1
|
Chiodo LA, Bannon MJ, Grace AA, Roth RH, Bunney BS. Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience 1984; 12:1-16. [PMID: 6462443 DOI: 10.1016/0306-4522(84)90133-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrophysiological and biochemical techniques were used to study midbrain dopamine systems. In the electrophysiological studies, projection areas of individual dopaminergic cells were identified by antidromic activation. Dopamine cells which innervate the piriform cortex and those that innervate the caudate nucleus demonstrated their usual dose-dependent inhibitory response to both the intravenous administration of the direct-acting dopamine agonist apomorphine and the microiontophoretic application of dopamine. In contrast, the firing rate of dopamine neurons which project to the prefrontal cortex and of those terminating in the cingulate cortex was not altered by either the intravenous administration of low to moderate doses of apomorphine or microiontophoretically applied dopamine. The mean basal discharge rate and degree of burst firing was also different between these subgroups of midbrain dopaminergic neurons. Mesoprefrontal and mesocingulate dopamine neurons had mean firing rates of 9.3 and 5.9 spikes/s respectively, and showed intense burst activity. Mesopiriform and nigrostriatal dopamine cells had discharge rates of 4.3 and 3.1 spikes/s and displayed only moderate bursting. The dopaminergic nature of those mesocortical neurons insensitive to apomorphine and dopamine was confirmed using combined intracellular recording and catecholamine histofluorescence techniques. Thus, after the intracellular injection of colchicine and subsequent processing for glyoxylic acid-induced histofluorescence, the injected cells could be identified by their brighter fluorescences compared to the surrounding, normally fluorescing, non-injected dopamine neurons. Using biochemical techniques, subgroups of midbrain dopaminergic systems were again found to differ. The administration of gamma-butyrolactone increased dopamine levels in all areas sampled (prefrontal, cingulate and piriform cortices as well as the caudate nucleus). However, although this effect was readily reversed in both the piriform cortex and caudate nucleus by pretreatment with apomorphine, this treatment had no effect on the increased dopamine levels observed in the prefrontal and cingulate cortices. In addition, the decline in dopamine levels after synthesis inhibition with alpha-methyltyrosine was significantly faster in the prefrontal and cingulate cortices relative to the caudate nucleus. The piriform cortex showed an intermediate decline which was not significantly different from that observed in any of the other regions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
41 |
246 |
2
|
Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ. Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 2001; 76:1565-72. [PMID: 11238740 DOI: 10.1046/j.1471-4159.2001.00181.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The importance of the nuclear receptor nurr1 for the appropriate development of mesencephalic dopamine-synthesizing neurons has been clearly demonstrated through the targeted disruption of the nurr1 gene. The persistence of nurr1 expression in adult tissue suggests a possible role for this transcription factor in the maintenance, as well as development, of the dopaminergic phenotype. To address this issue, we analyzed the effects of nurr1 on the transcriptional expression of the human dopamine transporter gene (hDAT), one of the most specific phenotypic markers for dopaminergic neurons. Nurr1 enhanced the transcriptional activity of hDAT gene constructs transiently transfected into a newly described cell line (SN4741) that expresses a dopaminergic phenotype, whereas other members of the NGFI-B subfamily of nuclear receptors had lesser or no effects. Nurr1 activation of hDAT was not dependent upon heterodimerization with the retinoid X receptor. Unexpectedly, functional analysis of a series of gene constructs revealed that a region of the hDAT 5'-flanking sequence devoid of NGFI-B response element (NBRE)-like sites mediated nurr1 activation. Additional experiments using a nurr1 mutant construct suggest that nurr1 activates hDAT transcription via a novel NBRE-independent mechanism.
