1
|
Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH. Functional discovery via a compendium of expression profiles. Cell 2000; 102:109-26. [PMID: 10929718 DOI: 10.1016/s0092-8674(00)00015-5] [Citation(s) in RCA: 1643] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
Collapse
|
|
25 |
1643 |
2
|
Meyer M, Schreck R, Baeuerle PA. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 1993; 12:2005-15. [PMID: 8491191 PMCID: PMC413423 DOI: 10.1002/j.1460-2075.1993.tb05850.x] [Citation(s) in RCA: 938] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We show that AP-1 is an antioxidant-responsive transcription factor. DNA binding and transactivation by AP-1 were induced in HeLa cells upon treatment with the antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetyl-L-cysteine (NAC), and upon transient expression of the antioxidative enzyme thioredoxin. While PDTC and NAC enhanced DNA binding and transactivation of AP-1 in response to phorbol ester, the oxidant H2O2 suppressed phorbol ester activation of the factor. H2O2 on its own was only a weak inducer of AP-1. Activation of AP-1 by PDTC was dependent on protein synthesis and involved transcriptional induction of c-jun and c-fos genes. Transcriptional activation of c-fos by PDTC was conferred by the serum response element, suggesting that serum response factor and associated proteins function as primary antioxidant-responsive transcription factors. In the same cell line, the oxidative stress-responsive transcription factor NF-kappa B behaved in a manner strikingly opposite to AP-1. DNA binding and transactivation by NF-kappa B were strongly activated by H2O2, while the antioxidants alone were ineffective. H2O2 potentiated the activation of NF-kappa B by phorbol ester, while PDTC and NAC suppressed PMA activation of the factor. PDTC did not influence protein kinase C (PKC) activity and PKC activation by PMA, indicating that the antioxidant acted downstream of and independently from PKC.
Collapse
|
|
32 |
938 |
3
|
Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001; 19:342-7. [PMID: 11283592 DOI: 10.1038/86730] [Citation(s) in RCA: 836] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a flexible system for gene expression profiling using arrays of tens of thousands of oligonucleotides synthesized in situ by an ink-jet printing method employing standard phosphoramidite chemistry. We have characterized the dependence of hybridization specificity and sensitivity on parameters including oligonucleotide length, hybridization stringency, sequence identity, sample abundance, and sample preparation method. We find that 60-mer oligonucleotides reliably detect transcript ratios at one copy per cell in complex biological samples, and that ink-jet arrays are compatible with several different sample amplification and labeling techniques. Furthermore, results using only a single carefully selected oligonucleotide per gene correlate closely with those obtained using complementary DNA (cDNA) arrays. Most of the genes for which measurements differ are members of gene families that can only be distinguished by oligonucleotides. Because different oligonucleotide sequences can be specified for each array, we anticipate that ink-jet oligonucleotide array technology will be useful in a wide variety of DNA microarray applications.
Collapse
|
|
24 |
836 |
4
|
Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 1987; 330:658-9. [PMID: 3317065 DOI: 10.1038/330658a0] [Citation(s) in RCA: 769] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Schwann cells and fibroblast-like cells of the intact sciatic nerve of adult rats synthesize very little nerve growth factor (NGF). After lesion, however, there is a dramatic increase in the amounts of both NGF-mRNA and NGF protein synthesized by the sciatic non-neuronal cells. This local increase in NGF synthesis partially replaces the interrupted NGF supply from the periphery to the NGF-responsive sensory and sympathetic neurons, whose axons run within the sciatic nerve. Macrophages, known to invade the site of nerve lesion during wallerian degeneration, are important in the regulation of NGF synthesis. Here we demonstrate that the effect of macrophages on NGF-mRNA levels in cultured explants of sciatic nerve can be mimicked by conditioned media of activated macrophages, and that interleukin-1 is the responsible agent.
