1
|
Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 1994. [DOI: 10.1016/0377-8401(94)90171-6] [Citation(s) in RCA: 585] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
|
31 |
585 |
2
|
Mauricio RM, Mould FL, Dhanoa MS, Owen E, Channa KS, Theodorou MK. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim Feed Sci Technol 1999. [DOI: 10.1016/s0377-8401(99)00033-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
|
26 |
212 |
3
|
Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV, Regev A, Thompson DA, O'Malley MA. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 2016; 351:1192-5. [PMID: 26912365 PMCID: PMC5098331 DOI: 10.1126/science.aad1431] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. We developed a systems-level approach that integrates transcriptomic sequencing, proteomics, phenotype, and biochemical studies of relatively unexplored basal fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, untreated plant biomass and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite-repressed and are further regulated by a rich landscape of noncoding regulatory RNAs. Additionally, we identified several promising sequence-divergent enzyme candidates for lignocellulosic bioprocessing.
Collapse
|
research-article |
9 |
199 |
4
|
Trinci AP, Davies DR, Gull K, Lawrence MI, Bonde Nielsen B, Rickers A, Theodorou MK. Anaerobic fungi in herbivorous animals. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0953-7562(09)80178-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
31 |
175 |
5
|
Lowe SE, Theodorou MK, Trinci AP. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan. Appl Environ Microbiol 1987; 53:1216-23. [PMID: 3606104 PMCID: PMC203844 DOI: 10.1128/aem.53.6.1216-1223.1987] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (R1) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5, and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the R1 isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of R1 on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
research-article |
38 |
118 |
6
|
Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley MA. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol 2021; 6:499-511. [PMID: 33526884 PMCID: PMC8007473 DOI: 10.1038/s41564-020-00861-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The herbivore digestive tract is home to a complex community of anaerobic microbes that work together to break down lignocellulose. These microbiota are an untapped resource of strains, pathways and enzymes that could be applied to convert plant waste into sugar substrates for green biotechnology. We carried out more than 400 parallel enrichment experiments from goat faeces to determine how substrate and antibiotic selection influence membership, activity, stability and chemical productivity of herbivore gut communities. We assembled 719 high-quality metagenome-assembled genomes (MAGs) that are unique at the species level. More than 90% of these MAGs are from previously unidentified herbivore gut microorganisms. Microbial consortia dominated by anaerobic fungi outperformed bacterially dominated consortia in terms of both methane production and extent of cellulose degradation, which indicates that fungi have an important role in methane release. Metabolic pathway reconstructions from MAGs of 737 bacteria, archaea and fungi suggest that cross-domain partnerships between fungi and methanogens enabled production of acetate, formate and methane, whereas bacterially dominated consortia mainly produced short-chain fatty acids, including propionate and butyrate. Analyses of carbohydrate-active enzyme domains present in each anaerobic consortium suggest that anaerobic bacteria and fungi employ mostly complementary hydrolytic strategies. The division of labour among herbivore anaerobes to degrade plant biomass could be harnessed for industrial bioprocessing.
Collapse
|
research-article |
4 |
109 |
7
|
Edwards JE, Kingston-Smith AH, Jimenez HR, Huws SA, Skøt KP, Griffith GW, McEwan NR, Theodorou MK. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol Ecol 2008; 66:537-45. [PMID: 18673390 DOI: 10.1111/j.1574-6941.2008.00563.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
98 |
8
|
Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O'Malley MA. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 2014; 111:1471-82. [PMID: 24788404 DOI: 10.1002/bit.25264] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 12/12/2022]
Abstract
Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long-term preservation of these microbes. We also discuss recent cellulase- and cellulosome-discovery efforts from gut fungi, and how these interesting, non-model microbes could be further adapted for biotechnology applications.
