1
|
Levin R, Brown MJ, Kashtock ME, Jacobs DE, Whelan EA, Rodman J, Schock MR, Padilla A, Sinks T. Lead exposures in U.S. Children, 2008: implications for prevention. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1285-93. [PMID: 18941567 PMCID: PMC2569084 DOI: 10.1289/ehp.11241] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/19/2008] [Indexed: 05/03/2023]
Abstract
OBJECTIVE We reviewed the sources of lead in the environments of U.S. children, contributions to children's blood lead levels, source elimination and control efforts, and existing federal authorities. Our context is the U.S. public health goal to eliminate pediatric elevated blood lead levels (EBLs) by 2010. DATA SOURCES National, state, and local exposure assessments over the past half century have identified risk factors for EBLs among U.S. children, including age, race, income, age and location of housing, parental occupation, and season. DATA EXTRACTION AND SYNTHESIS Recent national policies have greatly reduced lead exposure among U.S. children, but even very low exposure levels compromise children's later intellectual development and lifetime achievement. No threshold for these effects has been demonstrated. Although lead paint and dust may still account for up to 70% of EBLs in U.S. children, the U.S. Centers for Disease Control and Prevention estimates that >or=30% of current EBLs do not have an immediate lead paint source, and numerous studies indicate that lead exposures result from multiple sources. EBLs and even deaths have been associated with inadequately controlled sources including ethnic remedies and goods, consumer products, and food-related items such as ceramics. Lead in public drinking water and in older urban centers remain exposure sources in many areas. CONCLUSIONS Achieving the 2010 goal requires maintaining current efforts, especially programs addressing lead paint, while developing interventions that prevent exposure before children are poisoned. It also requires active collaboration across all levels of government to identify and control all potential sources of lead exposure, as well as primary prevention.
Collapse
|
review-article |
17 |
239 |
2
|
|
|
36 |
131 |
3
|
Schock MR, Hyland RN, Welch MM. Occurrence of contaminant accumulation in lead pipe scales from domestic drinking-water distribution systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4285-91. [PMID: 18613340 DOI: 10.1021/es702488v] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.
Collapse
|
|
17 |
98 |
4
|
|
|
45 |
87 |
5
|
Del Toral MA, Porter A, Schock MR. Detection and evaluation of elevated lead release from service lines: a field study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9300-7. [PMID: 23879429 DOI: 10.1021/es4003636] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Comparative stagnation sampling conducted in 32 homes in Chicago, Illinois with lead service lines demonstrated that the existing regulatory sampling protocol under the U.S. Lead and Copper Rule systematically misses the high lead levels and potential human exposure. Lead levels measured with sequential sampling were highest within the lead service lines, with maximum values more than four times higher than Chicago's regulatory compliance results using a first-draw sampling protocol. There was significant variability in lead values from different points within individual lead service lines and among different lead service line sites across the city. Although other factors could also influence lead levels, the highest lead results most often were associated with sites having known disturbances to the lead service lines. This study underscores the importance and interdependence of sample site selection, sampling protocol, and other factors in assessing lead levels in a public water system.
Collapse
|
|
12 |
86 |
6
|
|
|
29 |
85 |
7
|
Schock MR, Gardels MC. Plumbosolvency reduction by high pH and low carbonate-solubility relationships. ACTA ACUST UNITED AC 1983. [DOI: 10.1002/j.1551-8833.1983.tb05072.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
42 |
60 |
8
|
Stets EG, Lee CJ, Lytle DA, Schock MR. Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1498-1509. [PMID: 28797521 PMCID: PMC7390064 DOI: 10.1016/j.scitotenv.2017.07.119] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 05/26/2023]
Abstract
Corrosion in water-distribution systems is a costly problem and controlling corrosion is a primary focus of efforts to reduce lead (Pb) and copper (Cu) in tap water. High chloride concentrations can increase the tendency of water to cause corrosion in distribution systems. The effects of chloride are also expressed in several indices commonly used to describe the potential corrosivity of water, the chloride-sulfate mass ratio (CSMR) and the Larson Ratio (LR). Elevated CSMR has been linked to the galvanic corrosion of Pb whereas LR is indicative of the corrosivity of water to iron and steel. Despite the known importance of chloride, CSMR, and LR to the potential corrosivity of water, monitoring of seasonal and interannual changes in these parameters is not common among water purveyors. We analyzed long-term trends (1992-2012) and the current status (2010-2015) of chloride, CSMR, and LR in order to investigate the short and long-term temporal variability in potential corrosivity of US streams and rivers. Among all sites in the trend analyses, chloride, CSMR, and LR increased slightly, with median changes of 0.9mgL-1, 0.08, and 0.01, respectively. However, urban-dominated sites had much larger increases, 46.9mgL-1, 2.50, and 0.53, respectively. Median CSMR and LR in urban streams (4.01 and 1.34, respectively) greatly exceeded thresholds found to cause corrosion in water distribution systems (0.5 and 0.3, respectively). Urbanization was strongly correlated with elevated chloride, CSMR, and LR, especially in the most snow-affected areas in the study, which are most likely to use road salt. The probability of Pb action-level exceedances (ALEs) in drinking water facilities increased along with raw surface water CSMR, indicating a statistical connection between surface water chemistry and corrosion in drinking water facilities. Optimal corrosion control will require monitoring of critical constituents reflecting the potential corrosivity in surface waters.