Collapse
|
|
24 |
170 |
3
|
Albertson DN, Pruetz B, Schmidt CJ, Kuhn DM, Kapatos G, Bannon MJ. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem 2004; 88:1211-9. [PMID: 15009677 PMCID: PMC2215309 DOI: 10.1046/j.1471-4159.2003.02247.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic cocaine abuse induces long-term neural adaptations as a consequence of alterations in gene expression. This study was undertaken to identify those transcripts differentially regulated in the nucleus accumbens of human cocaine abusers. Affymetrix microarrays were used to measure transcript abundance in 10 cocaine abusers and 10 control subjects matched for age, race, sex, and brain pH. As expected, gene expression of cocaine- and amphetamine-regulated transcript (CART) was increased in the nucleus accumbens of cocaine abusers. The most robust and consistent finding, however, was a decrease in the expression of a number of myelin-related genes, including myelin basic protein (MBP), proteolipid protein (PLP), and myelin-associated oligodendrocyte basic protein (MOBP). The differential expression seen by microarray for CART as well as MBP, MOBP, and PLP was verified by RT-PCR. In addition, immunohistochemical experiments revealed a decrease in the number of MBP-immunoreactive oligodendrocytes present in the nucleus accumbens and surrounding white matter of cocaine abusers. These findings suggest a dysregulation of myelin in human cocaine abusers.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
154 |
4
|
Bannon MJ, Lee JM, Giraud P, Young A, Affolter HU, Bonner TI. Dopamine antagonist haloperidol decreases substance P, substance K, and preprotachykinin mRNAs in rat striatonigral neurons. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)62663-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
39 |
139 |
5
|
Michelhaugh SK, Lipovich L, Blythe J, Jia H, Kapatos G, Bannon MJ. Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem 2010; 116:459-66. [PMID: 21128942 DOI: 10.1111/j.1471-4159.2010.07126.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although recent data suggest that some long non-coding RNAs (lncRNAs) exert widespread effects on gene expression and organelle formation, lncRNAs as a group constitute a sizable but poorly characterized fraction of the human transcriptome. We investigated whether some human lncRNA sequences were fortuitously represented on commonly used microarrays, then used this annotation to assess lncRNA expression in human brain. A computational and annotation pipeline was developed to identify lncRNA transcripts represented on Affymetrix U133 arrays. A previously published dataset derived from human nucleus accumbens was then examined for potential lncRNA expression. Twenty-three lncRNAs were determined to be represented on U133 arrays. Of these, dataset analysis revealed that five lncRNAs were consistently detected in samples of human nucleus accumbens. Strikingly, the abundance of these lncRNAs was up-regulated in human heroin abusers compared to matched drug-free control subjects, a finding confirmed by quantitative PCR. This study presents a paradigm for examining existing Affymetrix datasets for the detection and potential regulation of lncRNA expression, including changes associated with human disease. The finding that all detected lncRNAs were up-regulated in heroin abusers is consonant with the proposed role of lncRNAs as mediators of widespread changes in gene expression as occur in drug abuse.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
136 |
6
|
Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP. The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 2001; 79:1033-8. [PMID: 11739616 DOI: 10.1046/j.1471-4159.2001.00647.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The dopamine (DAT) and serotonin (SERT) transporter genes both contain variable number of tandem repeats (VNTR) in non-coding gene regions which have been correlated with a predisposition to a variety of CNS disorders. There is considerable homology between individual DAT and SERT repeat DNA sequences, which is reflected in their ability to compete with each other for specific protein binding as demonstrated by electrophoretic mobility shift assay. The SERT VNTR has recently been shown to act as a transcriptional enhancer. Because of the similarities between SERT and DAT VNTRs, the DAT VNTR may also enhance transcription. This study demonstrates by lipid transfection into an immortalized dopaminergic cell line and biolistic transfection into dopamine neurons in neonatal rat midbrain slices that the human nine-repeat DAT VNTR can enhance transcription. This enhancing activity suggests that the DAT VNTR may play a role in regulation of DAT gene expression.
