1
|
Vansco MF, Marchetti B, Trongsiriwat N, Bhagde T, Wang G, Walsh PJ, Klippenstein SJ, Lester MI. Synthesis, Electronic Spectroscopy, and Photochemistry of Methacrolein Oxide: A Four-Carbon Unsaturated Criegee Intermediate from Isoprene Ozonolysis. J Am Chem Soc 2019; 141:15058-15069. [PMID: 31446755 DOI: 10.1021/jacs.9b05193] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ozonolysis of isoprene, one of the most abundant volatile organic compounds in the earth's atmosphere, generates the four-carbon unsaturated methacrolein oxide (MACR-oxide) Criegee intermediate. The first laboratory synthesis and direct detection of MACR-oxide is achieved through reaction of photolytically generated, resonance-stabilized iodoalkene radicals with oxygen. MACR-oxide is characterized on its first π* ← π electronic transition using a ground-state depletion method. MACR-oxide exhibits a broad UV-visible spectrum peaked at 380 nm with weak oscillatory structure at long wavelengths ascribed to vibrational resonances. Complementary theory predicts two strong π* ← π transitions arising from extended conjugation across MACR-oxide with overlapping contributions from its four conformers. Electronic promotion to the 11ππ* state agrees well with experiment, and results in nonadiabatic coupling and prompt release of O 1D products observed as anisotropic velocity-map images. This UV-visible detection scheme will enable study of its unimolecular and bimolecular reactions under thermal conditions of relevance to the atmosphere.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
49 |
2
|
Vansco MF, Marchetti B, Lester MI. Electronic spectroscopy of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. J Chem Phys 2019; 149:244309. [PMID: 30599734 DOI: 10.1063/1.5064716] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ozonolysis of isoprene, one of the most abundant volatile organic compounds in the atmosphere, proceeds through methyl vinyl ketone oxide (MVK-oxide), methacrolein oxide, and formaldehyde oxide (CH2OO) Criegee intermediates. The present study focuses on MVK-oxide, a four-carbon unsaturated carbonyl oxide intermediate, using vacuum ultraviolet photoionization at 118 nm and UV-visible induced depletion of the m/z = 86 mass channel to characterize its first π* ← π electronic transition. The electronic spectrum is broad and unstructured with its peak at 388 nm (3.2 eV). The MVK-oxide spectrum is shifted to a significantly longer wavelength than CH2OO and alkyl-substituted Criegee intermediates studied previously due to extended conjugation across the vinyl and carbonyl oxide groups. Electronic excitation results in rapid dissociation at λ ≤ 430 nm to methyl vinyl ketone and O 1D products, the latter detected by 2 + 1 resonance enhanced multiphoton ionization using velocity map imaging. Complementary electronic structure calculations (CASPT2(12,10)/AVDZ) predict two π* ← π transitions with significant oscillator strength for each of the four conformers of MVK-oxide with vertical excitation energies (and corresponding wavelengths) in the 3.1-3.6 eV (350-400 nm) and 4.5-5.5 eV (220-280 nm) regions. The computed electronic absorption profile of MVK-oxide, based on a Wigner distribution of ground state configurations and summed over the four conformers, is predicted to peak at 397 nm. UV-visible spectroscopy on the first π* ← π transition is shown by a combination of experiment and theory to provide a sensitive method for detection of the MVK-oxide Criegee intermediate that will enable further studies of its photochemistry and unimolecular and bimolecular reaction dynamics.
Collapse
|
Journal Article |
6 |
39 |
3
|
Hansen AS, Bhagde T, Moore KB, Moberg DR, Jasper AW, Georgievskii Y, Vansco MF, Klippenstein SJ, Lester MI. Watching a hydroperoxyalkyl radical (•QOOH) dissociate. Science 2021; 373:679-682. [PMID: 34353951 DOI: 10.1126/science.abj0412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/22/2021] [Indexed: 11/02/2022]
Abstract
A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate-again increased by heavy-atom tunneling-which are required for global models of atmospheric and combustion chemistry.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
4 |
31 |
4
|
Vansco MF, Caravan RL, Zuraski K, Winiberg FAF, Au K, Trongsiriwat N, Walsh PJ, Osborn DL, Percival CJ, Khan MAH, Shallcross DE, Taatjes CA, Lester MI. Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates. J Phys Chem A 2020; 124:3542-3554. [PMID: 32255634 DOI: 10.1021/acs.jpca.0c02138] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth's atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form five-membered cyclic peroxides, known as dioxoles. This study reports the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methylvinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that were identified in this work. The carbonyl products were detected under thermal conditions (298 K, 10 Torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%), and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction with O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical coproducts.
