1
|
Shortridge D, Gales AC, Streit JM, Huband MD, Tsakris A, Jones RN. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infect Dis 2019; 6:S63-S68. [PMID: 30895216 PMCID: PMC6419917 DOI: 10.1093/ofid/ofy343] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background The SENTRY Antimicrobial Surveillance Program was established in 1997 and encompasses over 750 000 bacterial isolates from ≥400 medical centers worldwide. Among the pathogens tested, Pseudomonas aeruginosa remains a common cause of multidrug-resistant (MDR) bloodstream infections and pneumonia in hospitalized patients. In the present study, we reviewed geographic and temporal trends in resistant phenotypes of P. aeruginosa over 20 years of the SENTRY Program. Methods From 1997 to 2016, 52 022 clinically significant consecutive isolates were submitted from ≥200 medical centers representing the Asia-Pacific region, Europe, Latin America, and North America. Only 1 isolate per patient per infection episode was submitted. Isolates were identified by standard algorithms and/or matrix-assisted laser desorption ionization-time of flight mass spectrometry. Susceptibility testing was performed by Clinical and Laboratory Standards Institute (CLSI) methods and interpreted using CLSI and European Committee on Antimicrobial Susceptibility Testing 2018 criteria at JMI Laboratories. Results The most common infection from which P. aeruginosa was isolated was pneumonia in hospitalized patients (44.6%) followed by bloodstream infection (27.9%), with pneumonia having a slightly higher rate of MDR (27.7%) than bloodstream infections (23.7%). The region with the highest percentage of MDR phenotypes was Latin America (41.1%), followed by Europe (28.4%). The MDR rates were highest in 2005–2008 and have decreased in the most recent period. Colistin was the most active drug tested (99.4% susceptible), followed by amikacin (90.5% susceptible). Conclusions Over the 20 years of SENTRY Program surveillance, the rate of MDR P. aeruginosa infections has decreased, particularly in Latin America. Whether the trend of decreasing resistance in P. aeruginosa is maintained will be documented in future SENTRY Program and other surveillance reports.
Collapse
|
Journal Article |
6 |
85 |
2
|
Montgomery JI, Brown MF, Reilly U, Price LM, Abramite JA, Arcari J, Barham R, Che Y, Chen JM, Chung SW, Collantes EM, Desbonnet C, Doroski M, Doty J, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, McAllister L, McElroy E, Menard CA, Mitton-Fry M, Mullins L, Noe MC, O'Donnell J, Oliver R, Penzien J, Plummer M, Shanmugasundaram V, Thoma C, Tomaras AP, Uccello DP, Vaz A, Wishka DG. Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J Med Chem 2012; 55:1662-70. [PMID: 22257165 DOI: 10.1021/jm2014875] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.
Collapse
|
Journal Article |
13 |
81 |
3
|
Brown MF, Reilly U, Abramite JA, Arcari JT, Oliver R, Barham RA, Che Y, Chen JM, Collantes EM, Chung SW, Desbonnet C, Doty J, Doroski M, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, Marra A, McElroy E, Melnick M, Menard CA, Montgomery JI, Mullins L, Noe MC, O'Donnell J, Penzien J, Plummer MS, Price LM, Shanmugasundaram V, Thoma C, Uccello DP, Warmus JS, Wishka DG. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J Med Chem 2012; 55:914-23. [PMID: 22175825 DOI: 10.1021/jm2014748] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we present the synthesis and SAR as well as selectivity, pharmacokinetic, and infection model data for representative analogues of a novel series of potent antibacterial LpxC inhibitors represented by hydroxamic acid.