Collapse
|
Review |
11 |
88 |
9
|
Brookman JL, Mennim G, Trinci APJ, Theodorou MK, Tuckwell DS. Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 185 rRNA. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):393-403. [PMID: 10708378 DOI: 10.1099/00221287-146-2-393] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gut fungi are an unusual group of zoosporic fungi occupying a unique ecological niche, the anaerobic environment of the rumen. They exhibit two basic forms, with nuclear migration throughout the hyphal mass for polycentric species and with concentration of nuclear material in a zoosporangium for monocentric species. Differentiation between isolates of these fungi is difficult using conventional techniques. In this study, DNA-based methodologies were used to examine the relationships within and between two genera of monocentric gut fungi gathered from various geographical locations and host animals. The ribosomal ITS1 sequence from 16 mono- and 4 polycentric isolates was PCR-amplified and sequenced; the sequences obtained were aligned with published sequences and phylogenetic analyses were performed. These analyses clearly differentiate between the two genera and reflect the previously published physiological conclusions that Neocallimastix spp. constitute a more closely related genus than the relatively divergent genus Piromyces. The analyses place two type species N. frontalis and N. hurleyensis together but, contrary to a recent suggestion in the literature, place them apart from the other agreed species N. patriciarum. In situ hybridization and slot-blotting were investigated as potential methods for detection of and differentiation between monocentric gut fungi. DNA slot-blot analysis using ribosomal sequences is able to differentiate between gut fungal genera and thus has considerable potential for use in ecological studies of these organisms.
Collapse
|
|
25 |
81 |
10
|
Merry RJ, Lee MRF, Davies DR, Dewhurst RJ, Moorby JM, Scollan ND, Theodorou MK. Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization1. J Anim Sci 2006; 84:3049-60. [PMID: 17032799 DOI: 10.2527/jas.2005-735] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two experiments were carried out to determine the effects of feeding grass silages differing in their water-soluble carbohydrate content, with or without red clover silage, on the efficiency of nutrient use. High-sugar grass, control grass, and red clover were ensiled in laboratory silos for use in an in vitro experiment (Exp. 1). For an in vivo experiment (Exp. 2), the same forage types were baled and ensiled. All silages were well preserved; within experiments the grass silages had similar composition, except for greater (P < 0.05) water-soluble carbohydrate concentrations in the high-sugar than the control grass silage. In Exp. 1, high-sugar grass, control grass, and red clover silages were fed alone or as mixtures (30:70, 50:50, or 70:30 on a DM basis, respectively) of each grass with the red clover silage to a simulated rumen culture system. There were no significant differences in microbial N flow or efficiency of microbial protein synthesis between individual forages. However, the corresponding values for the 70:30 ratio of high-sugar grass:red clover silage were greater (P < 0.05) than for the red clover silage. The value for the efficiency of N use (g of microbial N/g of feed N) was greater (0.86; P < 0.05) for high-sugar grass silage than the control grass silage. In addition, the high-sugar grass:red clover silage mixtures all gave greater (P < 0.05) values for the efficiency of N use than red clover silage alone; this difference was not achieved with the control grass mixture. Experiment 2 was an incomplete Latin square design conducted with 6 Here-ford x Friesian steers (163 +/- 5.9 kg of BW) with rumen and duodenal cannulas fed the following 5 silage diets: high-sugar grass silage; control grass silage; high-sugar grass and red clover silage (50:50 DM basis); control grass and red clover silage (50:50 DM basis); and red clover silage. Rumen NH3-N concentration was lowest (P < 0.05) with the high-sugar grass silage. Microbial N flows to the duodenum and efficiency of microbial protein synthesis were greater (P < 0.05) for steers fed the high-sugar grass silage than for control grass and red clover silages, and mixing red clover with grass silages increased (P < 0.05) these values compared with red clover silage alone. In both experiments, the efficiency of incorporation of silage N into microbial N was more than 20% greater (P < 0.05) for high-sugar grass than for control grass silage. These data suggest that grass silage with high-sugar content provides a forage-based strategy for balancing N and energy supply and improving the efficiency of use of grass silage N in the rumen.