Collapse
|
|
38 |
769 |
5
|
Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 2000; 287:873-80. [PMID: 10657304 DOI: 10.1126/science.287.5454.873] [Citation(s) in RCA: 726] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genome-wide transcript profiling was used to monitor signal transduction during yeast pheromone response. Genetic manipulations allowed analysis of changes in gene expression underlying pheromone signaling, cell cycle control, and polarized morphogenesis. A two-dimensional hierarchical clustered matrix, covering 383 of the most highly regulated genes, was constructed from 46 diverse experimental conditions. Diagnostic subsets of coexpressed genes reflected signaling activity, cross talk, and overlap of multiple mitogen-activated protein kinase (MAPK) pathways. Analysis of the profiles specified by two different MAPKs-Fus3p and Kss1p-revealed functional overlap of the filamentous growth and mating responses. Global transcript analysis reflects biological responses associated with the activation and perturbation of signal transduction pathways.
Collapse
|
|
25 |
726 |
6
|
Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Biophys Biochem Cytol 1992; 119:45-54. [PMID: 1527172 PMCID: PMC2289627 DOI: 10.1083/jcb.119.1.45] [Citation(s) in RCA: 576] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are molecules which regulate the development and maintenance of specific functions in different populations of peripheral and central neurons, amongst them sensory neurons of neural crest and placode origin. Under physiological conditions NGF is synthesized by peripheral target tissues, whereas BDNF synthesis is highest in the CNS. This situation changes dramatically after lesion of peripheral nerves. As previously shown, there is a marked rapid increase in NGF mRNA in the nonneuronal cells of the damaged nerve. The prolonged elevation of NGF mRNA levels is related to the immigration of activated macrophages, interleukin-1 being the most essential mediator of this effect. Here we show that transsection of the rat sciatic nerve also leads to a very marked increase in BDNF mRNA, the final levels being even ten times higher than those of NGF mRNA. However, the time-course and spatial pattern of BDNF mRNA expression are distinctly different. There is a continuous slow increase of BDNF mRNA starting after day 3 post-lesion and reaching maximal levels 3-4 wk later. These distinct differences suggest different mechanisms of regulation of NGF and BDNF synthesis in non-neuronal cells of the nerve. This was substantiated by the demonstration of differential regulation of these mRNAs in organ culture of rat sciatic nerve and Schwann cell culture. Furthermore, using bioassays and specific antibodies we showed that cultured Schwann cells are a rich source of BDNF- and ciliary neurotrophic factor (CNTF)-like neurotrophic activity in addition to NGF. Antisera raised against a BDNF-peptide demonstrated BDNF-immunoreactivity in pure cultured Schwann cells, but not in fibroblasts derived from sciatic nerve.
Collapse
|
research-article |
33 |
576 |
7
|
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 2001; 21:4347-68. [PMID: 11390663 PMCID: PMC87095 DOI: 10.1128/mcb.21.13.4347-4368.2001] [Citation(s) in RCA: 571] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2001] [Accepted: 04/03/2001] [Indexed: 11/20/2022] Open
Abstract
Starvation for amino acids induces Gcn4p, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. In an effort to identify all genes regulated by Gcn4p during amino acid starvation, we performed cDNA microarray analysis. Data from 21 pairs of hybridization experiments using two different strains derived from S288c revealed that more than 1,000 genes were induced, and a similar number were repressed, by a factor of 2 or more in response to histidine starvation imposed by 3-aminotriazole (3AT). Profiling of a gcn4Delta strain and a constitutively induced mutant showed that Gcn4p is required for the full induction by 3AT of at least 539 genes, termed Gcn4p targets. Genes in every amino acid biosynthetic pathway except cysteine and genes encoding amino acid precursors, vitamin biosynthetic enzymes, peroxisomal components, mitochondrial carrier proteins, and autophagy proteins were all identified as Gcn4p targets. Unexpectedly, genes involved in amino acid biosynthesis represent only a quarter of the Gcn4p target genes. Gcn4p also activates genes involved in glycogen homeostasis, and mutant analysis showed that Gcn4p suppresses glycogen levels in amino acid-starved cells. Numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn4p is a master regulator of gene expression. Interestingly, expression profiles for 3AT and the alkylating agent methyl methanesulfonate (MMS) overlapped extensively, and MMS induced GCN4 translation. Thus, the broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions. Finally, profiling of a gcn4Delta mutant uncovered an alternative induction pathway operating at many Gcn4p target genes in histidine-starved cells.