Collapse
|
research-article |
7 |
53 |
9
|
Schock MR. Causes of temporal variability of lead in domestic plumbing systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 1990; 15:59-82. [PMID: 24243429 DOI: 10.1007/bf00454749] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sources of lead in drinking water are primarily lead pipe, lead/tin solder, and brass fixture materials.Lead levels in the water depend upon many solubility factors, such as pH, concentrations of substances such as inorganic carbonate, orthophosphate, chlorine, and silicate, the temperature, the nature of the pipe surface, etc. Physical factors, time, and chemical mass transfer are significant in governing lead levels in nonequilibrium systems. The diameter and length of lead pipe is extremely important, as well as the age and chemical history of the solder and brass fixtures. Analytical variability is not particularly significant relative to between-site and within-site variability. Knowledge of temporal variability at each site is necessary to define a statistically valid monitoring program. An analysis of published data covering repetitive measurements at a given site show that the variability of lead concentration at each site tends to be characterized by the frequent occurrence of 'spikes'. Variability expressed as approximate relative standard deviations tends to be of about 50 to 75% in untreated water, regardless of the mean lead concentration. The distributions are frequently nonnormal for small numbers of samples. Monitoring programs must incorporate controls for the causes of the within-site and between-site variability into their sampling design. The determination of necessary sampling frequency, sample number, and sample volume must be made with consideration of the system variability, or the results will be unrepresentative and irreproducible.
Collapse
|
|
35 |
44 |
10
|
|
|
37 |
41 |
11
|
|
|
17 |
39 |
12
|
Wasserstrom LW, Miller SA, Triantafyllidou S, DeSANTIS MK, Schock MR. Scale Formation Under Blended Phosphate Treatment for a Utility With Lead Pipes. ACTA ACUST UNITED AC 2017; 109:E464-E478. [PMID: 32801380 DOI: 10.5942/jawwa.2017.109.0121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
US corrosion control practice often assumes that the orthophosphate component of blended phosphate corrosion inhibitors causes the formation of low-solubility lead-orthophosphate solids that control lead release into drinking water. This study identified the solids that formed on the interior surface of a lead service line and a galvanized steel pipe excavated from a system using a proprietary blended phosphate chemical. The scale was analyzed by X-ray diffraction, X-ray fluorescence, and scanning electron microscopy/energy dispersive spectroscopy. Instead of crystalline lead-orthophosphate solids, a porous amorphous layer rich in aluminum, calcium, phosphorus, and lead was observed at the lead pipe scale-water interface. Thus, the mechanism inhibiting lead release into the water was not a thermodynamically predictable passivating lead-orthophosphate scale, but rather an amorphous barrier deposit that was possibly vulnerable to disturbances. Galvanized pipe scales showed relatively crystalline iron and zinc compounds, with additional surface deposition of aluminum, phosphorus, calcium, and lead.
