epidemics. Between 1920 and 1950, and again in 2005, CHIKV emerged into India and Southeast Asia, where major urban epidemics ensued. Unlike the early introduction, the 2005 emergence was accompanied by an adaptive mutation that allowed CHIKV to exploit a new epidemic vector, Aedes albopictus, via an A226V substitution in the E1 envelope glycoprotein. However, recent reverse genetic studies indicate that lineage-specific epistatic restrictions can prevent this from exerting its phenotype on mosquito infectivity. Thus, the A. albopictus-adaptive A226V substitution that is facilitating the dramatic geographic spread CHIKV epidemics, was prevented for decades or longer from being selected in most African enzootic strains as well as in the older endemic Asian lineage.
Collapse
|
Review |
13 |
126 |
5
|
Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, Neelakanta G, Sultana H. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog 2018; 14:e1006764. [PMID: 29300779 PMCID: PMC5754134 DOI: 10.1371/journal.ppat.1006764] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Molecular determinants and mechanisms of arthropod-borne flavivirus transmission to the vertebrate host are poorly understood. In this study, we show for the first time that a cell line from medically important arthropods, such as ticks, secretes extracellular vesicles (EVs) including exosomes that mediate transmission of flavivirus RNA and proteins to the human cells. Our study shows that tick-borne Langat virus (LGTV), a model pathogen closely related to tick-borne encephalitis virus (TBEV), profusely uses arthropod exosomes for transmission of viral RNA and proteins to the human- skin keratinocytes and blood endothelial cells. Cryo-electron microscopy showed the presence of purified arthropod/neuronal exosomes with the size range of 30 to 200 nm in diameter. Both positive and negative strands of LGTV RNA and viral envelope-protein were detected inside exosomes derived from arthropod, murine and human cells. Detection of Nonstructural 1 (NS1) protein in arthropod and neuronal exosomes further suggested that exosomes contain viral proteins. Viral RNA and proteins in exosomes derived from tick and mammalian cells were secured, highly infectious and replicative in all tested evaluations. Treatment with GW4869, a selective inhibitor that blocks exosome release affected LGTV loads in both arthropod and mammalian cell-derived exosomes. Transwell-migration assays showed that exosomes derived from infected-brain-microvascular endothelial cells (that constitute the blood-brain barrier) facilitated LGTV RNA and protein transmission, crossing of the barriers and infection of neuronal cells. Neuronal infection showed abundant loads of both tick-borne LGTV and mosquito-borne West Nile virus RNA in exosomes. Our data also suggest that exosome-mediated LGTV viral transmission is clathrin-dependent. Collectively, our results suggest that flaviviruses uses arthropod-derived exosomes as a novel means for viral RNA and protein transmission from the vector, and the vertebrate exosomes for dissemination within the host that may subsequently allow neuroinvasion and neuropathogenesis.
Collapse
MESH Headings
- Animals
- Arthropod Vectors/cytology
- Arthropod Vectors/ultrastructure
- Arthropod Vectors/virology
- Cell Line
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/pathology
- Cerebral Cortex/ultrastructure
- Cerebral Cortex/virology
- Chlorocebus aethiops
- Coculture Techniques
- Cryoelectron Microscopy
- Embryo, Mammalian/cytology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis Viruses, Tick-Borne/ultrastructure
- Encephalitis, Tick-Borne/pathology
- Encephalitis, Tick-Borne/transmission
- Encephalitis, Tick-Borne/virology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/ultrastructure
- Endothelium, Vascular/virology
- Exosomes/ultrastructure
- Exosomes/virology
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Ixodes/cytology
- Ixodes/ultrastructure
- Ixodes/virology
- Keratinocytes/cytology
- Keratinocytes/pathology
- Keratinocytes/ultrastructure
- Keratinocytes/virology
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Neurons/cytology
- Neurons/pathology
- Neurons/ultrastructure
- Neurons/virology
- RNA, Viral/metabolism
- Viral Proteins/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
7 |
122 |
6
|