Collapse
|
research-article |
24 |
571 |
8
|
Abstract
beta 1 integrins are cell-surface receptors that mediate cell-cell and cell-matrix interactions. We have generated a null mutation in the gene for the beta 1 integrin subunit in mice and embryonic stem (ES) cells. Heterozygous mice are indistinguishable from normal littermates. Homozygous null embryos develop normally to the blastocyst stage, implant, and invade the uterine basement membrane but die shortly thereafter. Using beta 1 integrin-deficient ES cells we have established chimeric embryos and adult mice. Analysis of the chimeric embryos demonstrated the presence of beta 1 integrin-deficient cells in all germ layers indicating that beta 1-null cells can differentiate and migrate in a context of normal tissue. When evaluated at embryonic day 9.5 (E9.5), embryos with a beta 1-null cell contribution below 25% were developing normally, whereas embryos with a contribution above this threshold were distorted and showed abnormal morphogenesis. In adult chimeric mice beta 1 integrin-deficient cells failed to colonize liver and spleen but were found in all other tissues analyzed at levels from 2%-25%. Immunostaining of chimeric mice showed that in cardiac muscle, there were small, scattered patches of myocytes that were beta 1-null. In contrast, many myotubes showed some beta 1-null contribution as a result of fusion between wild-type and mutant myoblasts to form mixed myotubes. The adult chimeric brain contained beta 1-null cells in all regions analyzed. Also, tissues derived from the neural crest contained beta 1 integrin-deficient cells indicating that migration of neuronal cells as well as neural crest cells can occur in the absence of beta 1 integrins.
Collapse
|
Comparative Study |
30 |
542 |
9
|
Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai H, Bassett DE, Hartwell LH, Brown PO, Friend SH. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 1998; 4:1293-301. [PMID: 9809554 DOI: 10.1038/3282] [Citation(s) in RCA: 507] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe here a method for drug target validation and identification of secondary drug target effects based on genome-wide gene expression patterns. The method is demonstrated by several experiments, including treatment of yeast mutant strains defective in calcineurin, immunophilins or other genes with the immunosuppressants cyclosporin A or FK506. Presence or absence of the characteristic drug 'signature' pattern of altered gene expression in drug-treated cells with a mutation in the gene encoding a putative target established whether that target was required to generate the drug signature. Drug dependent effects were seen in 'targetless' cells, showing that FK506 affects additional pathways independent of calcineurin and the immunophilins. The described method permits the direct confirmation of drug targets and recognition of drug-dependent changes in gene expression that are modulated through pathways distinct from the drug's intended target. Such a method may prove useful in improving the efficiency of drug development programs.