Collapse
|
|
19 |
73 |
11
|
Davies DR, Theodorou MK, Lawrence MI, Trinci AP. Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. JOURNAL OF GENERAL MICROBIOLOGY 1993; 139 Pt 6:1395-400. [PMID: 8360630 DOI: 10.1099/00221287-139-6-1395] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A most probable numbers procedure was used to enumerate populations of anaerobic fungi in the digesta and faeces of cattle. Anaerobic fungi were isolated from the rumen, omasum, abomasum, small intestine, caecum, large intestine and faeces. By determining the amount of digesta in each organ of the digestive tract, it was possible to estimate the total population of anaerobic fungi in cattle and make comparisons between populations in different organs. In addition to enumerating anaerobic fungi in freshly collected samples, they were quantified in digesta and faeces which had been dried at ambient temperature and stored in air for up to 9 months. These experiments showed that a higher proportion of the anaerobic fungi present in the hindgut and faeces were able to withstand desiccation than those present within the gastric and pre-gastric organs. Our results support the hypothesis that the life cycle of anaerobic fungi consists of three stages; the motile zoospore, the vegetative thallus and an aero-tolerant survival stage (cyst or resistant zoosporangium).
Collapse
|
|
32 |
73 |
12
|
Cheng YF, Edwards JE, Allison GG, Zhu WY, Theodorou MK. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. BIORESOURCE TECHNOLOGY 2009; 100:4821-8. [PMID: 19467591 DOI: 10.1016/j.biortech.2009.04.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 05/05/2023]
Abstract
Consecutive batch cultures (CBC), involving nine serial transfers at 3, 5 and 7d intervals (21, 45 and 63d, respectively) were established to enrich for plant fibre degrading co-cultures of anaerobic fungi and methanogens from rumen digesta. Microbial diversity and fermentation end-products were measured at appropriate intervals over each CBC time-course. While methanogenic populations remained diverse, anaerobic fungal diversity was related to transfer interval and appeared to decrease with increasing transfer number. Acetate was the principal aqueous fermentation end-product with minimal quantities of lactate and formate detected. Methane and carbon dioxide were detected in the gaseous head-space of all co-cultures and the total amounts of gas generated per transfer was greater with transfer intervals of 5 and 7d compared with a 3d interval, although the 3d interval tended to be more efficient per unit time. In conclusion, rapidly growing, methane producing co-cultures of anaerobic fungi and methanogens from rumen digesta were easy to establish on lignocellulose (barley straw) and maintain over considerable time periods. These results suggest such co-cultures have potential in industrial scale anaerobic digestion (AD) of highly fibrous substrates, which are resistant to degradation in conventional AD plants.
Collapse
|
|
16 |
71 |
13
|
Mawdsley JL, Bardgett RD, Merry RJ, Pain BF, Theodorou MK. Pathogens in livestock waste, their potential for movement through soil and environmental pollution. APPLIED SOIL ECOLOGY : A SECTION OF AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 1995; 2:1-15. [PMID: 32288277 PMCID: PMC7135449 DOI: 10.1016/0929-1393(94)00039-a] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/10/1994] [Indexed: 05/04/2023]
Abstract
Livestock wastes contain many pathogenic microorganisms including bacteria, viruses and protozoa. Following the application of these wastes to land the potential exists for environmental contamination. Plants, soil and ultimately water courses which may subsequently be used as catchments for public water supplies may all be affected. Research attention is now being focused on this possibility, especially in the case of protozoan pathogens which may be the most important as they are often resistant to current methods used in public water treatment. In this review we highlight some of the many factors that are likely to influence the degree of pollution by their effect on both the vertical and horizontal transport of microorganisms through soil. Soil pH, temperature, the presence of plants, microbial surface properties, type of waste, soil type and soil water content and flow may all affect the rate and extent of vertical transport, with the latter two generally considered to be the most important. Lateral movement is a particular problem in soils with impermeable substrata or in waterlogged conditions and in these cases the major factors affecting movement include rainfall rate, topography of the land and the rate at which microorganisms partition into the runoff.