Corbo C, Molinaro R, Taraballi F, Toledano Furman NE, Hartman KA, Sherman MB, De Rosa E, Kirui DK, Salvatore F, Tasciotti E. Unveiling the in Vivo Protein Corona of Circulating Leukocyte-like Carriers. ACS NANO 2017; 11:3262-3273. [PMID: 28264157 DOI: 10.1021/acsnano.7b00376] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding interactions occurring at the interface between nanoparticles and biological components is an urgent challenge in nanomedicine due to their effect on the biological fate of nanoparticles. After the systemic injection of nanoparticles, a protein corona constructed by blood components surrounds the carrier's surface and modulates its pharmacokinetics and biodistribution. Biomimicry-based approaches in nanotechnology attempt to imitate what happens in nature in order to transfer specific natural functionalities to synthetic nanoparticles. Several biomimetic formulations have been developed, showing superior in vivo features as a result of their cell-like identity. We have recently designed biomimetic liposomes, called leukosomes, which recapitulate the ability of leukocytes to target inflamed endothelium and escape clearance by the immune system. To gain insight into the properties of leukosomes, we decided to investigate their protein corona in vivo. So far, most information about the protein corona has been obtained using in vitro experiments, which have been shown to minimally reproduce in vivo phenomena. Here we directly show a time-dependent quantitative and qualitative analysis of the protein corona adsorbed in vivo on leukosomes and control liposomes. We observed that leukosomes absorb fewer proteins than liposomes, and we identified a group of proteins specifically adsorbed on leukosomes. Moreover, we hypothesize that the presence of macrophage receptors on leukosomes' surface neutralizes their protein corona-meditated uptake by immune cells. This work unveils the protein corona of a biomimetic carrier and is one of the few studies on the corona performed in vivo.
Collapse
|
|
8 |
104 |
7
|
Orlova EV, Sherman MB, Chiu W, Mowri H, Smith LC, Gotto AM. Three-dimensional structure of low density lipoproteins by electron cryomicroscopy. Proc Natl Acad Sci U S A 1999; 96:8420-5. [PMID: 10411890 PMCID: PMC17531 DOI: 10.1073/pnas.96.15.8420] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human low density lipoproteins (LDL) are the major cholesterol carriers in the blood. Elevated concentration of LDL is a major risk factor for atherosclerotic disease. Purified LDL particles appear heterogeneous in images obtained with a 400-kV electron cryomicroscope. Using multivariate statistical and cluster analyses, an ensemble of randomly oriented particle images has been subdivided into homogeneous subpopulations, and the largest subset was used for three-dimensional reconstruction. In contrast to the general belief that below the lipid phase-transition temperature (30 degrees C) LDL are quasi-spherical microemulsion particles with a radially layered core-shell organization, our three-dimensional map shows that LDL have a well-defined and stable organization. Particles consist of a higher-density outer shell and lower-density inner lamellae-like layers that divide the core into compartments. The outer shell consists of apolipoprotein B-100, phospholipids, and some free cholesterol.
Collapse
|
research-article |
26 |
103 |
8
|
Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, Milner J, Orlova EV. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J 2006; 25:5191-200. [PMID: 17053786 PMCID: PMC1630404 DOI: 10.1038/sj.emboj.7601382] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 09/13/2006] [Indexed: 01/11/2023] Open
Abstract
p53 major tumour suppressor protein has presented a challenge for structural biology for two decades. The intact and complete p53 molecule has eluded previous attempts to obtain its structure, largely due to the intrinsic flexibility of the protein. Using ATP-stabilised p53, we have employed cryoelectron microscopy and single particle analysis to solve the first three-dimensional structure of the full-length p53 tetramer (resolution 13.7 A). The p53 molecule is a D2 tetramer, resembling a hollow skewed cube with node-like vertices of two sizes. Four larger nodes accommodate central core domains, as was demonstrated by fitting of its X-ray structure. The p53 monomers are connected via their juxtaposed N- and C-termini within smaller N/C nodes to form dimers. The dimers form tetramers through the contacts between core nodes and N/C nodes. This structure revolutionises existing concepts of p53's molecular organisation and resolves conflicting data relating to its biochemical properties. This architecture of p53 in toto suggests novel mechanisms for structural plasticity, which enables the protein to bind variably spaced DNA target sequences, essential for p53 transactivation and tumour suppressor functions.