Collapse
|
|
27 |
507 |
10
|
Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 1994; 75:434-42. [PMID: 8062417 DOI: 10.1161/01.res.75.3.434] [Citation(s) in RCA: 469] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase was shown to be reduced in failing human myocardium. The functional relevance of this finding, however, is not known. We investigated the relation between myocardial function and protein levels of SR Ca(2+)-ATPase in nonfailing human myocardium (8 muscle strips from 4 hearts) and in myocardium from end-stage failing hearts with dilated (10 muscle strips from 9 hearts) or ischemic (7 muscle strips from 5 hearts) cardiomyopathy. Myocardial function was evaluated by the force-frequency relation in isometrically contracting muscle strip preparations (37 degrees C, 30 to 180 min-1). In nonfailing myocardium, twitch tension rose with increasing rates of stimulation and was 76% higher at 120 min-1 compared with 30 min-1 (P < .02). In failing myocardium, there was no significant increase in average tension at stimulation rates above 30 min-1. At 120 min-1, twitch tension was decreased by 59% (P < .05) in dilated cardiomyopathy and 76% (P < .05) in ischemic cardiomyopathy compared with nonfailing myocardium. Protein levels of SR Ca(2+)-ATPase, normalized per total protein or per myosin, were reduced by 36% (P < .02) or 32% (P < .05), respectively, in failing compared with nonfailing myocardium. SR Ca(2+)-ATPase protein levels were closely related to SR Ca2+ uptake, measured in homogenates from the same hearts (r = .70, n = 16, and P < .005).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
31 |
469 |
11
|
Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci U S A 1987; 84:8735-9. [PMID: 2825206 PMCID: PMC299621 DOI: 10.1073/pnas.84.23.8735] [Citation(s) in RCA: 459] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In newborn rats the levels of nerve growth factor (NGF) mRNA (mRNANGF) and NGF receptor mRNA (mRNA(rec)) in the sciatic nerve were 10 and 120 times higher, respectively, than in adult animals. mRNA(rec) levels decreased steadily from birth, approaching adult levels by the third postnatal week, whereas mRNANGF levels decreased only after the first postnatal week, although also reaching adult levels by the third week. Transection of the adult sciatic nerve resulted in a marked biphasic increase in mRNANGF with time. On the proximal side of the cut, this increase was confined to the area immediately adjacent to the cut; peripherally, a similar biphasic increase was present in all segments. mRNA(rec) levels were also markedly elevated distal to the transection site, in agreement with previous results obtained by immunological methods [Taniuchi, M., Clark, H. B. & Johnson, E. M., Jr. (1986) Proc. Natl. Acad. Sci. USA 83, 4094-4098]. Following a crush lesion (allowing regeneration), the mRNA(rec) levels were rapidly down-regulated as the regenerating nerve fibers passed through the distal segments. Down-regulation of mRNANGF also occurred during regeneration but was slower and not as extensive as that of mRNA(rec) over the time period studied. Changes in mRNANGF and mRNA(rec) occurring in vivo after transection were compared with those observed in pieces of sciatic nerve kept in culture. No difference was found for mRNA(rec). Only the initial rapid increase in mRNANGF occurred in culture, but the in vivo situation could be mimicked by the addition of activated macrophages. This reflects the situation in vivo where, after nerve lesion, macrophages infiltrate the area of the Wallerian degeneration. These results suggest that mRNANGF synthesis in sciatic non-neuronal cells is regulated by macrophages, whereas mRNA(rec) synthesis is determined by axonal contact.
Collapse
|
research-article |
38 |
459 |
12
|
Toker A, Meyer M, Reddy KK, Falck JR, Aneja R, Aneja S, Parra A, Burns DJ, Ballas LM, Cantley LC. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31643-0] [Citation(s) in RCA: 418] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
|
31 |
418 |
13
|
Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 1999; 144:151-60. [PMID: 9885251 PMCID: PMC2148127 DOI: 10.1083/jcb.144.1.151] [Citation(s) in RCA: 411] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1998] [Revised: 11/19/1998] [Indexed: 11/22/2022] Open
Abstract
The LAMC1 gene coding for the laminin gamma1 subunit was targeted by homologous recombination in mouse embryonic stem cells. Mice heterozygous for the mutation had a normal phenotype and were fertile, whereas homozygous mutant embryos did not survive beyond day 5.5 post coitum. These embryos lacked basement membranes and although the blastocysts had expanded, primitive endoderm cells remained in the inner cell mass, and the parietal yolk sac did not develop. Cultured embryonic stem cells appeared normal after targeting both LAMC1 genes, but the embryoid bodies derived from them also lacked basement membranes, having disorganized extracellular deposits of the basement membrane proteins collagen IV and perlecan, and the cells failed to differentiate into stable myotubes. Secretion of the linking protein nidogen and a truncated laminin alpha1 subunit did occur, but these were not deposited in the extracellular matrix. These results show that the laminin gamma1 subunit is necessary for laminin assembly and that laminin is in turn essential for the organization of other basement membrane components in vivo and in vitro. Surprisingly, basement membranes are not necessary for the formation of the first epithelium to develop during embryogenesis, but first become required for extra embryonic endoderm differentiation.