Collapse
|
Review |
30 |
65 |
14
|
Lee MR, Jones EL, Moorby JM, Humphreys MO, Theodorou MK, Scollan ND. Production responses from lambs grazed
on Lolium perenne selected for an elevated water-soluble carbohydrate concentration. ACTA ACUST UNITED AC 2001. [DOI: 10.1051/animres:2001106] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
|
24 |
63 |
15
|
Lowe SE, Theodorou MK, Trinci AP. Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development. Appl Environ Microbiol 1987; 53:1210-5. [PMID: 3606103 PMCID: PMC203843 DOI: 10.1128/aem.53.6.1210-1215.1987] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An anaerobic fungus (strain R1) resembling Neocallimastix spp. was isolated from sheep rumen. When grown on defined medium, the isolate utilized a wide range of polysaccharides and disaccharides, but of the eight monosaccharides tested only fructose, glucose, and xylose supported growth. The organism had doubling times of 5.56 h on glucose and 6.67 h on xylose, and in each case fermentation resulted in production of formate, acetate, lactate, and ethanol. During active growth, formate was a reliable indicator of fungal biomass. Growth on a medium containing glucose and xylose resulted in a doubling time of 8.70 h, but diauxic growth did not occur since both sugars were utilized simultaneously. The optimum temperature for zoospore and immature plant development was 39 degrees C, and no development occurred below 33 degrees C or above 41 degrees C.
Collapse
|
research-article |
38 |
61 |
16
|
Black GW, Rixon JE, Clarke JH, Hazlewood GP, Theodorou MK, Morris P, Gilbert HJ. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem J 1996; 319 ( Pt 2):515-20. [PMID: 8912689 PMCID: PMC1217798 DOI: 10.1042/bj3190515] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Xylanase A (XYLA) and arabinofuranosidase C (XYLC) from Pseudomonas fluorescens subsp. cellulosa are modular enzymes consisting of discrete cellulose-binding domains (CBDs) and catalytic domains joined by serine-rich linker sequences. To evaluate the role of the CBDs and interdomain regions, the capacity of full-length and truncated derivatives of the two enzymes, lacking either the linker sequences or CBDs, to hydrolyse a range of substrates, and bind to cellulose, was determined. Removal of the CBDs did not affect either the activity of XYLA or XYLC against soluble arabinoxylan. Similarly, deletion of the linker sequences did not alter the affinity of the enzymes for cellulose or their activity against soluble substrates, even when bound to cellulose via the CBDs. Truncated derivatives of XYLA lacking either the linker sequences or the CBD were less active against xylan contained in cellulose-hemicellulose complexes, compared with the full-length xylanase. Similarly, removal of the CBD from XYLC diminished the activity of the enzyme (XYLC''') against plant-cell-wall material containing highly substituted arabinoxylan. The role of CBDs and linker sequences in the catalytic activity of hemicellulases against the plant cell wall is discussed.
Collapse
|
research-article |
29 |
59 |
17
|
Tuckwell DS, Nicholson MJ, McSweeney CS, Theodorou MK, Brookman JL. The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. MICROBIOLOGY-SGM 2005; 151:1557-1567. [PMID: 15870465 DOI: 10.1099/mic.0.27689-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Identification of microbial community members in complex environmental samples is time consuming and repetitive. Here, ribosomal sequences and hidden Markov models are used in a novel approach to rapidly assign fungi to their presumptive genera. The ITS1 and ITS2 fragments from a range of axenic, anaerobic gut fungal cultures, including several type strains, were isolated and the RNA secondary structures predicted for these sequences were used to generate a fingerprinting program. The methodology was then tested and the algorithms improved using a collection of environmentally derived sequences, providing a rapid indicator of the fungal diversity and numbers of novel sequence groups within the environmental sample from which they were derived. While the methodology was developed to assist in investigations involving the rumen ecosystem, it has potential generic application in studying diversity and population dynamics in other microbial ecosystems.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
57 |
18
|
Toop TA, Ward S, Oldfield T, Hull M, Kirby ME, Theodorou MK. AgroCycle – developing a circular economy in agriculture. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egypro.2017.07.269] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