Collapse
|
Journal Article |
13 |
77 |
4
|
Mochalkin I, Miller JR, Narasimhan L, Thanabal V, Erdman P, Cox PB, Prasad JVNV, Lightle S, Huband MD, Stover CK. Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem Biol 2009; 4:473-83. [PMID: 19413326 DOI: 10.1021/cb9000102] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of our effort to inhibit bacterial fatty acid biosynthesis through the recently validated target biotin carboxylase, we employed a unique combination of two emergent lead discovery strategies. We used both de novo fragment-based drug discovery and virtual screening, which employs 3D shape and electrostatic property similarity searching. We screened a collection of unbiased low-molecular-weight molecules and identified a structurally diverse collection of weak-binding but ligand-efficient fragments as potential building blocks for biotin carboxylase ATP-competitive inhibitors. Through iterative cycles of structure-based drug design relying on successive fragment costructures, we improved the potency of the initial hits by up to 3000-fold while maintaining their ligand-efficiency and desirable physicochemical properties. In one example, hit-expansion efforts resulted in a series of amino-oxazoles with antibacterial activity. These results successfully demonstrate that virtual screening approaches can substantially augment fragment-based screening approaches to identify novel antibacterial agents.
Collapse
|
|
16 |
73 |
5
|
Pfaller MA, Huband MD, Mendes RE, Flamm RK, Castanheira M. In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme. Int J Antimicrob Agents 2018; 52:144-150. [DOI: 10.1016/j.ijantimicag.2018.02.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/16/2018] [Accepted: 02/24/2018] [Indexed: 01/23/2023]
|
|
7 |
67 |
6
|
Murphy ST, Case HL, Ellsworth E, Hagen S, Huband M, Joannides T, Limberakis C, Marotti KR, Ottolini AM, Rauckhorst M, Starr J, Stier M, Taylor C, Zhu T, Blaser A, Denny WA, Lu GL, Smaill JB, Rivault F. The synthesis and biological evaluation of novel series of nitrile-containing fluoroquinolones as antibacterial agents. Bioorg Med Chem Lett 2007; 17:2150-5. [PMID: 17303420 DOI: 10.1016/j.bmcl.2007.01.090] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 01/24/2007] [Accepted: 01/29/2007] [Indexed: 11/28/2022]
Abstract
Several novel series of nitrile-containing fluoroquinolones with weakly basic amines are reported which have reduced potential for hERG (human ether-a-go-go gene) channel inhibition as measured by the dofetilide assay. The new fluoroquinolones are potent against both Gram-positive and fastidious Gram-negative strains, including Methicillin resistant Staphylococcus aureus and fluoroquinolone-resistant Streptococcus pneumoniae. Several analogs also showed low potential for human genotoxicity as measured by the clonogenicity test. Compounds 22 and 37 (designated PF-00951966 and PF-02298732, respectively), which had good in vitro activity and in vitro safety profiles, also showed good pharmacokinetic properties in rats.
Collapse
|
|
18 |
62 |
7
|
Sanchez JP, Gogliotti RD, Domagala JM, Gracheck SJ, Huband MD, Sesnie JA, Cohen MA, Shapiro MA. The synthesis, structure-activity, and structure-side effect relationships of a series of 8-alkoxy- and 5-amino-8-alkoxyquinolone antibacterial agents. J Med Chem 1995; 38:4478-87. [PMID: 7473575 DOI: 10.1021/jm00022a013] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of 1-cyclopropyl-6-fluoro-8-alkoxy (8-methyoxy and 8-ethoxy)-quionoline-3-carboxylic acids and 1-cyclopropyl-5-amino-6-fluoro-8-alkoxyquinoline-3-carboxylic acids has been prepared and evaluated for antibacterial activity. In addition, they were also compared to quinolones with classic substitution at C8 (H, F, Cl) and the naphthyridine nucleus in a phototoxicity and mammalian cell cytotoxicity assay. The series of 8-methoxyquinolones had antibacterial activity against Gram-positive, Gram-negative, and anaerobic bacteria equivalent to the most active 8-substituted compounds (8-F and 8-Cl). There was also a concomitant reduction in several of the potential side effects (i.e., phototoxicity and clonogenicity) compared to the most active quinolones with classic substitution at C-8. The 8-ethoxy derivatives had an even better safety profile but were significantly less active (2-3 dilutions) in the antibacterial assay.