Collapse
|
Journal Article |
5 |
25 |
5
|
Caravan RL, Vansco MF, Lester MI. Open questions on the reactivity of Criegee intermediates. Commun Chem 2021; 4:44. [PMID: 36697517 PMCID: PMC9814495 DOI: 10.1038/s42004-021-00483-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
|
brief-report |
4 |
24 |
6
|
Vansco MF, Li H, Lester MI. Prompt release of O 1D products upon UV excitation of CH2OO Criegee intermediates. J Chem Phys 2017; 147:013907. [DOI: 10.1063/1.4977987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
8 |
18 |
7
|
Vansco MF, Caravan RL, Pandit S, Zuraski K, Winiberg FAF, Au K, Bhagde T, Trongsiriwat N, Walsh PJ, Osborn DL, Percival CJ, Klippenstein SJ, Taatjes CA, Lester MI. Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory. Phys Chem Chem Phys 2020; 22:26796-26805. [PMID: 33211784 DOI: 10.1039/d0cp05018k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2C[double bond, length as m-dash]O+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.
Collapse
|
Journal Article |
5 |
15 |
8
|
Wang G, Liu T, Caracciolo A, Vansco MF, Trongsiriwat N, Walsh PJ, Marchetti B, Karsili TNV, Lester MI. Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. J Chem Phys 2021; 155:174305. [PMID: 34742186 DOI: 10.1063/5.0068664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The electronic spectrum of methyl vinyl ketone oxide (MVK-oxide), a four-carbon Criegee intermediate derived from isoprene ozonolysis, is examined on its second π* ← π transition, involving primarily the vinyl group, at UV wavelengths (λ) below 300 nm. A broad and unstructured spectrum is obtained by a UV-induced ground state depletion method with photoionization detection on the parent mass (m/z 86). Electronic excitation of MVK-oxide results in dissociation to O (1D) products that are characterized using velocity map imaging. Electronic excitation of MVK-oxide on the first π* ← π transition associated primarily with the carbonyl oxide group at λ > 300 nm results in a prompt dissociation and yields broad total kinetic energy release (TKER) and anisotropic angular distributions for the O (1D) + methyl vinyl ketone products. By contrast, electronic excitation at λ ≤ 300 nm results in bimodal TKER and angular distributions, indicating two distinct dissociation pathways to O (1D) products. One pathway is analogous to that at λ > 300 nm, while the second pathway results in very low TKER and isotropic angular distributions indicative of internal conversion to the ground electronic state and statistical unimolecular dissociation.
Collapse
|
|
4 |
14 |
9
|
Esposito VJ, Liu T, Wang G, Caracciolo A, Vansco MF, Marchetti B, Karsili TNV, Lester MI. Photodissociation Dynamics of CH 2OO on Multiple Potential Energy Surfaces: Experiment and Theory. J Phys Chem A 2021; 125:6571-6579. [PMID: 34314179 DOI: 10.1021/acs.jpca.1c03643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UV excitation of the CH2OO Criegee intermediate across most of the broad span of the (B 1A')-(X 1A') spectrum results in prompt dissociation to two energetically accessible asymptotes: O (1D) + H2CO (X 1A1) and O (3P) + H2CO (a 3A''). Dissociation proceeds on multiple singlet potential energy surfaces that are coupled by two regions of conical intersection (CoIn). Velocity map imaging (VMI) studies reveal a bimodal total kinetic energy release (TKER) distribution for the O (1D) + H2CO (X 1A1) products with the major and minor components accounting for ca. 40% and ca. 20% on average of the available energy (Eavl), respectively. The unexpected low TKER component corresponds to highly internally excited H2CO (X 1A1) products accommodating ca. 80% of Eavl. Full dimensional trajectory calculations suggest that the bimodal TKER distribution of the O (1D) + H2CO (X 1A1) products originates from two different dynamical pathways: a primary pathway (69%) evolving through one CoIn region to products and a smaller component (20%) sampling both CoIn regions enroute to products. Those that access both CoIn regions likely give rise to the more highly internally excited H2CO (X 1A1) products. The remaining trajectories (11%) dissociate to O (3P) + H2CO (a 3A'') products after traversing through both CoIn regions. The complementary experimental and theoretical investigation provides insight on the photodissociation of CH2OO via multiple dissociation pathways through two regions of CoIn that control the branching and energy distributions of products.