8 |
55 |
19
|
Theodorou MK, Gill M, King-Spooner C, Beever DE. Enumeration of anaerobic chytridiomycetes as thallus-forming units: novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem. Appl Environ Microbiol 2010; 56:1073-8. [PMID: 16348156 PMCID: PMC184345 DOI: 10.1128/aem.56.4.1073-1078.1990] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An endpoint dilution procedure, based on the technique of most probable numbers, was developed to enumerate anaerobic chytridiomycetes as thallus-forming units. The method does not distinguish between zoospores and thalli, but does permit enumeration of fungal populations with respect to their ability to digest plant cell walls. Fibrolytic populations in batch culture, ruminal contents, and feces were compared by relating viable counts to the dry matter content of enumerated samples (i.e., thallus-forming units per gram of dry matter). Batch cultures of Neocallimastix sp. strain R1 grown on wheat straw were used to assess the enumeration procedure and to demonstrate the potential of the technique for quantification of anaerobic fungi in vivo. Determination of total ruminal contents from steers enabled the quantification of the entire population of fiber-degrading anaerobic fungi in the reticulorumen. The enumeration procedure revealed substantial populations of fibrolytic anaerobic fungi in fresh and air-dried feces. Populations in fresh feces were equivalent to those in ruminal contents, but declined exponentially with time in dry feces. Minimum values were obtained from dry feces 90 days after drying, and anaerobic fungi were detectable for up to 210 days thereafter.
Collapse
|
Journal Article |
15 |
51 |
20
|
Milne A, Theodorou MK, Jordan MG, King-Spooner C, Trinci AP. Survival of anaerobic fungi in feces, in saliva, and in pure culture. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0147-5975(89)90005-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
36 |
48 |
21
|
Gilmore SP, Lankiewicz TS, Wilken SE, Brown JL, Sexton JA, Henske JK, Theodorou MK, Valentine DL, O’Malley MA. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. ACS Synth Biol 2019; 8:2174-2185. [PMID: 31461261 DOI: 10.1021/acssynbio.9b00271] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Consortium-based approaches are a promising avenue toward efficient bioprocessing. However, many complex microbial interactions dictate community dynamics and stability that must be replicated in synthetic systems. The rumen and/or hindguts of large mammalian herbivores harbor complex communities of biomass-degrading fungi and bacteria, as well as archaea and protozoa that work collectively to degrade lignocellulose, yet the microbial interactions responsible for stability, resilience, and activity of the community remain largely uncharacterized. In this work, we demonstrate a "top-down" enrichment-based methodology for selecting a minimal but effective lignocellulose-degrading community that produces methane-rich fermentation gas (biogas). The resulting enrichment consortium produced 0.75-1.9-fold more fermentation gas at 1.4-2.1 times the rate compared to a monoculture of fungi from the enrichment. Metagenomic sequencing of the top-down enriched consortium revealed genomes encoding for functional compartmentalization of the community, spread across an anaerobic fungus (Piromyces), a bacterium (Sphaerochaeta), and two methanogenic archaea (Methanosphaera and Methanocorpusculum). Guided by the composition of the top-down enrichment, several synthetic cocultures were formed from the "bottom-up" using previously isolated fungi, Neocallimastix californiae and Anaeromyces robustus paired with the methanogen Methanobacterium bryantii. While cross-feeding occurred in synthetic co-cultures, removal of fungal metabolites by methanogens did not increase the rate of gas production or the rate of substrate deconstruction by the synthetic community relative to fungal monocultures. Metabolomic characterization verified that syntrophy was established within synthetic co-cultures, which generated methane at similar concentrations compared to the enriched consortium but lacked the temporal stability (resilience) seen in the native system. Taken together, deciphering the membership and metabolic potential of an enriched gut consortium enables the design of methanogenic synthetic co-cultures. However, differences in the growth rate and stability of enriched versus synthetic consortia underscore the difficulties in mimicking naturally occurring syntrophy in synthetic systems.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