Collapse
|
Journal Article |
8 |
34 |
13
|
Schock MR, Lytle DA, Sandvig AM, Clement J, Harmon SM. Replacing polyphosphate with silicate to solve lead, copper, and source water iron problems. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/j.1551-8833.2005.tb07521.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
20 |
33 |
14
|
Gerke TL, Scheckel KG, Schock MR. Identification and distribution of vanadinite (Pb5(V5+O4)3Cl) in lead pipe corrosion by-products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:4412-4418. [PMID: 19603655 DOI: 10.1021/es900501t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study presents the first detailed look at vanadium (V) speciation in drinking water pipe corrosion scales. A pool of 34 scale layers from 15 lead or lead-lined pipes representing eight different municipal drinking water distribution systems in the Northeastern and Midwestern portions of the United States were examined. Diverse synchrotron-based techniques, including bulk XANES (X-ray absorption near edge spectroscopy), micro-XANES, micro-XRD (X-ray diffraction), and micro-XRF (X-ray fluorescence) mapping were employed along with traditional powder XRD, SEM-EDXA (scanning electron microscopy-energy dispersive X-ray analysis), and ICP-OES (inductively coupled plasma-optical emission spectrometry) to evaluate vanadium speciation and distribution in these deposits. Vanadinite (Pb5(VO4)3Cl) was positively identified, and occurred most frequently in the surface layers. Low V(tot) in these waters is likely the limiting factor in the abundance of vanadinite in the pipe scales, along with the existence of divalent lead. The occurrence of V in these samples as a discrete mineral is important because it is formed in the presence of very low concentrations of V in the finished water, it provides a mechanism to concentrate microg x L(-1) amounts of V from the water to near-percent levels in the pipe scales, and the robustness of V accumulation and release in response to water chemistry changes is likely different than it would be with a sorption accumulation mechanism. Extrapolation from limited existing water chemistry data in this study provides an estimate of deltaG(f)degrees for vanadinite as approximately -3443 kJ x mol(-1), or less, leading to a log K(s)0 value of approximately -86 for the reaction Pb5(VO4)3CI(s) equilibrium {Pb2+}5 + {VO4(3-) + {Cl-}, in which {} denotes activity.
Collapse
|
|
16 |
32 |
15
|
Tully J, DeSantis MK, Schock MR. Water quality–pipe deposit relationships in Midwestern lead pipes. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/aws2.1127] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
6 |
30 |
16
|
Triantafyllidou S, Burkhardt J, Tully J, Cahalan K, DeSantis M, Lytle D, Schock M. Variability and sampling of lead (Pb) in drinking water: Assessing potential human exposure depends on the sampling protocol. ENVIRONMENT INTERNATIONAL 2021; 146:106259. [PMID: 33395926 PMCID: PMC7879988 DOI: 10.1016/j.envint.2020.106259] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/27/2023]
Abstract
Lead (Pb) in drinking water has re-emerged as a modern public health threat which can vary widely in space and in time (i.e., between homes, within homes and even at the same tap over time). Spatial and temporal water Pb variability in buildings is the combined result of water chemistry, hydraulics, Pb plumbing materials and water use patterns. This makes it challenging to obtain meaningful water Pb data with which to estimate potential exposure to residents. The objectives of this review paper are to describe the root causes of intrinsic Pb variability in drinking water, which in turn impacts the numerous existing water sampling protocols for Pb. Such knowledge can assist the public health community, the drinking water industry, and other interested groups to interpret/compare existing drinking water Pb data, develop appropriate sampling protocols to answer specific questions relating to Pb in water, and understand potential exposure to Pb-contaminated water. Overall, review of the literature indicated that drinking water sampling for Pb assessment can serve many purposes. Regulatory compliance sampling protocols are useful in assessing community-wide compliance with a water Pb regulatory standard by typically employing practical single samples. More complex multi-sample protocols are useful for comprehensive Pb plumbing source determination (e.g., Pb service line, Pb brass faucet, Pb solder joint) or Pb form identification (i.e., particulate Pb release) in buildings. Exposure assessment sampling can employ cumulative water samples that directly capture an approximate average water Pb concentration over a prolonged period of normal household water use. Exposure assessment may conceivably also employ frequent random single samples, but this approach warrants further investigation. Each protocol has a specific use answering one or more questions relevant to Pb in water. In order to establish statistical correlations to blood Pb measurements or to predict blood Pb levels from existing datasets, the suitability of available drinking water Pb datasets in representing water Pb exposure needs to be understood and the uncertainties need to be characterized.