Collapse
|
Journal Article |
4 |
13 |
10
|
Vansco MF, Zuraski K, Winiberg FAF, Au K, Trongsiriwat N, Walsh PJ, Osborn DL, Percival CJ, Klippenstein SJ, Taatjes CA, Lester MI, Caravan RL. Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. Molecules 2021; 26:3058. [PMID: 34065491 PMCID: PMC8161369 DOI: 10.3390/molecules26103058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Methacrolein oxide (MACR-oxide) is a four-carbon, resonance-stabilized Criegee intermediate produced from isoprene ozonolysis, yet its reactivity is not well understood. This study identifies the functionalized hydroperoxide species, 1-hydroperoxy-2-methylallyl formate (HPMAF), generated from the reaction of MACR-oxide with formic acid using multiplexed photoionization mass spectrometry (MPIMS, 298 K = 25 °C, 10 torr = 13.3 hPa). Electronic structure calculations indicate the reaction proceeds via an energetically favorable 1,4-addition mechanism. The formation of HPMAF is observed by the rapid appearance of a fragment ion at m/z 99, consistent with the proposed mechanism and characteristic loss of HO2 upon photoionization of functional hydroperoxides. The identification of HPMAF is confirmed by comparison of the appearance energy of the fragment ion with theoretical predictions of its photoionization threshold. The results are compared to analogous studies on the reaction of formic acid with methyl vinyl ketone oxide (MVK-oxide), the other four-carbon Criegee intermediate in isoprene ozonolysis.
Collapse
|
research-article |
4 |
8 |
11
|
Hansen AS, Huchmala RM, Vogt E, Boyer MA, Bhagde T, Vansco MF, Jensen CV, Kjærsgaard A, Kjaergaard HG, McCoy AB, Lester MI. Coupling of torsion and OH-stretching in tert-butyl hydroperoxide. I. The cold and warm first OH-stretching overtone spectrum. J Chem Phys 2021; 154:164306. [DOI: 10.1063/5.0048020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
4 |
7 |
12
|
Liu T, Elliott SN, Zou M, Vansco MF, Sojdak CA, Markus CR, Almeida R, Au K, Sheps L, Osborn DL, Winiberg FAF, Percival CJ, Taatjes CA, Caravan RL, Klippenstein SJ, Lester MI. OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions. J Am Chem Soc 2023; 145:19405-19420. [PMID: 37623926 DOI: 10.1021/jacs.3c07126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Alkene ozonolysis generates short-lived Criegee intermediates that are a significant source of hydroxyl (OH) radicals. This study demonstrates that roaming of the separating OH radicals can yield alternate hydroxycarbonyl products, thereby reducing the OH yield. Specifically, hydroxybutanone has been detected as a stable product arising from roaming in the unimolecular decay of the methyl-ethyl-substituted Criegee intermediate (MECI) under thermal flow cell conditions. The dynamical features of this novel multistage dissociation plus a roaming unimolecular decay process have also been examined with ab initio kinetics calculations. Experimentally, hydroxybutanone isomers are distinguished from the isomeric MECI by their higher ionization threshold and distinctive photoionization spectra. Moreover, the exponential rise of the hydroxybutanone kinetic time profile matches that for the unimolecular decay of MECI. A weaker methyl vinyl ketone (MVK) photoionization signal is also attributed to OH roaming. Complementary multireference electronic structure calculations have been utilized to map the unimolecular decay pathways for MECI, starting with 1,4 H atom transfer from a methyl or methylene group to the terminal oxygen, followed by roaming of the separating OH and butanonyl radicals in the long-range region of the potential. Roaming via reorientation and the addition of OH to the vinyl group of butanonyl is shown to yield hydroxybutanone, and subsequent C-O elongation and H-transfer can lead to MVK. A comprehensive theoretical kinetic analysis has been conducted to evaluate rate constants and branching yields (ca. 10-11%) for thermal unimolecular decay of MECI to conventional and roaming products under laboratory and atmospheric conditions, consistent with the estimated experimental yield (ca. 7%).