Collapse
|
Journal Article |
19 |
96 |
9
|
Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg Microbes Infect 2019; 8:307-326. [PMID: 30866785 PMCID: PMC6455149 DOI: 10.1080/22221751.2019.1578188] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The harmful effects of ZIKA virus (ZIKV) infection are reflected by severe neurological manifestations such as microcephaly in neonates and other complications associated with Guillain-Barré syndrome in adults. The transmission dynamics of ZIKV in or between neurons, or within the developing brains of the foetuses are not fully understood. Using primary cultures of murine cortical neurons, we show that ZIKV uses exosomes as mediators of viral transmission between neurons. Cryo-electron microscopy showed heterogeneous population of neuronal exosomes with a size range of 30–200 nm. Increased production of exosomes from neuronal cells was noted upon ZIKV infection. Neuronal exosomes contained both ZIKV viral RNA and protein(s) that were highly infectious to naïve cells. RNaseA and neutralizing antibodies treatment studies suggest the presence of viral RNA/proteins inside exosomes. Exosomes derived from time- and dose-dependent incubations showed increasing viral loads suggesting higher packaging and delivery of ZIKV RNA and proteins. Furthermore, we noted that ZIKV induced both activity and gene expression of neutral Sphingomyelinase (nSMase)-2/SMPD3, an important molecule that regulates production and release of exosomes. Silencing of SMPD3 in neurons resulted in reduced viral burden and transmission through exosomes. Treatment with SMPD3 specific inhibitor GW4869, significantly reduced ZIKV loads in both cortical neurons and in exosomes derived from these neuronal cells. Taken together, our results suggest that ZIKV modulates SMPD3 activity in cortical neurons for its infection and transmission through exosomes perhaps leading to severe neuronal death that may result in neurological manifestations such as microcephaly in the developing embryonic brains.
Collapse
|
Journal Article |
6 |
82 |
10
|
Zhou ZH, Hardt S, Wang B, Sherman MB, Jakana J, Chiu W. CTF determination of images of ice-embedded single particles using a graphics interface. J Struct Biol 1996; 116:216-22. [PMID: 8742746 DOI: 10.1006/jsbi.1996.0033] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We implement a graphical user interface in an X-window/UNIX environment to compute and display the incoherently averaged Fourier transforms of electron images of single particles embedded in ice and the simulated contrast transfer function with or without envelope functions. This interface provides an easy and efficient operation for the determination of defocus value and the evaluation of the extent of Fourier amplitude falloff. This computational procedure is crucial for prescreening image data and performing image correction of contrast transfer function in high-resolution three-dimensional reconstruction of single particles.
Collapse
|
|
29 |
81 |
11
|
Jin J, Liss NM, Chen DH, Liao M, Fox JM, Shimak RM, Fong RH, Chafets D, Bakkour S, Keating S, Fomin ME, Muench MO, Sherman MB, Doranz BJ, Diamond MS, Simmons G. Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis. Cell Rep 2015; 13:2553-2564. [PMID: 26686638 PMCID: PMC4720387 DOI: 10.1016/j.celrep.2015.11.043] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022] Open
Abstract
We evaluated the mechanism by which neutralizing human monoclonal antibodies inhibit chikungunya virus (CHIKV) infection. Potently neutralizing antibodies (NAbs) blocked infection at multiple steps of the virus life cycle, including entry and release. Cryo-electron microscopy structures of Fab fragments of two human NAbs and chikungunya virus-like particles showed a binding footprint that spanned independent domains on neighboring E2 subunits within one viral spike, suggesting a mechanism for inhibiting low-pH-dependent membrane fusion. Detailed epitope mapping identified amino acid E2-W64 as a critical interaction residue. An escape mutation (E2-W64G) at this residue rendered CHIKV attenuated in mice. Consistent with these data, CHIKV-E2-W64G failed to emerge in vivo under the selection pressure of one of the NAbs, IM-CKV063. As our study suggests that antibodies engaging the residue E2-W64 can potently inhibit CHIKV at multiple stages of infection, antibody-based therapies or immunogens that target this region might have protective value.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
79 |
12
|