47 |
22
|
Theodorou MK, Gascoyne DJ, Akin DE, Hartley RD. Effect of phenolic acids and phenolics from plant cell walls on rumenlike fermentation in consecutive batch culture. Appl Environ Microbiol 1987; 53:1046-50. [PMID: 3606090 PMCID: PMC203807 DOI: 10.1128/aem.53.5.1046-1050.1987] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Information on the interaction between mixed populations in the rumen and plant phenolics is required to fully elucidate the limitations of phenolic compounds on forage digestibility. The objective of this study was to examine the degradation of Italian ryegrass (Lolium multiflorum L.) hay incubated with mixed ruminal populations in consecutive batch culture (CBC) with or without phenolic acids or phenolic compounds extracted from plant cell walls. Each CBC consisted of a series of 10 cultures (3 replicates per culture) inoculated (10%, vol/vol) in sequence at 48-h intervals with microbial suspension from the previous set of cultures. All cultures were grown on a semidefined medium containing Italian ryegrass hay, and each CBC was initiated with an inoculum from the rumen. Rumenlike fermentation characteristics were maintained in control CBCs by repeated inoculum transfer. Treatment CBCs were transferred as described above, but cultures 5, 6, and 7 were incubated in the presence of trans-p-coumaric, cis-p-coumaric, or trans-ferulic acid or phenolics extracted from the cell walls of maize stem or barley straw. Mean apparent dry matter disappearance in control CBC cultures was 495 mg per g of hay, whereas the presence of phenolics reduced the initial dry matter disappearance by 6.3 to 25.6%. trans-p-Coumaric acid and, to a lesser extent, the phenolics from cell walls of maize stem were the most inhibitory compounds for dry matter disappearance and for the production of volatile fatty acids; trans-p-coumaric acid altered the molar ratio of acetate/propionate/butyrate. The CBC further showed variations in the ability of the rumen microbial population to adapt to phenolic compounds.
Collapse
|
research-article |
38 |
46 |
23
|
Johnson HE, Broadhurst D, Kell DB, Theodorou MK, Merry RJ, Griffith GW. High-throughput metabolic fingerprinting of legume silage fermentations via Fourier transform infrared spectroscopy and chemometrics. Appl Environ Microbiol 2004; 70:1583-92. [PMID: 15006782 PMCID: PMC368363 DOI: 10.1128/aem.70.3.1583-1592.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Silage quality is typically assessed by the measurement of several individual parameters, including pH, lactic acid, acetic acid, bacterial numbers, and protein content. The objective of this study was to use a holistic metabolic fingerprinting approach, combining a high-throughput microtiter plate-based fermentation system with Fourier transform infrared (FT-IR) spectroscopy, to obtain a snapshot of the sample metabolome (typically low-molecular-weight compounds) at a given time. The aim was to study the dynamics of red clover or grass silage fermentations in response to various inoculants incorporating lactic acid bacteria (LAB). The hyperspectral multivariate datasets generated by FT-IR spectroscopy are difficult to interpret visually, so chemometrics methods were used to deconvolute the data. Two-phase principal component-discriminant function analysis allowed discrimination between herbage types and different LAB inoculants and modeling of fermentation dynamics over time. Further analysis of FT-IR spectra by the use of genetic algorithms to identify the underlying biochemical differences between treatments revealed that the amide I and amide II regions (wavenumbers of 1,550 to 1,750 cm(-1)) of the spectra were most frequently selected (reflecting changes in proteins and free amino acids) in comparisons between control and inoculant-treated fermentations. This corresponds to the known importance of rapid fermentation for the efficient conservation of forage proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
44 |
24
|
Theodorou MK, Mennim G, Davies DR, Zhu WY, Trinci AP, Brookman JL. Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proc Nutr Soc 1996; 55:913-26. [PMID: 9004333 DOI: 10.1079/pns19960088] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
Review |
29 |
43 |
25
|
Henske JK, Wilken SE, Solomon KV, Smallwood CR, Shutthanandan V, Evans JE, Theodorou MK, O'Malley MA. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose. Biotechnol Bioeng 2018; 115:874-884. [DOI: 10.1002/bit.26515] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/15/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
|
|
7 |
43 |