Collapse
|
|
30 |
60 |
8
|
Huband MD, Bradford PA, Otterson LG, Basarab GS, Kutschke AC, Giacobbe RA, Patey SA, Alm RA, Johnstone MR, Potter ME, Miller PF, Mueller JP. In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-Negative, and atypical bacteria. Antimicrob Agents Chemother 2015; 59:467-74. [PMID: 25385112 PMCID: PMC4291388 DOI: 10.1128/aac.04124-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/30/2014] [Indexed: 11/20/2022] Open
Abstract
AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development.
Collapse
|
research-article |
10 |
60 |
9
|
Sader HS, Castanheira M, Huband M, Jones RN, Flamm RK. WCK 5222 (Cefepime-Zidebactam) Antimicrobial Activity against Clinical Isolates of Gram-Negative Bacteria Collected Worldwide in 2015. Antimicrob Agents Chemother 2017; 61:e00072-17. [PMID: 28242660 PMCID: PMC5404591 DOI: 10.1128/aac.00072-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/19/2017] [Indexed: 01/25/2023] Open
Abstract
WCK 5222 consists of cefepime combined with zidebactam, a bicyclo-acyl hydrazide β-lactam enhancer antibiotic with a dual action involving binding to Gram-negative bacterial PBP2 and β-lactamase inhibition. We evaluated the in vitro activity of cefepime-zidebactam against 7,876 contemporary (2015) clinical isolates of Enterobacteriaceae (n = 5,946), Pseudomonas aeruginosa (n = 1,291), and Acinetobacter spp. (n = 639) from the United States (n = 2,919), Europe (n = 3,004), the Asia-Pacific (n = 1,370), and Latin America (n = 583). The isolates were tested by a reference broth microdilution method for susceptibility against cefepime-zidebactam (1:1 and 2:1 ratios) and comparator agents. Cefepime-zidebactam was the most active compound tested against Enterobacteriaceae (MIC50/90, ≤0.03/0.12 μg/ml [1:1] and 0.06/0.25 μg/ml [2:1]; 99.9% of isolates were inhibited at ≤4 [1:1] and ≤8 μg/ml [2:1]). Cefepime-zidebactam was active against individual Enterobacteriaceae species (MIC50/90, ≤0.03 to 0.06/≤0.03 to 0.5 μg/ml [1:1]) and retained potent activity against carbapenem-resistant isolates (MIC50/90, 1/4 μg/ml; 99.3% of isolates were inhibited at ≤8 μg/ml [1:1]). Cefepime-zidebactam activity was consistent among geographic regions, and only one isolate showed MIC values of >8 μg/ml (1:1). Cefepime-zidebactam was also very active against P. aeruginosa with MIC50/90 values of 1/4 μg/ml, and 99.5% of isolates were inhibited at ≤8 μg/ml (1:1). The MIC values for cefepime-zidebactam at the 1:1 ratio were generally 2-fold lower than those for cefepime-zidebactam at the 2:1 ratio (MIC50/90, 2/8 μg/ml) and zidebactam alone (MIC50/90, 4/8 μg/ml). Against Acinetobacter spp., cefepime-zidebactam at 1:1 and 2:1 ratios (MIC50/90, 16/32 μg/ml for both) was 4-fold more active than cefepime or ceftazidime. Zidebactam exhibited potent in vitro antimicrobial activity against some organisms. These results support the clinical development of WCK 5222 for the treatment of Gram-negative bacterial infections, including those caused by multidrug-resistant isolates.