Collapse
|
Review |
4 |
24 |
17
|
Lytle DA, Schock MR, Formal C, Bennett-Stamper C, Harmon S, Nadagouda MN, Williams D, DeSantis MK, Tully J, Pham M. Lead Particle Size Fractionation and Identification in Newark, New Jersey's Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13672-13679. [PMID: 33089978 PMCID: PMC7702024 DOI: 10.1021/acs.est.0c03797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Following a pH reduction in their drinking water over a span of more than 20 years, the City of Newark, New Jersey, has struggled with elevated lead (Pb) release from Pb service lines and domestic plumbing in the zone fed by the Pequannock Water Treatment Plant. In response, Newark initiated orthophosphate addition and provided faucet-mounted point-of-use (POU) filters and pitcher filters certified for Pb and particulate reduction under NSF/ANSI Standards 53 and 42 to residential homes in that zone. Water chemistry analysis and size fractionation sampling were performed at four of these houses. Analysis of the particulate material retained by the fractionation filters revealed that Pb was dominantly present in the water as fine Pb(II) orthophosphate particles. A considerable amount of the particulates occurred as a nanoscale fraction that sometimes passed through the POU faucet or pitcher filtration units. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive spectroscopy analyses showed that the nanoparticles (<100 nm) and their aggregates were composed of Pb, phosphorus, and chlorine, which are consistent with pyromorphite, Pb5(PO4)3Cl. Electron diffraction and X-ray analyses supported the presence of hydroxypyromorphite and chloropyromorphite nanoparticles and the size range estimates from the imaging. This research confirmed that nonadherent Pb(II)-orthophosphate nanoparticles were an important form of Pb in drinking water in the Pequannock water quality zone of Newark.
Collapse
|
research-article |
5 |
22 |
18
|
Bosscher V, Lytle DA, Schock MR, Porter A, Del Toral M. POU water filters effectively reduce lead in drinking water: a demonstration field study in flint, Michigan. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:484-493. [PMID: 31074704 PMCID: PMC7402230 DOI: 10.1080/10934529.2019.1611141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
A field study was conducted to test the effectiveness of faucet-mounted point of use (POU) water filters for removing high concentrations of lead in drinking water from premise plumbing sources and lead service lines (LSL). These filters were concurrently certified for total lead removal under NSF/ANSI Standard 53 (NSF/ANSI-53) and for fine particulate (Class I) reduction under NSF/ANSI Standard 42 (NSF/ANSI-42). In 2016, filtered and unfiltered drinking water samples were collected at over 345 locations in Flint, Michigan. Over 97% of filtered water samples contained lead below 0.5 µg/L. The maximum lead concentration in filtered water was 2.9 µg/L, well below the bottled water standard. The effectiveness of the POU activated carbon block filters in reducing lead concentrations, even above the 150 µg/L NSF/ANSI-53 challenge standard, is likely related to trapping particles due to the small effective pore size of the filters, in addition to ion-exchange or sorption removal of soluble lead. Properly installed and maintained POU filters, certified under both NSF/ANSI-53 (for total lead) and NSF/ANSI-42 (for fine particulate), can protect all populations, including pregnant women and children, by reducing lead in drinking water to levels that would not result in a significant increase in overall lead exposure.
Collapse
|
research-article |
6 |
22 |
19
|
Schock MR, Sandvig AM. Long-term effects of orthophosphate treatment on copper concentration. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/j.1551-8833.2009.tb09925.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
16 |
17 |
20
|
Schock MR, Buelow RW. The behavior of asbestos-cement pipe under various water quality conditions: Part 2, theoretical considerations. ACTA ACUST UNITED AC 1981. [DOI: 10.1002/j.1551-8833.1981.tb04827.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
44 |
16 |
21
|
Stanek LW, Xue J, Lay CR, Helm EC, Schock M, Lytle DA, Speth TF, Zartarian VG. Modeled Impacts of Drinking Water Pb Reduction Scenarios on Children's Exposures and Blood Lead Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9474-9482. [PMID: 32638591 PMCID: PMC10251739 DOI: 10.1021/acs.est.0c00479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, environmental lead (Pb) exposure through drinking water has resulted in community public health concerns. To understand potential impacts on blood Pb levels (BLLs) from drinking water Pb reduction actions (i.e., combinations of lead service lines [LSL] and corrosion control treatment [CCT] scenarios), EPA's Stochastic Human Exposure and Dose Simulation (SHEDS)-Multimedia/Integrated Exposure Uptake and Biokinetic (IEUBK) model was applied for U.S. children aged 0 to <6 years. The results utilizing a large drinking water sequential sampling data set from 15 cities to estimate model input concentration distributions demonstrated lowest predicted BLLs for the "no LSLs" with "combined CCT" scenario and highest predicted BLLs for the "yes LSLs" and "no CCT" scenario. Modeled contribution to BLLs from ingestion of residential drinking water ranged from ∼10 to 80%, with the highest estimated for formula-fed infants (age 0 to <1 year). Further analysis using a "bounding" data set spanning a range of realistic water Pb concentrations and variabilities showed BLL predictions consistent with the sequential sampling-derived inputs. Our study illustrates (1) effectiveness of LSL replacement coupled with CCT for reducing Pb in drinking water and children's BLLs, and (2) in some age groups, under realistic local and residential water use conditions, drinking water can be the dominant exposure pathway.