Collapse
|
research-article |
26 |
411 |
14
|
Tucker KL, Meyer M, Barde YA. Neurotrophins are required for nerve growth during development. Nat Neurosci 2001; 4:29-37. [PMID: 11135642 DOI: 10.1038/82868] [Citation(s) in RCA: 407] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although the requirement of neurotrophins for the prevention of cell death in the peripheral nervous system is well established, their physiological involvement in nerve growth is still unclear. To address this question, we generated a mouse that expresses the green fluorescent protein in post-mitotic neurons, allowing the repeated visualization of all motor and sensory axons during development. We imaged the growth of these axons into the limb bud of day 10.5 embryos. Sensory axons, but rarely motor axons, were targeted to ectopically placed beads containing any of the neurotrophins NGF, BDNF, NT-3 or NT-4/5. Conversely, a combination of function-blocking monoclonal antibodies to NGF, BDNF and NT-3 dramatically inhibited elongation of both sensory and motor axons in the limb bud, indicating that the growth of mixed nerves is dependent upon neurotrophins during development.
Collapse
|
|
24 |
407 |
15
|
Hughes TR, Roberts CJ, Dai H, Jones AR, Meyer MR, Slade D, Burchard J, Dow S, Ward TR, Kidd MJ, Friend SH, Marton MJ. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 2000; 25:333-7. [PMID: 10888885 DOI: 10.1038/77116] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression profiling using DNA microarrays holds great promise for a variety of research applications, including the systematic characterization of genes discovered by sequencing projects. To demonstrate the general usefulness of this approach, we recently obtained expression profiles for nearly 300 Saccharomyces cerevisiae deletion mutants. Approximately 8% of the mutants profiled exhibited chromosome-wide expression biases, leading to spurious correlations among profiles. Competitive hybridization of genomic DNA from the mutant strains and their isogenic parental wild-type strains showed they were aneuploid for whole chromosomes or chromosomal segments. Expression profile data published by several other laboratories also suggest the use of aneuploid strains. In five separate cases, the extra chromosome harboured a close homologue of the deleted gene; in two cases, a clear growth advantage for cells acquiring the extra chromosome was demonstrated. Our results have implications for interpreting whole-genome expression data, particularly from cells known to suffer genomic instability, such as malignant or immortalized cells.
Collapse
|
|
25 |
348 |
16
|
Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Büttner M, Rziha HJ, Dehio C. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 1999; 18:363-74. [PMID: 9889193 PMCID: PMC1171131 DOI: 10.1093/emboj/18.2.363] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The different members of the vascular endothelial growth factor (VEGF) family act as key regulators of endothelial cell function controlling vasculogenesis, angiogenesis, vascular permeability and endothelial cell survival. In this study, we have functionally characterized a novel member of the VEGF family, designated VEGF-E. VEGF-E sequences are encoded by the parapoxvirus Orf virus (OV). They carry the characteristic cysteine knot motif present in all mammalian VEGFs, while forming a microheterogenic group distinct from previously described members of this family. VEGF-E was expressed as the native protein in mammalian cells or as a recombinant protein in Escherichia coli and was shown to act as a heat-stable, secreted dimer. VEGF-E and VEGF-A were found to possess similar bioactivities, i.e. both factors stimulate the release of tissue factor (TF), the proliferation, chemotaxis and sprouting of cultured vascular endothelial cells in vitro and angiogenesis in vivo. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation and a biphasic rise in free intracellular Ca2+ concentration, whilst in contrast to VEGF-A, VEGF-E did not bind to VEGF receptor-1 (Flt-1). VEGF-E is thus a potent angiogenic factor selectively binding to VEGF receptor-2. These data strongly indicate that activation of VEGF receptor-2 alone can efficiently stimulate angiogenesis.