Collapse
|
|
24 |
130 |
7
|
Bannon MJ, Poosch MS, Xia Y, Goebel DJ, Cassin B, Kapatos G. Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. Proc Natl Acad Sci U S A 1992; 89:7095-9. [PMID: 1353885 PMCID: PMC49652 DOI: 10.1073/pnas.89.15.7095] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dopamine transporter is the primary means of inactivating synaptic dopamine as well as a major site of action for psychostimulants (such as cocaine and amphetamine) and for neurotoxins that induce parkinsonism. In the present study, a human dopamine transporter partial cDNA clone obtained by polymerase chain reaction exhibited 87% and 89% identity at the nucleic acid and amino acid levels, respectively, with transmembrane domains 3-5 of the rat homolog. This clone was used to quantitate human dopamine transporter mRNA by nuclease protection assay. The postmortem content of dopamine transporter mRNA in the substantia nigrae of 18- to 57-yr-old subjects was relatively constant, while in subjects greater than 57 yr old, a precipitous (greater than 95%) decline in substantia nigra dopamine transporter mRNA was evident. In contrast, tyrosine hydroxylase mRNA in the same samples declined in a linear manner with increasing age. In situ hybridization experiments confirmed the profound loss of dopamine transporter gene expression in melanin-positive (presumptive dopamine) nigral neurons. These data may begin to shed light on compensatory changes occurring in human dopamine neurons during normal aging.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
33 |
130 |
8
|
Bannon MJ, Elliott PJ, Alpert JE, Goedert M, Iversen SD, Iversen LL. Role of endogenous substance P in stress-induced activation of mesocortical dopamine neurones. Nature 1983; 306:791-2. [PMID: 6197656 DOI: 10.1038/306791a0] [Citation(s) in RCA: 117] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The dopamine (DA) innervation to the forebrain arises from subpopulations of midbrain DA neurones broadly classified as nigrostriatal, mesolimbic and mesocortical. Significant differences in the autoregulatory mechanisms and neuronal inputs of these DA pathways may account for their differences in physiological and pharmacological responsiveness. For example, footshock stress can activate rat mesocortical DA cells but does not alter nigrostriatal DA turnover, while also decreasing substance P (SP) concentrations in the midbrain interpeduncular nucleus and in the adjacent ventral tegmental area (VTA), but not in the substantia nigra (SN). This suggested that the activation of the SP input to the VTA may mediate activation of certain DA systems by footshock stress; behavioural studies also had suggested an excitatory effect of SP on DA cells in the VTA. SP antagonists now available are neurotoxic and of questionable efficacy, we therefore used monoclonal antibody against SP. Antibody microinjected into the VTA prevented normal footshock-induced activation of mesocortical DA neurones, suggesting mediation by SP input to the VTA. The in vivo application of antibodies may prove valuable in studies of neuropeptides in the central nervous system (CNS).
Collapse
|
|
42 |
117 |
9
|
Reinhard JF, Bannon MJ, Roth RH. Acceleration by stress of dopamine synthesis and metabolism in prefrontal cortex: antagonism by diazepam. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1982; 318:374-7. [PMID: 7078670 DOI: 10.1007/bf00501182] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Using liquid chromatography and electrochemical detection (LCEC), we have measured the accumulation of 3,4-dihydroxyphenylalanine (DOPA) (after L-aromatic amino acid decarboxylase inhibition), dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the frontal cortex and in the corpus striatum of the rat. Mild-footshock stress increased frontal cortex DOPA accumulation, as well as DA and DOPAC, without changing the concentration of these substances in the corpus striatum. The increases in cortical DA synthesis and metabolism were antagonized by diazepam which, given alone, tended to decrease DOPA accumulation to a small degree. In addition, we have measured the indoles serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and the noradrenergic metabolite MHPG, none of which were altered by stress. The accumulation of 5-hydroxytryptophan (5-HTP) was also unaffected by stress but, like DOPA accumulation, was reduced to a small degree by diazepam. This study directly demonstrates a selective activation of frontal cortex catechol synthesis (in vivo tyrosine hydroxylation) by a mild stress, which did not significantly alter cortical noradrenergic or serotonergic metabolism.