Sherman MB, Guenther RH, Tama F, Sit TL, Brooks CL, Mikhailov AM, Orlova EV, Baker TS, Lommel SA. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J Virol 2006; 80:10395-406. [PMID: 16920821 PMCID: PMC1641784 DOI: 10.1128/jvi.01137-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 +/- 30 Ca2+ ions bound to the capsid and 420 +/- 25 Mg2+ ions thought to be in the interior of the capsid. Depletion of both Ca2+ and Mg2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-A-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca2+ and Mg2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
79 |
13
|
Schmid MF, Sherman MB, Matsudaira P, Chiu W. Structure of the acrosomal bundle. Nature 2004; 431:104-7. [PMID: 15343340 DOI: 10.1038/nature02881] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 07/20/2004] [Indexed: 11/08/2022]
Abstract
In the unactivated Limulus sperm, a 60- micro m-long bundle of actin filaments crosslinked by the protein scruin is bent and twisted into a coil around the base of the nucleus. At fertilization, the bundle uncoils and fully extends in five seconds to support a finger of membrane known as the acrosomal process. This biological spring is powered by stored elastic energy and does not require the action of motor proteins or actin polymerization. In a 9.5-A electron cryomicroscopic structure of the extended bundle, we show that twist, tilt and rotation of actin-scruin subunits deviate widely from a 'standard' F-actin filament. This variability in structural organization allows filaments to pack into a highly ordered and rigid bundle in the extended state and suggests a mechanism for storing and releasing energy between coiled and extended states without disassembly.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
75 |
14
|
LaBauve AE, Rinker TE, Noureddine A, Serda RE, Howe JY, Sherman MB, Rasley A, Brinker CJ, Sasaki DY, Negrete OA. Lipid-Coated Mesoporous Silica Nanoparticles for the Delivery of the ML336 Antiviral to Inhibit Encephalitic Alphavirus Infection. Sci Rep 2018; 8:13990. [PMID: 30228359 PMCID: PMC6143628 DOI: 10.1038/s41598-018-32033-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) poses a major public health risk due to its amenability for use as a bioterrorism agent and its severe health consequences in humans. ML336 is a recently developed chemical inhibitor of VEEV, shown to effectively reduce VEEV infection in vitro and in vivo. However, its limited solubility and stability could hinder its clinical translation. To overcome these limitations, lipid-coated mesoporous silica nanoparticles (LC-MSNs) were employed. The large surface area of the MSN core promotes hydrophobic drug loading while the liposome coating retains the drug and enables enhanced circulation time and biocompatibility, providing an ideal ML336 delivery platform. LC-MSNs loaded 20 ± 3.4 μg ML336/mg LC-MSN and released 6.6 ± 1.3 μg/mg ML336 over 24 hours. ML336-loaded LC-MSNs significantly inhibited VEEV in vitro in a dose-dependent manner as compared to unloaded LC-MSNs controls. Moreover, cell-based studies suggested that additional release of ML336 occurs after endocytosis. In vivo safety studies were conducted in mice, and LC-MSNs were not toxic when dosed at 0.11 g LC-MSNs/kg/day for four days. ML336-loaded LC-MSNs showed significant reduction of brain viral titer in VEEV infected mice compared to PBS controls. Overall, these results highlight the utility of LC-MSNs as drug delivery vehicles to treat VEEV.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
69 |
15
|
Brink J, Sherman MB, Berriman J, Chiu W. Evaluation of charging on macromolecules in electron cryomicroscopy. Ultramicroscopy 1998; 72:41-52. [PMID: 9561796 DOI: 10.1016/s0304-3991(97)00126-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe procedures to assess charging of biological specimens under electron irradiation in an electron cryomicroscope. Charging can be observed by an expansion of the illuminating beam, blurring of electron diffraction patterns and by beam "footprints" on the specimen. Discharging can also be seen in the defocused electron diffraction mode. We investigated the influence of a variety of factors on the magnitude and visibility of charging. A reduction of charging is noticed when part of the adjacent carbon film is included in the irradiated specimen area.
Collapse
|
|
27 |
62 |
16
|
Corbo C, Molinaro R, Taraballi F, Toledano Furman NE, Sherman MB, Parodi A, Salvatore F, Tasciotti E. Effects of the protein corona on liposome-liposome and liposome-cell interactions. Int J Nanomedicine 2016; 11:3049-63. [PMID: 27445473 PMCID: PMC4938145 DOI: 10.2147/ijn.s109059] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes' physical properties and, consequently, liposome-liposome and liposome-cell interactions.