Collapse
|
research-article |
8 |
58 |
10
|
Huband MD, Cohen MA, Zurack M, Hanna DL, Skerlos LA, Sulavik MC, Gibson GW, Gage JW, Ellsworth E, Stier MA, Gracheck SJ. In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant gram-positive and fastidious organism groups. Antimicrob Agents Chemother 2007; 51:1191-201. [PMID: 17261623 PMCID: PMC1855495 DOI: 10.1128/aac.01321-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PD 0305970 and PD 0326448 are new bacterial gyrase and topoisomerase inhibitors (quinazoline-2,4-diones) that possess outstanding in vitro and in vivo activities against a wide spectrum of bacterial species including quinolone- and multidrug-resistant gram-positive and fastidious organism groups. The respective MICs (microg/ml) for PD 0305970 capable of inhibiting>or=90% of bacterial strains tested ranged from 0.125 to 0.5 versus staphylococci, 0.03 to 0.06 versus streptococci, 0.25 to 2 versus enterococci, and 0.25 to 0.5 versus Moraxella catarrhalis, Haemophilus influenzae, Listeria monocytogenes, Legionella pneumophila, and Neisseria spp. PD 0326448 MIC90s were generally twofold higher versus these same organism groups. Comparative quinolone MIC90 values were 4- to 512-fold higher than those of PD 0305970. In testing for frequency of resistance, PD 0305970 and levofloxacin showed low levels of development of spontaneous resistant mutants versus both Staphylococcus aureus and Streptococcus pneumoniae. Unlike quinolones, which target primarily gyrA and parC, analysis of resistant mutants in S. pneumoniae indicates that the likely targets of PD 0305970 are gyrB and parE. PD 0305970 demonstrated rapid bactericidal activity by in vitro time-kill testing versus streptococci. This bactericidal activity carried over to in vivo testing, where PD 0305970 and PD 0326448 displayed outstanding Streptococcus pyogenes 50% protective doses (PD50s) (oral dosing) of 0.7 and 3.6 mg/kg, respectively (ciprofloxacin and levofloxacin PD50s were>100 and 17.7 mg/kg, respectively). PD 0305970 was also potent in a pneumococcal pneumonia mouse infection model (PD50=3.2 mg/kg) and was 22-fold more potent than levofloxacin.
Collapse
|
Journal Article |
18 |
57 |
11
|
Starr JT, Sciotti RJ, Hanna DL, Huband MD, Mullins LM, Cai H, Gage JW, Lockard M, Rauckhorst MR, Owen RM, Lall MS, Tomilo M, Chen H, McCurdy SP, Barbachyn MR. 5-(2-Pyrimidinyl)-imidazo[1,2-a]pyridines are antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Bioorg Med Chem Lett 2009; 19:5302-6. [PMID: 19683922 DOI: 10.1016/j.bmcl.2009.07.141] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022]
Abstract
Dual inhibitors of bacterial gyrB and parE based on a 5-(2-pyrimidinyl)-imidazo[1,2-a]pyridine template exhibited MICs (microg/mL) of 0.06-64 (Sau), 0.25-64 (MRSA), 0.06-64 (Spy), 0.06-64 (Spn), and 0.03-64 (FQR Spn). Selected examples were efficacious in mouse sepsis and lung infection models at <50mg/kg (PO dosing).
Collapse
|
Journal Article |
16 |
56 |
12
|
Brown MF, Mitton-Fry MJ, Arcari JT, Barham R, Casavant J, Gerstenberger BS, Han S, Hardink JR, Harris TM, Hoang T, Huband MD, Lall MS, Lemmon MM, Li C, Lin J, McCurdy SP, McElroy E, McPherson C, Marr ES, Mueller JP, Mullins L, Nikitenko AA, Noe MC, Penzien J, Plummer MS, Schuff BP, Shanmugasundaram V, Starr JT, Sun J, Tomaras A, Young JA, Zaniewski RP. Pyridone-conjugated monobactam antibiotics with gram-negative activity. J Med Chem 2013; 56:5541-52. [PMID: 23755848 DOI: 10.1021/jm400560z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein we describe the structure-aided design and synthesis of a series of pyridone-conjugated monobactam analogues with in vitro antibacterial activity against clinically relevant Gram-negative species including Pseudomonas aeruginosa , Klebsiella pneumoniae , and Escherichia coli . Rat pharmacokinetic studies with compound 17 demonstrate low clearance and low plasma protein binding. In addition, evidence is provided for a number of analogues suggesting that the siderophore receptors PiuA and PirA play a role in drug uptake in P. aeruginosa strain PAO1.