Collapse
|
|
43 |
112 |
10
|
Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P. The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol 2001; 11:449-55. [PMID: 11704422 DOI: 10.1016/s0924-977x(01)00122-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dopamine transporter is a plasma membrane protein that controls the spatial and temporal domains of dopamine neurotransmission through the accumulation of extracellular dopamine. The dopamine transporter may play a role in numerous dopamine-linked neuropsychiatric disorders. We review the cloning and organization of the human dopamine transporter gene, polymorphisms in its coding and noncoding sequence, and emerging data on its transcriptional regulation.
Collapse
|
Review |
24 |
111 |
11
|
Bannon MJ, Elliott PJ, Bunney EB. Striatal tachykinin biosynthesis: regulation of mRNA and peptide levels by dopamine agonists and antagonists. Brain Res 1987; 427:31-7. [PMID: 2448008 DOI: 10.1016/0169-328x(87)90041-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of dopamine agonists and antagonists on rat basal ganglia substance P, substance K, and preprotachykinin mRNA were examined. Chronic administration of the prototypical dopamine antagonist haloperidol decreased striatal preprotachykinin mRNA and nigral tachykinin peptides. Chronic treatment with the dopamine D2 receptor antagonist L-sulpiride (but not the inactive D-isomer) mimicked the effect of haloperidol. In contrast, the atypical neuroleptic clozapine did not decrease tachykinin mRNA or peptides. The potent indirect dopamine agonist methamphetamine rapidly increased preprotachykinin mRNA, substance P, and substance K although the direct agonist apomorphine was without effect. Methamphetamine-stimulated changes in preprotachykinin mRNA were prevented by prior haloperidol administration. These data demonstrate that alterations in dopaminergic transmission significantly alter striatonigral tachykinin biosynthesis in vivo.
Collapse
|
|
38 |
101 |
12
|
Bannon MJ, Reinhard JF, Bunney EB, Roth RH. Unique response to antipsychotic drugs is due to absence of terminal autoreceptors in mesocortical dopamine neurones. Nature 1982; 296:444-6. [PMID: 7063040 DOI: 10.1038/296444a0] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
|
43 |
94 |
13
|
Bannon MJ, Whitty CJ. Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 1997; 48:969-77. [PMID: 9109886 DOI: 10.1212/wnl.48.4.969] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We assessed the abundance of dopamine transporter messenger RNA (DAT mRNA) in various human midbrain dopamine cell groups using in situ hybridization. The youngest individuals studied (17-23 years of age) exhibited significant regional heterogeneity of DAT expression, both in terms of the number of dopamine neurons expressing DAT mRNA and the abundance of DAT mRNA per cell, with the highest levels of expression evident within the ventral tier of the substantia nigra and lowest expression within the retrorubral field. In the older subjects (65-72 years old) analyzed, DAT mRNA in all regions was reduced to the level seen in the retrorubal field, indicating a positive correlation between initial levels of DAT expression and subsequent age-related reductions, with some regions exhibiting up to a 75% loss of DAT mRNA with age. The age-related decline in DAT mRNA was due to both a decrease in the abundance of DAT mRNA per dopamine cell as well as a decrease in the total number of dopamine cells expressing DAT mRNA, although tyrosine hydroxylase expression was less affected. These results indicate that changes in dopamine neurotransmission seen in normal aging may be related to altered DAT gene expression.
Collapse
|
|
28 |
94 |
14
|
Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ. Characterization of the 5'-flanking region of the human dopamine transporter gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:167-74. [PMID: 10640687 DOI: 10.1016/s0169-328x(99)00275-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dopamine transporter (DAT) plays a major role in modulating dopamine (DA) neurotransmission by controlling the levels of this neurotransmitter in the extracellular space. We have isolated 8.3 kb of the 5'-flanking regulatory region of the human DAT (hDAT) gene and identified numerous potential elements involved in transcriptional control of the DAT. A series of hDAT-luciferase reporter constructs encompassing increasing amounts of 5'-flanking sequence was utilized in transient transfection assays assessing basal activity and response to selected stimuli. Our results suggest that the proximal hDAT 5'-flanking region displays a strong, nonselective promoter activity that is silenced through regulatory elements present in the distal portion of the 5'-flanking sequence. Although potential cyclic AMP responsive elements (CRE) were identified on the sequence, hDAT constructs were unresponsive to cyclic AMP induction. The transcription factor nurr1 increases the transcriptional activity of several larger hDAT constructs, consistent with the presence of several putative NGFI-B response elements (NBRE). The cloning and functional analysis of an extensive portion of the 5'-flanking regulatory region of the hDAT gene provides further insights into the factors involved in the regulation of this gene.