Collapse
|
research-article |
26 |
333 |
17
|
Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A 1997; 94:1488-93. [PMID: 9037080 PMCID: PMC19818 DOI: 10.1073/pnas.94.4.1488] [Citation(s) in RCA: 328] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intracellular calcium-binding proteins are abundantly expressed in many neuronal populations. Previous evidence suggests that calcium-binding proteins can modulate various neuronal properties, presumably by their action as calcium buffers. The importance of calcium-binding proteins for nervous system function in an intact integrated system is, however, less clear. To investigate the physiological role of a major endogenous calcium-binding protein, calbindin D28k (calbindin) in vivo, we have generated calbindin null mutant mice by gene targeting. Surprisingly, calbindin deficiency does not affect general parameters of development and behavior or the structure of the nervous system at the light microscopic level. Null mutants are, however, severely impaired in tests of motor coordination, suggesting functional deficits in cerebellar pathways. Purkinje neurons, the only efferent of the cerebellar cortex, and inferior olive neurons, the source of the climbing fiber afferent, have previously been shown to express calbindin. Correlated with this unusual type of ataxia, confocal calcium imaging of Purkinje cells in cerebellar slices revealed marked changes of synaptically evoked postsynaptic calcium transients. Their fast, but not their slow, decay component had larger amplitudes in null mutant than in wild-type mice. We conclude that endogenous calbindin is of crucial importance for integrated nervous system function.
Collapse
|
research-article |
28 |
328 |
18
|
Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995; 92:778-84. [PMID: 7641356 DOI: 10.1161/01.cir.92.4.778] [Citation(s) in RCA: 322] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Previous studies provide considerable evidence that excitation-contraction coupling may be disturbed at the level of the sarcoplasmic reticulum (SR) in the failing human heart. Disturbed SR function may result from altered expression of calcium-handling proteins. METHODS AND RESULTS Levels of SR proteins involved in calcium release (ryanodine receptor), calcium binding (calsequestrin, calreticulin), and calcium uptake (calcium ATPase, phospholamban) were measured by Western blot analysis in nonfailing human myocardium (n = 7) and in end-stage failing myocardium due to dilated cardiomyopathy (n = 14). The levels of the ryanodine receptor, calsequestrin, and calreticulin were not significantly different in nonfailing and failing human myocardium. Phospholamban protein levels (pentameric form) normalized per total protein were decreased by 18% in the failing myocardium (P < .05). However, phospholamban protein levels were not significantly different in failing and nonfailing myocardium when normalization was performed per calsequestrin. Protein levels of SR calcium ATPase, normalized per total protein or per calsequestrin, were decreased by 41% (P < .001) or 33% (P < .05), respectively, in the failing myocardium. Furthermore, SR calcium ATPase was decreased relative to ryanodine receptor by 37% (P < .05) and relative to phospholamban by 28% (P < .05). CONCLUSIONS Levels of SR proteins involved in calcium binding and release are unchanged in failing dilated cardiomyopathy. In contrast, protein levels of calcium ATPase involved in SR calcium uptake are reduced in the failing myocardium. Moreover, SR calcium ATPase is decreased relative to its inhibitory protein, phospholamban.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
30 |
322 |
19
|