Collapse
|
Journal Article |
12 |
56 |
13
|
Flanagan ME, Brickner SJ, Lall M, Casavant J, Deschenes L, Finegan SM, George DM, Granskog K, Hardink JR, Huband MD, Hoang T, Lamb L, Marra A, Mitton-Fry M, Mueller JP, Mullins LM, Noe MC, O'Donnell JP, Pattavina D, Penzien JB, Schuff BP, Sun J, Whipple DA, Young J, Gootz TD. Preparation, gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols. ACS Med Chem Lett 2011; 2:385-90. [PMID: 24900319 DOI: 10.1021/ml200012f] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/19/2011] [Indexed: 11/28/2022] Open
Abstract
A novel series of monocarbam compounds exhibiting promising antibacterial activity against multidrug resistant Gram-negative microorganisms is reported, along with the synthesis of one such molecule MC-1 (1). Also reported are structure-activity relationships associated with the in vitro and in vivo efficacy of 1 and related analogues in addition to the hydrolytic stability of such compounds and possible implications thereof.
Collapse
|
Journal Article |
14 |
52 |
14
|
Munoz-Price LS, De La Cuesta C, Adams S, Wyckoff M, Cleary T, McCurdy SP, Huband MD, Lemmon MM, Lescoe M, Dibhajj FB, Hayden MK, Lolans K, Quinn JP. Successful eradication of a monoclonal strain of Klebsiella pneumoniae during a K. pneumoniae carbapenemase-producing K. pneumoniae outbreak in a surgical intensive care unit in Miami, Florida. Infect Control Hosp Epidemiol 2011; 31:1074-7. [PMID: 20738186 DOI: 10.1086/656243] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe the investigation and control of a Klebsiella pneumoniae carbapenemase-producing K. pneumoniae outbreak in a 20-bed surgical intensive care unit during the period from January 1, 2009 through January 1, 2010. Nine patients were either colonized or infected with a monoclonal strain of K. pneumoniae. The implementation of a bundle of interventions on July 2009 successfully controlled the further horizontal spread of this organism.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
51 |
15
|
Starr J, Brown MF, Aschenbrenner L, Caspers N, Che Y, Gerstenberger BS, Huband M, Knafels JD, Lemmon MM, Li C, McCurdy SP, McElroy E, Rauckhorst MR, Tomaras AP, Young JA, Zaniewski RP, Shanmugasundaram V, Han S. Siderophore Receptor-Mediated Uptake of Lactivicin Analogues in Gram-Negative Bacteria. J Med Chem 2014; 57:3845-55. [DOI: 10.1021/jm500219c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
|
11 |
48 |
16
|
Ellsworth EL, Tran TP, Showalter HDH, Sanchez JP, Watson BM, Stier MA, Domagala JM, Gracheck SJ, Joannides ET, Shapiro MA, Dunham SA, Hanna DL, Huband MD, Gage JW, Bronstein JC, Liu JY, Nguyen DQ, Singh R. 3-Aminoquinazolinediones as a New Class of Antibacterial Agents Demonstrating Excellent Antibacterial Activity Against Wild-Type and Multidrug Resistant Organisms. J Med Chem 2006; 49:6435-8. [PMID: 17064062 DOI: 10.1021/jm060505l] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 3-aminoquinzolinediones represent a new series of antibacterial agents structurally related to the fluoroquinolones. They are inhibitors of bacterial gyrase and topoisomerase IV and demonstrate clinically useful antibacterial activity against fastidious Gram-negative and Gram-positive organisms, including multidrug- and fluoroquinolone-resistant organisms. These agents also demonstrate in vivo efficacy in murine systemic infection models.