Collapse
|
|
26 |
90 |
15
|
Bannon MJ, Pruetz B, Manning-Bog AB, Whitty CJ, Michelhaugh SK, Sacchetti P, Granneman JG, Mash DC, Schmidt CJ. Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers. Proc Natl Acad Sci U S A 2002; 99:6382-5. [PMID: 11959923 PMCID: PMC122957 DOI: 10.1073/pnas.092654299] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic exposure to cocaine induces long-term adaptations that are likely to involve changes in transcription factor expression. This possibility has not been examined in the cocaine-exposed human brain. The transcription factor nurr1 is highly expressed in rodent midbrain dopamine neurons and is essential for their proper phenotypic development. Here we show that human NURR1 gene expression is robust within control subjects and reduced markedly within the dopamine neurons of human cocaine abusers. NURR1 is known to regulate transcription of the gene encoding the cocaine-sensitive dopamine transporter (DAT). We show here that DAT gene expression also is reduced markedly in the dopamine neurons of NURR1-deficient cocaine abusers, suggesting that NURR1 plays a critical role in vivo in controlling human DAT gene expression and adaptation to repeated exposure to cocaine.
Collapse
|
research-article |
23 |
86 |
16
|
Albertson DN, Schmidt CJ, Kapatos G, Bannon MJ. Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. Neuropsychopharmacology 2006; 31:2304-12. [PMID: 16710320 PMCID: PMC2239258 DOI: 10.1038/sj.npp.1301089] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drug abuse is thought to induce long-term cellular and behavioral adaptations as a result of alterations in gene expression. Understanding the molecular consequences of addiction may contribute to the development of better treatment strategies. This study utilized high-throughput Affymetrix microarrays to identify gene expression changes in the post-mortem nucleus accumbens of chronic heroin abusers. These data were analyzed independently and in relation to our previously reported data involving human cocaine abusers, in order to determine which expression changes were drug specific and which may be common to the phenomenon of addiction. A significant decrease in the expression of numerous genes encoding proteins involved in presynaptic release of neurotransmitter was seen in heroin abusers, a finding not seen in the cocaine-abusing cohort. Conversely, the striking decrease in myelin-related genes observed in cocaine abusers was not evident in our cohort of heroin subjects. Overall, little overlap in gene expression profiles was seen between the two drug-abusing cohorts: out of the approximately 39,000 transcripts investigated, the abundance of only 25 was significantly changed in both cocaine and heroin abusers, with nearly one-half of these being altered in opposite directions. These data suggest that the profiles of nucleus accumbens gene expression associated with chronic heroin or cocaine abuse are largely unique, despite what are thought to be common effects of these drugs on dopamine neurotransmission in this brain region. A re-examination of our current assumptions about the commonality of molecular mechanisms associated with substance abuse seems warranted.