Collapse
|
research-article |
9 |
61 |
17
|
Mao H, Saha M, Reyes-Aldrete E, Sherman MB, Woodson M, Atz R, Grimes S, Jardine PJ, Morais MC. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor. Cell Rep 2016; 14:2017-2029. [PMID: 26904950 DOI: 10.1016/j.celrep.2016.01.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/04/2016] [Accepted: 01/17/2016] [Indexed: 02/02/2023] Open
Abstract
Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
53 |
18
|
Jin J, Galaz-Montoya JG, Sherman MB, Sun SY, Goldsmith CS, O'Toole ET, Ackerman L, Carlson LA, Weaver SC, Chiu W, Simmons G. Neutralizing Antibodies Inhibit Chikungunya Virus Budding at the Plasma Membrane. Cell Host Microbe 2018; 24:417-428.e5. [PMID: 30146390 DOI: 10.1016/j.chom.2018.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/05/2018] [Accepted: 07/26/2018] [Indexed: 01/29/2023]
Abstract
Neutralizing antibodies (NAbs) are traditionally thought to inhibit virus infection by preventing virion entry into target cells. In addition, antibodies can engage Fc receptors (FcRs) on immune cells to activate antiviral responses. We describe a mechanism by which NAbs inhibit chikungunya virus (CHIKV), the most common alphavirus infecting humans, by preventing virus budding from infected human cells and activating IgG-specific Fcγ receptors. NAbs bind to CHIKV glycoproteins on the infected cell surface and induce glycoprotein coalescence, preventing budding of nascent virions and leaving structurally heterogeneous nucleocapsids arrested in the cytosol. Furthermore, NAbs induce clustering of CHIKV replication spherules at sites of budding blockage. Functionally, these densely packed glycoprotein-NAb complexes on infected cells activate Fcγ receptors, inducing a strong, antibody-dependent, cell-mediated cytotoxicity response from immune effector cells. Our findings describe a triply functional antiviral pathway for NAbs that might be broadly applicable across virus-host systems, suggesting avenues for therapeutic innovation through antibody design.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
45 |
19
|
Sherman MB, Brink J, Chiu W. Performance of a slow-scan CCD camera for macromolecular imaging in a 400 kV electron cryomicroscope. Micron 1996; 27:129-39. [PMID: 8858867 DOI: 10.1016/0968-4328(96)00018-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The feasibility and limitations of a 1024 x 1024 slow-scan charge-coupled device (CCD) camera were evaluated for imaging in a 400kV electron cryomicroscope. Catalase crystals and amorphous carbon film were used as test specimens. Using catalase crystals, it was found that the finite (24 microns) pixel size of the slow-scan CCD camera governs the ultimate resolution in the acquired images. For instance, spot-scan images of ice-embedded catalase crystals showed resolutions of 8 A and 4 A at effective magnifications of 67,000 x and 132,000 x, respectively. Using an amorphous carbon film, the damping effect of the modulation transfer function (MTF) of the slow-scan CCD camera on the specimen's Fourier spectrum relative to that of the photographic film was evaluated. The MTF of the slow-scan CCD camera fell off more rapidly compared to that of the photographic film and reached the value of 0.2 at the Nyquist frequency. Despite this attenuation, the signal-to-noise ratio of the CCD data, as determined from reflections of negatively-stained catalase crystals, was found to decrease to approximately 50% of that of photographic film data. The phases computed from images of the same negatively-stained catalase crystals recorded consecutively on both the slow-scan CCD camera and photographic film were found to be comparable to each other within 12 degrees. Ways of minimizing the effect of the MTF of the slow-scan CCD camera on the acquired images are also presented.