Collapse
|
|
19 |
45 |
17
|
Mitton-Fry MJ, Brickner SJ, Hamel JC, Brennan L, Casavant JM, Chen M, Chen T, Ding X, Driscoll J, Hardink J, Hoang T, Hua E, Huband MD, Maloney M, Marfat A, McCurdy SP, McLeod D, Plotkin M, Reilly U, Robinson S, Schafer J, Shepard RM, Smith JF, Stone GG, Subramanyam C, Yoon K, Yuan W, Zaniewski RP, Zook C. Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorg Med Chem Lett 2013; 23:2955-61. [DOI: 10.1016/j.bmcl.2013.03.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 01/12/2023]
|
|
12 |
45 |
18
|
Magee TV, Ripp SL, Li B, Buzon RA, Chupak L, Dougherty TJ, Finegan SM, Girard D, Hagen AE, Falcone MJ, Farley KA, Granskog K, Hardink JR, Huband MD, Kamicker BJ, Kaneko T, Knickerbocker MJ, Liras JL, Marra A, Medina I, Nguyen TT, Noe MC, Obach RS, O’Donnell JP, Penzien JB, Reilly UD, Schafer JR, Shen Y, Stone GG, Strelevitz TJ, Sun J, Tait-Kamradt A, Vaz ADN, Whipple DA, Widlicka DW, Wishka DG, Wolkowski JP, Flanagan ME. Discovery of Azetidinyl Ketolides for the Treatment of Susceptible and Multidrug Resistant Community-Acquired Respiratory Tract Infections. J Med Chem 2009; 52:7446-57. [DOI: 10.1021/jm900729s] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
16 |
45 |
19
|
Cohen MA, Huband MD, Gage JW, Yoder SL, Roland GE, Gracheck SJ. In-vitro activity of clinafloxacin, trovafloxacin, and ciprofloxacin. J Antimicrob Chemother 1997; 40:205-11. [PMID: 9301985 DOI: 10.1093/jac/40.2.205] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Clinafloxacin and trovafloxacin are two new fluoroquinolones for which few comparative data are available. When MICs of ciprofloxacin against Gram-positive and Gram-negative nosocomial species were compared, clinafloxacin was the most potent although trovafloxacin was also more active than ciprofloxacin against Staphylococcus aureus and enterococci. All three drugs were bactericidal. Clinafloxacin displayed the lowest frequency of resistance, approximating 10(-11). Development of resistance studies over 13-14 passages in the presence of drug revealed a 32-fold increase in MIC of clinafloxacin against S. aureus compared with 512- and 1024-fold for trovafloxacin and ciprofloxacin respectively, although the three drugs were comparable against Enterococcus faecalis and the Gram-negative bacilli.
Collapse
|
|
28 |
42 |
20
|
Pfaller MA, Huband MD, Shortridge D, Flamm RK. Surveillance of Omadacycline Activity Tested against Clinical Isolates from the United States and Europe: Report from the SENTRY Antimicrobial Surveillance Program, 2016 to 2018. Antimicrob Agents Chemother 2020; 64:e02488-19. [PMID: 32071045 PMCID: PMC7179604 DOI: 10.1128/aac.02488-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/07/2020] [Indexed: 01/11/2023] Open
Abstract
Omadacycline is a broad-spectrum aminomethylcycline approved in October 2018 by the U.S. Food and Drug Administration for treating acute bacterial skin and skin structure infections and community-acquired pneumonia as both an oral and intravenous once-daily formulation. In this report, the activities of omadacycline and comparators were tested against 49,000 nonduplicate bacterial isolates collected prospectively during 2016 to 2018 from medical centers in Europe (24,500 isolates, 40 medical centers [19 countries]) and the United States (24,500 isolates, 33 medical centers [23 states and all 9 U.S. census divisions]). Omadacycline was tested by broth microdilution following the methods in Clinical and Laboratory Standards Institute document M07 (Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 11th ed., 2018). Omadacycline (MIC50/90, 0.12/0.25 mg/liter) inhibited 98.6% of Staphylococcus aureus isolates at ≤0.5 mg/liter, including 96.3% of methicillin-resistant S. aureus isolates and 99.8% of methicillin-susceptible S. aureus isolates. Omadacycline potency was comparable for Streptococcus pneumoniae (MIC50/90, 0.06/0.12 mg/liter), viridans group streptococci (MIC50/90, 0.06/0.12 mg/liter), and beta-hemolytic streptococci (MIC50/90, 0.12/0.25 mg/liter), regardless of species and