Collapse
|
research-article |
19 |
83 |
17
|
Joyce JN, Smutzer G, Whitty CJ, Myers A, Bannon MJ. Differential modification of dopamine transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with Parkinson's, Alzheimer's with parkinsonism, and Alzheimer's disease. Mov Disord 1997; 12:885-97. [PMID: 9399211 DOI: 10.1002/mds.870120609] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular characteristics of midbrain dopamine (DA) neurons have been extensively studied in Parkinson's disease (PD). No such studies of the characteristics of midbrain DA neurons in Alzheimer's disease (AD) or Alzheimer's disease with parkinsonism (AD/Park) have been published. We examined the levels of tyrosine hydroxylase (TH) protein, and the expression of TH and dopamine transporter (DAT) mRNAs, in midbrain neurons of PD, AD, and AD/Park cases. In PD, the loss of TH protein in the ventral tier of the substantia nigra pars compacta (SNpc) of the PD group in accompanied by severe losses in the number of neurons that express TH mRNA and DAT mRNA (74% loss). Remaining neurons show a shift to higher concentrations of TH mRNA but a shift to lower concentrations of DAT mRNA per cell. Hence, there is evidence that compensation in the remaining neurons can elevate concentrations of TH mRNA and lower DAT mRNA. Alternatively, there may be a predilection for a loss of neurons with high levels of DAT mRNA and low TH mRNA levels within the SNpc of PD cases. There was no change in TH protein but an elevation of TH mRNA concentrations per neuron without any change in concentrations of DAT mRNA in the AD group. The AD/Park group did not exhibit changes in the level of TH protein, but showed a small loss (26%) of neurons in the SNpc and a greater loss in other regions of the midbrain (43-53%). Remaining DA neurons showed a marked shift to lower concentrations of DAT mRNA per neuron and a nonsignificant shift in cellular concentration of TH mRNA to higher levels. This is consistent with our previous work showing that with AD/Park there is a significant reduction in the number of DAT sites located on DA terminals in the striatum, but the midbrain neurons have not died. Our results indicate that the differential regulation of mRNAs encoding TH and DAT is similar in the parkinsonian disorders (PD and AD/Park) even though the degree of cell death is very different. This might suggest that compensatory events occur in these DA neurons in AD/Park that are similar to those in PD and that result in differential effects on mRNAs encoding TH and DAT proteins.
Collapse
|
Comparative Study |
28 |
81 |
18
|
Bannon MJ. The dopamine transporter: role in neurotoxicity and human disease. Toxicol Appl Pharmacol 2005; 204:355-60. [PMID: 15845424 DOI: 10.1016/j.taap.2004.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD).
Collapse
|
|
20 |
78 |
19
|
Burchett SA, Volk ML, Bannon MJ, Granneman JG. Regulators of G protein signaling: rapid changes in mRNA abundance in response to amphetamine. J Neurochem 1998; 70:2216-9. [PMID: 9572311 DOI: 10.1046/j.1471-4159.1998.70052216.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study examined mRNAs encoding regulators of G protein signaling (RGSs) expressed within the striatum and determined whether their expression in the caudate putamen was altered by amphetamine. RT-PCR techniques were used to clone cDNA probes of RGSs expressed within the rat striatum. Northern blot analysis of caudate putamen and nucleus accumbens RNA determined the relative abundance of RGS mRNA expressed within the caudate putamen and adjacent nucleus accumbens to be RGS 2 > RGS 5 > RGS 16 > RGS 4 = RGS 9 > RGS 8 = RGS 3. A single injection of amphetamine rapidly and transiently induced RGS 2 mRNA. The temporal pattern of induction of RGS 2 strongly resembled that of the immediate early gene c-fos. Levels of mRNAs of RGS 3 and 5 steadily increased over a 4-h interval, as did that of the 6.6-kb transcript of RGS 8. The level of RGS 9 mRNA, which shows strong striatal-specific expression, steadily decreased over a 4-h interval, whereas RGS 4 and 16 and the 3.9-kb transcript of RGS 8 were not significantly affected at any point examined. The ability of amphetamine to alter RGS mRNA expression within the caudate putamen suggests these proteins may play an important role in adaptive processes to psychostimulant exposure.