Collapse
|
|
29 |
39 |
20
|
Aramayo R, Sherman MB, Brownless K, Lurz R, Okorokov AL, Orlova EV. Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance. Nucleic Acids Res 2011; 39:8960-71. [PMID: 21764777 PMCID: PMC3203597 DOI: 10.1093/nar/gkr386] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The p53 tumour suppressor is a transcriptional activator that controls cell fate in response to various stresses. p53 can initiate cell cycle arrest, senescence and/or apoptosis via transactivation of p53 target genes, thus preventing cancer onset. Mutations that impair p53 usually occur in the core domain and negate the p53 sequence-specific DNA binding. Moreover, these mutations exhibit a dominant negative effect on the remaining wild-type p53. Here, we report the cryo electron microscopy structure of the full-length p53 tetramer bound to a DNA-encoding transcription factor response element (RE) at a resolution of 21 A. While two core domains from both dimers of the p53 tetramer interact with DNA within the complex, the other two core domains remain available for binding another DNA site. This finding helps to explain the dominant negative effect of p53 mutants based on the fact that p53 dimers are formed co-translationally before the whole tetramer assembles; therefore, a single mutant dimer would prevent the p53 tetramer from binding DNA. The structure indicates that the Achilles' heel of p53 is in its dimer-of-dimers organization, thus the tetramer activity can be negated by mutation in only one allele followed by tumourigenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
38 |
21
|
Zhou W, Tahir F, Wang JCY, Woodson M, Sherman MB, Karim S, Neelakanta G, Sultana H. Discovery of Exosomes From Tick Saliva and Salivary Glands Reveals Therapeutic Roles for CXCL12 and IL-8 in Wound Healing at the Tick-Human Skin Interface. Front Cell Dev Biol 2020; 8:554. [PMID: 32766239 PMCID: PMC7378379 DOI: 10.3389/fcell.2020.00554] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
Ticks secrete various anti-coagulatory, anti-vasoconstrictory, anti-inflammatory, and anti-platelet aggregation factors in their saliva at the bite site during feeding to evade host immunological surveillance and responses. For the first time, we report successful isolation of exosomes (small membrane-bound extracellular signaling vesicles) from saliva and salivary glands of partially fed or unfed ixodid ticks. Our data showed a novel role of these in vivo exosomes in the inhibition of wound healing via downregulation of C-X-C motif chemokine ligand 12 (CXCL12) and upregulation of interleukin-8 (IL-8). Cryo-electron microscopy (cryo-EM) analysis revealed that tick saliva and salivary glands are composed of heterogeneous populations of in vivo exosomes with sizes ranging from 30 to 200 nm. Enriched amounts of tick CD63 ortholog protein and heat shock protein 70 (HSP70) were evident in these exosomes. Treatment of human skin keratinocytes (HaCaT cells) with exosomes derived from tick saliva/salivary glands or ISE6 cells dramatically delayed cell migration, wound healing, and repair process. Wound healing is a highly dynamic process with several individualized processes including secretion of cytokines. Cytokine array profiling followed by immunoblotting and quantitative-PCR analysis revealed that HaCaT cells treated with exosomes derived from tick saliva/salivary glands or ISE6 cells showed enhanced IL-8 levels and reduced CXCL12 loads. Inhibition of IL-8 or CXCL12 further delayed exosome-mediated cell migration, wound healing, and repair process, suggesting a skin barrier protection role for these chemokines at the tick bite site. In contrast, exogenous treatment of CXCL12 protein completely restored this delay and enhanced the repair process. Taken together, our study provides novel insights on how tick salivary exosomes secreted in saliva can delay wound healing at the bite site to facilitate successful blood feeding.
Collapse
|
Journal Article |
5 |
38 |
22
|
Abstract
Negative staining, some closely related alternative preparation techniques and radiation stability are considered. An attempt is made to clarify the mechanism of action and ultimate resolution limit of negative staining. The results of electron diffraction investigation of thermitase microcrystals embedded in glucose and glucose + stains are presented. It is shown that at doses not exceeding 10 electrons/nm2 electron diffraction from thermitase crystals demonstrate diffraction fields up to 0.2 nm. When adding heavy-atom salts to glucose or using negative staining, the relative intensities of reflections change and electron diffraction patterns for every type of heavy-atom additive (or negative stain) have their specific features. Such characteristic changes of reflection intensities indicate specific interaction of these additives (or stains) with the object. In the case of electron diffraction from the crystals stained using the routine negative staining technique the ordering was preserved down to 0.4-0.5 nm. Increasing the dose up to the normal value results in fading of distant reflections. Thus, negative staining with radiation doses less than the critical one could yield resolution down to 0.4 nm. Yet, the structure may change due to interaction with the stain. Nevertheless, the possibility that such resolution could be obtained for a limited number of objects should not be excluded. Some examples of the application of negative staining for investigation of quaternary and domain structure of proteins (nitrogenase, glutamine synthetase, mitochondrial ATP-synthase, membrane monooxygenase enzymes), tubular and two-dimensional protein crystals (catalase, phosphorylase, HWV protein, hydrogenase), as well as ribosomes and bacteriophages are given in the review.