Fiebach JB, Schellinger PD, Jansen O, Meyer M, Wilde P, Bender J, Schramm P, Jüttler E, Oehler J, Hartmann M, Hähnel S, Knauth M, Hacke W, Sartor K. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 2002; 33:2206-10. [PMID: 12215588 DOI: 10.1161/01.str.0000026864.20339.cb] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Diffusion-weighted MRI (DWI) has become a commonly used imaging modality in stroke centers. The value of this method as a routine procedure is still being discussed. In previous studies, CT was always performed before DWI. Therefore, infarct progression could be a reason for the better result in DWI. METHODS All hyperacute (<6 hours) stroke patients admitted to our emergency department with a National Institutes of Health Stroke Scale (NIHSS) score >3 were prospectively randomized for the order in which CT and MRI were performed. Five stroke experts and 4 residents blinded to clinical data judged stroke signs and lesion size on the images. To determine the interrater variability, we calculated kappa values for both rating groups. RESULTS A total of 50 patients with ischemic stroke and 4 patients with transient symptoms of acute stroke (median NIHSS score, 11; range, 3 to 27) were analyzed. Of the 50 patients, 55% were examined with DWI first. The mean delay from symptom onset until CT was 180 minutes; that from symptom onset until DWI was 189 minutes. The mean delay between DWI and CT was 30 minutes. The sensitivity of infarct detection by the experts was significantly better when based on DWI (CT/DWI, 61/91%). Accuracy was 91% when based on DWI (CT, 61%). Interrater variability of lesion detection was also significantly better for DWI (CT/DWI, kappa=0.51/0.84). The assessment of lesion extent was less homogeneous on CT (CT/DWI, kappa=0.38/0.62). The differences between the 2 modalities were stronger in the residents' ratings (CT/DWI: sensitivity, 46/81%; kappa=0.38/0.76). CONCLUSIONS CT and DWI performed with the same delay after onset of ischemic stroke resulted in significant differences in diagnostic accuracy. DWI gives good interrater homogeneity and has a substantially better sensitivity and accuracy than CT even if the raters have limited experience.
Collapse
|
Clinical Trial |
23 |
318 |
20
|
Stenson BJ, Tarnow-Mordi WO, Darlow BA, Simes J, Juszczak E, Askie L, Battin M, Bowler U, Broadbent R, Cairns P, Davis PG, Deshpande S, Donoghoe M, Doyle L, Fleck BW, Ghadge A, Hague W, Halliday HL, Hewson M, King A, Kirby A, Marlow N, Meyer M, Morley C, Simmer K, Tin W, Wardle SP, Brocklehurst P. Oxygen saturation and outcomes in preterm infants. N Engl J Med 2013; 368:2094-104. [PMID: 23642047 DOI: 10.1056/nejmoa1302298] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The clinically appropriate range for oxygen saturation in preterm infants is unknown. Previous studies have shown that infants had reduced rates of retinopathy of prematurity when lower targets of oxygen saturation were used. METHODS In three international randomized, controlled trials, we evaluated the effects of targeting an oxygen saturation of 85 to 89%, as compared with a range of 91 to 95%, on disability-free survival at 2 years in infants born before 28 weeks' gestation. Halfway through the trials, the oximeter-calibration algorithm was revised. Recruitment was stopped early when an interim analysis showed an increased rate of death at 36 weeks in the group with a lower oxygen saturation. We analyzed pooled data from patients and now report hospital-discharge outcomes. RESULTS A total of 2448 infants were recruited. Among the 1187 infants whose treatment used the revised oximeter-calibration algorithm, the rate of death was significantly higher in the lower-target group than in the higher-target group (23.1% vs. 15.9%; relative risk in the lower-target group, 1.45; 95% confidence interval [CI], 1.15 to 1.84; P=0.002). There was heterogeneity for mortality between the original algorithm and the revised algorithm (P=0.006) but not for other outcomes. In all 2448 infants, those in the lower-target group for oxygen saturation had a reduced rate of retinopathy of prematurity (10.6% vs. 13.5%; relative risk, 0.79; 95% CI, 0.63 to 1.00; P=0.045) and an increased rate of necrotizing enterocolitis (10.4% vs. 8.0%; relative risk, 1.31; 95% CI, 1.02 to 1.68; P=0.04). There were no significant between-group differences in rates of other outcomes or adverse events. CONCLUSIONS Targeting an oxygen saturation below 90% with the use of current oximeters in extremely preterm infants was associated with an increased risk of death. (Funded by the Australian National Health and Medical Research Council and others; BOOST II Current Controlled Trials number, ISRCTN00842661, and Australian New Zealand Clinical Trials Registry numbers, ACTRN12605000055606 and ACTRN12605000253606.).