Collapse
|
research-article |
5 |
14 |
22
|
Burkhardt JB, Woo H, Mason J, Shang F, Triantafyllidou S, Schock MR, Lytle D, Murray R. Framework for Modeling Lead in Premise Plumbing Systems Using EPANET. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT 2020; 24:10.1061/(asce)wr.1943-5452.0001304. [PMID: 33627937 PMCID: PMC7898126 DOI: 10.1061/(asce)wr.1943-5452.0001304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/02/2020] [Indexed: 05/28/2023]
Abstract
The lead contamination of drinking water in homes and buildings remains an important public health concern. In order to assess strategies to measure and reduce exposure to lead from drinking water, models are needed that incorporate the multiple factors affecting lead concentrations in premise plumbing systems (PPS). In this study, the use of EPANET, a commonly used hydraulic and water quality model for water distribution systems, was assessed for its ability to predict lead concentrations in PPS. The model was calibrated and validated against data collected from multiple experiments in the EPA's Home Plumbing Simulator that contained a lead service line and other lead sources. The EPANET's first-order saturation kinetics model was used to simulate the dissolution of lead in the lead service line. A version of EPANET was developed to include one-dimensional mass dispersion. Modeling results were compared to experimental data, and recommendations were made to improve the EPANET-based modeling framework for predicting lead concentrations in PPS.
Collapse
|
research-article |
5 |
12 |
23
|
|
|
41 |
12 |
24
|
Bradham KD, Nelson CM, Sowers TD, Lytle DA, Tully J, Schock MR, Li K, Blackmon MD, Kovalcik K, Cox D, Dewalt G, Friedman W, Pinzer EA, Ashley PJ. A national survey of lead and other metal(loids) in residential drinking water in the United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:160-167. [PMID: 35986209 PMCID: PMC10807215 DOI: 10.1038/s41370-022-00461-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to lead (Pb), arsenic (As) and copper (Cu) may cause significant health issues including harmful neurological effects, cancer or organ damage. Determination of human exposure-relevant concentrations of these metal(loids) in drinking water, therefore, is critical. OBJECTIVE We sought to characterize exposure-relevant Pb, As, and Cu concentrations in drinking water collected from homes participating in the American Healthy Homes Survey II, a national survey that monitors the prevalence of Pb and related hazards in United States homes. METHODS Drinking water samples were collected from a national survey of 678 U.S. homes where children may live using an exposure-based composite sampling protocol. Relationships between metal(loid) concentration, water source and house age were evaluated. RESULTS 18 of 678 (2.6%) of samples analyzed exceeded 5 µg Pb L-1 (Mean = 1.0 µg L-1). 1.5% of samples exceeded 10 µg As L-1 (Mean = 1.7 µg L-1) and 1,300 µg Cu L-1 (Mean = 125 µg L-1). Private well samples were more likely to exceed metal(loid) concentration thresholds than public water samples. Pb concentrations were correlated with Cu and Zn, indicative of brass as a common Pb source is samples analyzed. SIGNIFICANCE Results represent the largest national-scale effort to date to inform exposure risks to Pb, As, and Cu in drinking water in U.S. homes using an exposure-based composite sampling approach. IMPACT STATEMENT To date, there are no national-level estimates of Pb, As and Cu in US drinking water collected from household taps using an exposure-based sampling protocol. Therefore, assessing public health impacts from metal(loids) in drinking water remains challenging. Results presented in this study represent the largest effort to date to test for exposure-relevant concentrations of Pb, As and Cu in US household drinking water, providing a critical step toward improved understanding of metal(loid) exposure risk.
Collapse
|
research-article |
2 |
12 |
25
|
Urbansky ET, Schock MR. Can fluoridation affect lead(II) in potable water? hexafluorosilicate and fluoride equilibria in aqueous solution. ACTA ACUST UNITED AC 2000. [DOI: 10.1080/00207230008711299] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
25 |
11 |