Collapse
|
|
27 |
78 |
20
|
Bannon MJ, Wolf ME, Roth RH. Pharmacology of dopamine neurons innervating the prefrontal, cingulate and piriform cortices. Eur J Pharmacol 1983; 92:119-25. [PMID: 6628534 DOI: 10.1016/0014-2999(83)90116-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pharmacology of a number of distinct dopamine (DA) systems was studied. Those DA projections possessing autoreceptors (striatum, olfactory tubercle and piriform cortex) exhibited large changes in DA metabolism in response to systemic administration of DA agonists and antagonists. In contrast, in those DA systems which lack autoreceptors (the prefrontal and cingulate cortical innervations) little or no response to DA agonists and a diminished response to DA antagonists was seen. When DA metabolism was inhibited by administration of a MAO inhibitor, reductions in HVA were observed in all brain regions studied. DA turnover appeared faster in the prefrontal and cingulate cortices than in the DA systems possessing autoreceptors.
Collapse
|
|
42 |
74 |
21
|
Burchett SA, Bannon MJ, Granneman JG. RGS mRNA expression in rat striatum: modulation by dopamine receptors and effects of repeated amphetamine administration. J Neurochem 1999; 72:1529-33. [PMID: 10098858 DOI: 10.1046/j.1471-4159.1999.721529.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single injections of cocaine, amphetamine, or methamphetamine increased RGS2 mRNA levels in rat striatum by two- to fourfold. The D1 dopamine receptor-selective antagonist SCH-23390 had no effect by itself but strongly attenuated RGS2 mRNA induction by amphetamine. In contrast, the D2 receptor-selective antagonist raclopride induced RGS2 mRNA when administered alone and greatly enhanced stimulation by amphetamine. To examine the effects of repeated amphetamine on RGS2 expression, rats were treated with escalating doses of amphetamine (1.0-7.5 mg/kg) for 4 days, followed by 8 days of multiple daily injections (7.5 mg/kg/2 h x four injections). Twenty hours after the last injection the animals were challenged with amphetamine (7.5 mg/kg) or vehicle and killed 1 h later. In drug-naive animals, acute amphetamine induced the expression of RGS2, 3, and 5 and the immediate early genes c-fos and zif/268. RGS4 mRNA levels were not affected. Prior repeated treatment with amphetamine strongly suppressed induction of immediate early genes and RGS5 to a challenge dose of amphetamine. In sharp contrast, prior exposure to amphetamine did not reduce the induction of RGS2 and RGS3 mRNAs to a challenge dose of amphetamine, indicating that control of these genes is resistant to amphetamine-induced tolerance. These data establish a role for dopamine receptors in the regulation of RGS2 expression and suggest that RGS2 and 3 might mediate some aspects of amphetamine-induced tolerance.
Collapse
|
|
26 |
72 |
22
|
Deutch AY, Maggio JE, Bannon MJ, Kalivas PW, Tam SY, Goldstein M, Roth RH. Substance K and substance P differentially modulate mesolimbic and mesocortical systems. Peptides 1985; 6 Suppl 2:113-22. [PMID: 2417207 DOI: 10.1016/0196-9781(85)90143-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The newly discovered peptide substance K (SK) is an aliphatic tachykinin structurally related to the aromatic tachykinin substance P (SP). Immunohistochemical examination showed a close association between SK afferents and dopamine (DA) cell bodies. Examination of the possible role of SK in modulating midbrain DA systems revealed that SP, but not SK, is associated with the stress response of the mesocortical system. Ventral tegmental area injections of SK effected locomotor hyperactivity, a mesolimbic-mediated behavior. Ventral tegmental injections of SP, but not SK, activated DA metabolism in the prefrontal cortex, while SK injections altered DA metabolism in the nucleus accumbens, but not the cortical site. These data suggest that SK and SP may differentially modulate the mesolimbic and mesocortical systems.