Collapse
|
Multicenter Study |
12 |
312 |
21
|
Schwaller B, Meyer M, Schiffmann S. 'New' functions for 'old' proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. CEREBELLUM (LONDON, ENGLAND) 2002; 1:241-58. [PMID: 12879963 DOI: 10.1080/147342202320883551] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calretinin (CR), calbindin D-28k (CB) and parvalbumin (PV) belong to the large family of EF-hand calcium-binding proteins, which comprises more than 200 members in man. Structurally these proteins are characterized by the presence of a variable number of evolutionary well-conserved helix-loop-helix motives, which bind Ca2+ ions with high affinity. Functionally, they fall into two groups: by interaction with target proteins, calcium sensors translate calcium concentrations into signaling cascades, whereas calcium buffers are thought to modify the spatiotemporal aspects of calcium transients. Although CR, CB and PV are currently being considered calcium buffers, this may change as we learn more about their biology. Remarkable differences in their biophysical properties have led to the distinction of fast and slow buffers and suggested functional specificity of individual calcium buffers. Evaluation of the physiological roles of CR, CB and PV has been facilitated by the recent generation of mouse strains deficient in these proteins. Here, we review the biology of these calcium-binding proteins with distinct reference to the cerebellum, since they are particularly enriched in specific cerebellar neurons. CR is principally expressed in granule cells and their parallel fibres, while PV and CB are present throughout the axon, soma, dendrites and spines of Purkinje cells. PV is additionally found in a subpopulation of inhibitory interneurons, the stellate and basket cells. Studies on deficient mice together with in vitro work and their unique cell type-specific distribution in the cerebellum suggest that these calcium-binding proteins have evolved as functionally distinct, physiologically relevant modulators of intracellular calcium transients. Analysis of different brain regions suggests that these proteins are involved in regulating calcium pools critical for synaptic plasticity. Surprisingly, a major role of any of these three calcium-binding proteins as an endogenous neuroprotectant is not generally supported.
Collapse
|
Review |
23 |
295 |
22
|
Le Ru EC, Meyer M, Etchegoin PG. Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J Phys Chem B 2006; 110:1944-8. [PMID: 16471765 DOI: 10.1021/jp054732v] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method is proposed to pin down unambiguous proof for single-molecule sensitivity in surface enhanced Raman spectroscopy (SERS). The simultaneous use of two analyte molecules enables a clear confirmation of the single (or few)-molecule nature of the signals. This method eliminates most of the uncertainties associated with low dye concentrations in previous experiments. It further shows that single- or few-molecule signals are very common in SERS, both in liquids and on dry substrates.
Collapse
|
|
19 |
288 |
23
|
Shoemaker DD, Schadt EE, Armour CD, He YD, Garrett-Engele P, McDonagh PD, Loerch PM, Leonardson A, Lum PY, Cavet G, Wu LF, Altschuler SJ, Edwards S, King J, Tsang JS, Schimmack G, Schelter JM, Koch J, Ziman M, Marton MJ, Li B, Cundiff P, Ward T, Castle J, Krolewski M, Meyer MR, Mao M, Burchard J, Kidd MJ, Dai H, Phillips JW, Linsley PS, Stoughton R, Scherer S, Boguski MS. Experimental annotation of the human genome using microarray technology. Nature 2001; 409:922-7. [PMID: 11237012 DOI: 10.1038/35057141] [Citation(s) in RCA: 276] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.
Collapse
|
Evaluation Study |
24 |
276 |
24
|
Homsy J, Meyer M, Tateno M, Clarkson S, Levy JA. The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science 1989; 244:1357-60. [PMID: 2786647 DOI: 10.1126/science.2786647] [Citation(s) in RCA: 274] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.
Collapse
|
|
36 |
274 |
25
|
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 2019; 18:24. [PMID: 30885217 PMCID: PMC6423854 DOI: 10.1186/s12938-019-0647-0] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Collapse
|
Review |
6 |
269 |