Collapse
|
Review |
35 |
36 |
23
|
Yang DS, Saeedi A, Davtyan A, Fathi M, Sherman MB, Safari MS, Klindziuk A, Barton MC, Varadarajan N, Kolomeisky AB, Vekilov PG. Mesoscopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils. Proc Natl Acad Sci U S A 2021; 118:e2015618118. [PMID: 33653952 PMCID: PMC7958401 DOI: 10.1073/pnas.2015618118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protein p53 is a crucial tumor suppressor, often called "the guardian of the genome"; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular. We report that the p53 mutant R248Q (R, arginine; Q, glutamine) forms, both in cancer cells and in solutions, a condensate with unique properties, mesoscopic protein-rich clusters. The clusters dramatically diverge from other protein condensates. The cluster sizes are decoupled from the total cluster population volume and independent of the p53 concentration and the solution concentration at equilibrium with the clusters varies. We demonstrate that the clusters carry out a crucial biological function: they host and facilitate the nucleation of amyloid fibrils. We demonstrate that the p53 clusters are driven by structural destabilization of the core domain and not by interactions of its extensive unstructured region, in contradistinction to the dense liquids typical of disordered and partially disordered proteins. Two-step nucleation of mutant p53 amyloids suggests means to control fibrillization and the associated pathologies through modifying the cluster characteristics. Our findings exemplify interactions between distinct protein phases that activate complex physicochemical mechanisms operating in biological systems.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
34 |
24
|
Chiu W, McGough A, Sherman MB, Schmid MF. High-resolution electron cryomicroscopy of macromolecular assemblies. Trends Cell Biol 1999; 9:154-9. [PMID: 10203794 DOI: 10.1016/s0962-8924(99)01511-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electron cryomicroscopy is a high-resolution imaging technique that is particularly appropriate for the structural determination of large macromolecular assemblies, which are difficult to study by X-ray crystallography or NMR spectroscopy. For some biological molecules that form two-dimensional crystals, the application of electron cryomicroscopy and image reconstruction can help elucidate structures at atomic resolution. In instances where crystals cannot be formed, atomic-resolution information can be obtained by combining high-resolution structures of individual components determined by X-ray crystallography or NMR with image-derived reconstructions at moderate resolution. This can provide unique and crucial information on the mechanisms of these complexes. Finally, image reconstructions can be used to augment X-ray studies by providing initial models that facilitate phasing of crystals of large macromolecular machines such as ribosomes and viruses.
Collapse
|
|
26 |
34 |
25
|
Okorokov AL, Waugh A, Hodgkinson J, Murthy A, Hong HK, Leo E, Sherman MB, Stoeber K, Orlova EV, Williams GH. Hexameric ring structure of human MCM10 DNA replication factor. EMBO Rep 2007; 8:925-30. [PMID: 17823614 PMCID: PMC2002553 DOI: 10.1038/sj.embor.7401064] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 11/08/2022] Open
Abstract
The DNA replication factor minichromosome maintenance 10 (MCM10) is a conserved, abundant nuclear protein crucial for origin firing. During the transition from pre-replicative complexes to pre-initiation complexes, MCM10 recruitment to replication origins is required to provide a physical link between the MCM2-7 complex DNA helicase and DNA polymerases. Here, we report the molecular structure of human MCM10 as determined by electron microscopy and single-particle analysis. The MCM10 molecule is a ring-shaped hexamer with large central and smaller lateral channels and a system of inner chambers. This structure, together with biochemical data, suggests that this important protein uses its architecture to provide a docking module for assembly of the molecular machinery required for eukaryotic DNA replication.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
32 |