Collapse
|
|
2 |
5 |
13
|
McCoy JC, Léger SJ, Frey CF, Vansco MF, Marchetti B, Karsili TNV. Modeling the Conformer-Dependent Electronic Absorption Spectra and Photolysis Rates of Methyl Vinyl Ketone Oxide and Methacrolein Oxide. J Phys Chem A 2022; 126:485-496. [PMID: 35049299 DOI: 10.1021/acs.jpca.1c08381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Criegee intermediates are important atmospheric oxidants, formed via the reaction of ozone with volatile alkenes emitted into the troposphere. Small Criegee intermediates (e.g., CH2OO and CH3CHOO) are highly reactive, and their removal via unimolecular decay or bimolecular chemistry dominates their atmospheric lifetimes. As the molecular complexity of Criegee intermediates increases, their electronic absorption spectra show a bathochromic shift within the solar spectrum relevant to the troposphere. In these cases, solar photolysis may become a competitive contributor to their atmospheric removal. In this article, we report the conformer-dependent simulated electronic absorption spectra of two four-carbon-centered Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). Both MVK-oxide and MACR-oxide contain four low-energy conformers, which are convoluted in the experimentally measured spectra. Here, we deconvolute each conformer and estimate contributions from each of the four conformers to the experimentally measured spectra. We also estimate the photolysis rates and predict that solar photolysis should be a more competitive removal process for MVK-oxide and MACR-oxide (cf. CH2OO and CH3CHOO).
Collapse
|
|
3 |
4 |
14
|
Vansco MF, Zou M, Antonov IO, Ramasesha K, Rotavera B, Osborn DL, Georgievskii Y, Percival CJ, Klippenstein SJ, Taatjes CA, Lester MI, Caravan RL. Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine Via a 1,2-Insertion Mechanism. J Phys Chem A 2021; 126:710-719. [PMID: 34939803 DOI: 10.1021/acs.jpca.1c08941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron-multiplexed photoionization mass spectrometry experiments (298 K and 4 Torr) and high-level theory [CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction], we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethylamine (DMA). The experimental data support the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-vacuum ultraviolet photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. The rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ∼34,000, which is attributed to submerged barrier (syn) versus barrierless (anti) mechanisms for energetically downhill reactions.
Collapse
|
|
4 |
|
15
|
Zou M, Liu T, Vansco MF, Sojdak CA, Markus CR, Almeida R, Au K, Sheps L, Osborn DL, Winiberg FAF, Percival CJ, Taatjes CA, Klippenstein SJ, Lester MI, Caravan RL. Bimolecular Reaction of Methyl-Ethyl-Substituted Criegee Intermediate with SO 2. J Phys Chem A 2023; 127:8994-9002. [PMID: 37870411 DOI: 10.1021/acs.jpca.3c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Methyl-ethyl-substituted Criegee intermediate (MECI) is a four-carbon carbonyl oxide that is formed in the ozonolysis of some asymmetric alkenes. MECI is structurally similar to the isoprene-derived methyl vinyl ketone oxide (MVK-oxide) but lacks resonance stabilization, making it a promising candidate to help us unravel the effects of size, structure, and resonance stabilization that influence the reactivity of atmospherically important, highly functionalized Criegee intermediates. We present experimental and theoretical results from the first bimolecular study of MECI in its reaction with SO2, a reaction that shows significant sensitivity to the Criegee intermediate structure. Using multiplexed photoionization mass spectrometry, we obtain a rate coefficient of (1.3 ± 0.3) × 10-10 cm3 s-1 (95% confidence limits, 298 K, 10 Torr) and demonstrate the formation of SO3 under our experimental conditions. Through high-level theory, we explore the effect of Criegee intermediate structure on the minimum energy pathways for their reactions with SO2 and obtain modified Arrhenius fits to our predictions for the reaction of both syn and anti conformers of MECI with SO2 (ksyn = 4.42 × 1011 T-7.80exp(-1401/T) cm3 s-1 and kanti = 1.26 × 1011 T-7.55exp(-1397/T) cm3 s-1). Our experimental and theoretical rate coefficients (which are in reasonable agreement at 298 K) show that the reaction of MECI with SO2 is significantly faster than MVK-oxide + SO2, demonstrating the substantial effect of resonance stabilization on Criegee intermediate reactivity.
Collapse
|
|
2 |
|
16
|
Liu T, Elliott SN, Zou M, Vansco MF, Sojdak CA, Markus CR, Almeida R, Au K, Sheps L, Osborn DL, Winiberg FAF, Percival CJ, Taatjes CA, Caravan RL, Klippenstein SJ, Lester MI. Correction to "OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions". J Am Chem Soc 2024; 146:18184-18185. [PMID: 38885117 DOI: 10.1021/jacs.4c06089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
|
Published Erratum |
1 |
|