Collapse
|
Comparative Study |
40 |
70 |
23
|
Elliott PJ, Alpert JE, Bannon MJ, Iversen SD. Selective activation of mesolimbic and mesocortical dopamine metabolism in rat brain by infusion of a stable substance P analogue into the ventral tegmental area. Brain Res 1986; 363:145-7. [PMID: 2418910 DOI: 10.1016/0006-8993(86)90667-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microinfusion of the metabolically stable substance P (SP) agonist, [pGlu5,MePhe8,Sar9]-SP5-11 (DiMe-C7), into the ventral tegmental area (VTA) of rat brain increased levels of the dopamine (DA) metabolite dihydroxyphenylacetic acid in the prefrontal cortex (+ 120%) and nucleus accumbens (+30%) but not in other regions of forebrain. In contrast, infusions of DiMe-C7 or SP into the lateral ventricles or microinfusions of SP into VTA failed to elicit increases in DOPAC levels in forebrain. DA levels were unaffected by SP or DiMe-C7 regardless of the route of administration. These data and previous studies suggest a role for endogenous SP in the modulation of mesocortical and mesolimbic DA neurones.
Collapse
|
|
39 |
66 |
24
|
Zamir N, Skofitsch G, Bannon MJ, Jacobowitz DM. Melanin-concentrating hormone: unique peptide neuronal system in the rat brain and pituitary gland. Proc Natl Acad Sci U S A 1986; 83:1528-31. [PMID: 3513180 PMCID: PMC323110 DOI: 10.1073/pnas.83.5.1528] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A unique neuronal system was detected in the rat central nervous system by immunohistochemistry and radioimmunoassay with antibodies to salmon melanin-concentrating hormone (MCH). MCH-like immunoreactive (MCH-LI) cell bodies were confined to the hypothalamus. MCH-LI fibers were found throughout the brain but were most prevalent in hypothalamus, mesencephalon, and pons-medulla regions. High concentrations of MCH-LI were measured in the hypothalamic medial forebrain bundle (MFB), posterior hypothalamic nucleus, and nucleus of the diagonal band. Reversed-phase high-performance liquid chromatography of MFB extracts from rat brain indicate that MCH-like peptide from the rat has a different retention time than that of the salmon MCH. An osmotic stimulus (2% NaCl as drinking water for 120 hr) caused a marked increase in MCH-LI concentrations in the lateral hypothalamus and neurointermediate lobe. The present studies establish the presence of MCH-like peptide in the rat brain. The MCH-LI neuronal system is well situated to coordinate complex functions such as regulation of water intake.
Collapse
|
research-article |
39 |
65 |
25
|
Wolf ME, LeWitt PA, Bannon MJ, Dragovic LJ, Kapatos G. Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate. J Neurochem 1991; 56:1191-200. [PMID: 1672141 DOI: 10.1111/j.1471-4159.1991.tb11410.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study examined the effect of aging on the relative number of dopamine (DA) nerve terminals in human caudate nucleus, their content of tyrosine hydroxylase (TH) protein, and the relative abundance of TH monomers with different molecular weights. Preliminary studies on brain tissue cryopreservation, performed with rat striatum, indicated that intact synaptosomes can be prepared from fresh tissue slowly frozen in 0.32 M sucrose with 5% dimethyl sulfoxide and then thawed rapidly prior to synaptosome preparation. Synaptosomes were prepared in this manner from postmortem caudate nucleus tissue obtained from normal humans 1 month to 63 years of age. To determine the relative number of DA nerve terminals for each individual, dopaminergic synaptosomes were selectively labeled with a monoclonal antibody to TH and quantified by fluorescence-activated cell sorting. To determine the relative amount of TH protein for each individual, the concentration of TH protein in the same synaptosomal preparations was determined using immunoblots. Our results suggest that caudate TH levels plateau soon after birth and tend to remain relatively stable during aging, since no changes in either the relative number of TH-containing nerve terminals or the concentration of TH protein were found in subjects 15-63 years of age. In light of previous studies showing an age-related loss of DA cell bodies, these findings suggest that remaining DA neurons compensate to maintain caudate levels of TH protein and TH-containing nerve terminals. Immunoblot studies identified three forms of TH monomer (60.6, 61.7, and 65.1 kDa), indicating that mRNAs coding for high molecular mass forms of TH may be actively translated in human brain. No age-related differences in the relative abundance of these forms were found.
Collapse
|
|
34 |
64 |