susceptibility to penicillin, macrolides, or tetracycline. Omadacycline was active against all Enterobacterales tested (MIC50/90, 1/8 mg/liter; 87.5% of isolates were inhibited at ≤4 mg/liter) except Proteus mirabilis (MIC50/90, 16/>32 mg/liter) and indole-positive Proteus spp. (MIC50/90, 8/32 mg/liter) and was most active against Escherichia coli (MIC50/90, 0.5/2 mg/liter), Klebsiella oxytoca (MIC50/90, 1/2 mg/liter), and Citrobacter spp. (MIC50/90, 1/4 mg/liter). Omadacycline inhibited 92.4% of Enterobacter cloacae species complex and 88.5% of Klebsiella pneumoniae isolates at ≤4 mg/liter. Omadacycline was active against Haemophilus influenzae (MIC50/90, 0.5/1 mg/liter), regardless of β-lactamase status, and against Moraxella catarrhalis (MIC50/90, ≤0.12/0.25 mg/liter). The potent activity of omadacycline against Gram-positive and -negative bacteria indicates that omadacycline merits further study in serious infections in which multidrug resistance and mixed Gram-positive and Gram-negative bacterial infections may be a concern.
Collapse
|
Multicenter Study |
5 |
42 |
21
|
Magee TV, Brown MF, Starr JT, Ackley DC, Abramite JA, Aubrecht J, Butler A, Crandon JL, Dib-Hajj F, Flanagan ME, Granskog K, Hardink JR, Huband MD, Irvine R, Kuhn M, Leach KL, Li B, Lin J, Luke DR, MacVane SH, Miller AA, McCurdy S, McKim JM, Nicolau DP, Nguyen TT, Noe MC, O’Donnell JP, Seibel SB, Shen Y, Stepan AF, Tomaras AP, Wilga PC, Zhang L, Xu J, Chen JM. Discovery of Dap-3 Polymyxin Analogues for the Treatment of Multidrug-Resistant Gram-Negative Nosocomial Infections. J Med Chem 2013; 56:5079-93. [DOI: 10.1021/jm400416u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
|
12 |
39 |
22
|
Pfaller MA, Huband MD, Flamm RK, Bien PA, Castanheira M. Antimicrobial activity of manogepix, a first-in-class antifungal, and comparator agents tested against contemporary invasive fungal isolates from an international surveillance programme (2018-2019). J Glob Antimicrob Resist 2021; 26:117-127. [PMID: 34051400 DOI: 10.1016/j.jgar.2021.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Manogepix, the active moiety of the prodrug fosmanogepix, is a novel antifungal with activity against major fungal pathogens including Candida (except Candida krusei), Aspergillus and difficult-to-treat/rare moulds. We tested manogepix and comparators against 2669 contemporary (2018-2019) fungal isolates collected from 82 medical centres in North America (42.3%), Europe (37.9%), Asia-Pacific (12.3%) and Latin America (7.6%). Of these, 70.7% were Candida spp., 3.6% were non-Candida yeasts including 49 Cryptococcus neoformans var. grubii, 21.7% were Aspergillus spp. and 4.1% were other moulds. METHODS Isolates were tested for antifungal susceptibility by the CLSI reference broth microdilution method. RESULTS Manogepix (MIC50/90, 0.008/0.06 mg/L) was the most active agent tested against Candida spp. isolates; corresponding anidulafungin, micafungin and fluconazole MIC90 values were 16- to 64-fold higher. Similarly, manogepix (MIC50/90, 0.5/2 mg/L) was ≥4-fold more active than anidulafungin, micafungin and fluconazole against C. neoformans var. grubii. Against Aspergillus spp., manogepix (MEC50/90, 0.015/0.03 mg/L) had comparable activity to anidulafungin and micafungin. Low manogepix concentrations inhibited uncommon species of Candida, non-Candida yeasts, and rare moulds including Scedosporium spp. and Lomentospora (Scedosporium) prolificans. CONCLUSION Manogepix exhibited potent activity against contemporary fungal isolates, including echinocandin- and azole-resistant strains of Candida and Aspergillus spp., respectively. Although rare, Candida strains that were non-wild type for manogepix demonstrated resistance to fluconazole. However, the clinical relevance of this finding is unknown. The extended spectrum of manogepix is noteworthy for its activity against many less-common yet antifungal-resistant strains. Clinical studies are underway to evaluate the utility of fosmanogepix against difficult-to-treat resistant fungal infections.
Collapse
|
Journal Article |
4 |
38 |
23
|
Flamm RK, Rhomberg PR, Huband MD, Farrell DJ. In Vitro Activity of Delafloxacin Tested against Isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother 2016; 60:6381-5. [PMID: 27458220 PMCID: PMC5038254 DOI: 10.1128/aac.00941-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Delafloxacin, an investigational anionic fluoroquinolone, is active against a broad range of Gram-positive and Gram-negative bacteria. In this study, 200 Streptococcus pneumoniae (plus 30 levofloxacin-resistant isolates), 200 Haemophilus influenzae, and 100 Moraxella catarrhalis isolates selected primarily from the United States (2014) were tested against delafloxacin and comparator agents. Delafloxacin was the most potent agent tested. MIC50 and MIC90 values against all S. pneumoniae isolates were 0.008 and 0.015 μg/ml. Delafloxacin susceptibility was not affected by β-lactamase status against H. influenzae and M. catarrhalis.
Collapse
|
brief-report |
9 |
36 |
24
|
Huband MD, Ito A, Tsuji M, Sader HS, Fedler KA, Flamm RK. Cefiderocol MIC quality control ranges in iron-depleted cation-adjusted Mueller-Hinton broth using a CLSI M23-A4 multi-laboratory study design. Diagn Microbiol Infect Dis 2017; 88:198-200. [PMID: 28410852 DOI: 10.1016/j.diagmicrobio.2017.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022]
Abstract
Cefiderocol (formerly S-649266) is a new catechol-substituted parenteral siderophore cephalosporin with potent in vitro antibacterial activity against Gram-negative isolates including multidrug-resistant strains. A recent study following CLSI M23-A4 quality control guidelines established cefiderocol MIC QC ranges against Escherichia coli ATCC 25922 (0.06-0.5 μg/mL) and Pseudomonas aeruginosa ATCC 27853 (0.06-0.5 μg/mL).
Collapse
|
|
8 |
32 |
25
|
Mitton-Fry MJ, Brickner SJ, Hamel JC, Barham R, Brennan L, Casavant JM, Ding X, Finegan S, Hardink J, Hoang T, Huband MD, Maloney M, Marfat A, McCurdy SP, McLeod D, Subramanyam C, Plotkin M, Reilly U, Schafer J, Stone GG, Uccello DP, Wisialowski T, Yoon K, Zaniewski R, Zook C. Novel 3-fluoro-6-methoxyquinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorg Med Chem Lett 2017; 27:3353-3358. [PMID: 28610977 DOI: 10.1016/j.bmcl.2017.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Novel (non-fluoroquinolone) inhibitors of bacterial type II topoisomerases (NBTIs) are an emerging class of antibacterial agents. We report an optimized series of cyclobutylaryl-substituted NBTIs. Compound 14 demonstrated excellent activity both in vitro (S. aureus MIC90=0.125μg/mL) and in vivo (systemic and tissue infections). Enhanced inhibition of Topoisomerase IV correlated with improved activity in S. aureus strains with mutations conferring resistance to NBTIs. Compound 14 also displayed an improved hERG IC50 of 85.9μM and a favorable profile in the anesthetized guinea pig model.
Collapse
|
Journal Article |
8 |
30 |