1
|
Bojarová P, Kulik N, Hovorková M, Slámová K, Pelantová H, Křen V. The β- N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules 2019; 24:molecules24030599. [PMID: 30743988 PMCID: PMC6384963 DOI: 10.3390/molecules24030599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023] Open
Abstract
N-Acetylhexosamine oligosaccharides terminated with GalNAc act as selective ligands of galectin-3, a biomedically important human lectin. Their synthesis can be accomplished by β-N-acetylhexosaminidases (EC 3.2.1.52). Advantageously, these enzymes tolerate the presence of functional groups in the substrate molecule, such as the thiourea linker useful for covalent conjugation of glycans to a multivalent carrier, affording glyconjugates. β-N-Acetylhexosaminidases exhibit activity towards both N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) moieties. A point mutation of active-site amino acid Tyr into other amino acid residues, especially Phe, His, and Asn, has previously been shown to strongly suppress the hydrolytic activity of β-N-acetylhexosaminidases, creating enzymatic synthetic engines. In the present work, we demonstrate that Tyr470 is an important mutation hotspot for altering the ratio of GlcNAcase/GalNAcase activity, resulting in mutant enzymes with varying affinity to GlcNAc/GalNAc substrates. The enzyme selectivity may additionally be manipulated by altering the reaction medium upon changing pH or adding selected organic co-solvents. As a result, we are able to fine-tune the β-N-acetylhexosaminidase affinity and selectivity, resulting in a high-yield production of the functionalized GalNAcβ4GlcNAc disaccharide, a selective ligand of galectin-3.
Collapse
|
Journal Article |
6 |
23 |
2
|
Heine V, Hovorková M, Vlachová M, Filipová M, Bumba L, Janoušková O, Hubálek M, Cvačka J, Petrásková L, Pelantová H, Křen V, Elling L, Bojarová P. Immunoprotective neo-glycoproteins: Chemoenzymatic synthesis of multivalent glycomimetics for inhibition of cancer-related galectin-3. Eur J Med Chem 2021; 220:113500. [PMID: 33962190 DOI: 10.1016/j.ejmech.2021.113500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Galectin-3 plays a crucial role in cancerogenesis; its targeting is a prospective pathway in cancer diagnostics and therapy. Multivalent presentation of glycans was shown to strongly increase the affinity of glycoconjugates to galectin-3. Further strengthening of interaction with galectin-3 may be accomplished using artificial glycomimetics with apt aryl substitutions. We established a new, as yet undescribed chemoenzymatic method to produce selective C-3-substituted N,N'-diacetyllactosamine glycomimetics and coupled them to human serum albumin. From a library of enzymes, only β-N-acetylhexosaminidase from Talaromyces flavus was able to efficiently synthesize the C-3-propargylated disaccharide. Various aryl residues were attached to the functionalized N,N'-diacetyllactosamine via click chemistry to assess the impact of the aromatic substitution. In ELISA-type assays with galectin-3, free glycomimetics exhibited up to 43-fold stronger inhibitory potency to Gal-3 than the lactose standard. Coupling to human serum albumin afforded multivalent neo-glycoproteins with up to 4209-fold increased inhibitory potency per glycan compared to the monovalent lactose standard. Surface plasmon resonance brought further information on the kinetics of galectin-3 inhibition. The potential of prepared neo-glycoproteins to target galectin-3 was demonstrated on colorectal adenocarcinoma DLD-1 cells. We investigated the uptake of neo-glycoproteins into cells and observed limited non-specific transport into the cytoplasm. Therefore, neo-glycoproteins primarily act as efficient scavengers of exogenous galectin-3 of cancer cells, inhibiting its interaction with the cell surface, and protecting T-lymphocytes against galectin-3-induced apoptosis. The present neo-glycoproteins combine the advantage of a straightforward synthesis, selectivity, non-toxicity, and high efficiency for targeting exogenous galectin-3, with possible application in the immunomodulatory treatment of galectin-3-overexpressing cancers.
Collapse
|
Journal Article |
4 |
9 |
3
|
Hovorková M, Červený J, Bumba L, Pelantová H, Cvačka J, Křen V, Renaudet O, Goyard D, Bojarová P. Advanced high-affinity glycoconjugate ligands of galectins. Bioorg Chem 2023; 131:106279. [PMID: 36446202 DOI: 10.1016/j.bioorg.2022.106279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/20/2022]
Abstract
Galectins are proteins of the family of human lectins. By binding terminal galactose units of cell surface glycans, they moderate biological and pathological processes such as cell signaling, cell adhesion, apoptosis, fibrosis, carcinogenesis, and metabolic disorders. The binding of monovalent glycans to galectins is usually relatively weak. Therefore, the presentation of carbohydrate ligands on multivalent scaffolds can efficiently increase and/or discriminate the affinity of the glycoconjugate to different galectins. A library of glycoclusters and glycodendrimers with various structural presentations of the common functionalized N-acetyllactosamine ligand was prepared to evaluate how the mode of presentation affects the affinity and selectivity to the two most abundant galectins, galectin-1 (Gal-1) and galectin-3 (Gal-3). In addition, the effect of a one- to two-unit carbohydrate spacer on the affinity of the glycoconjugates was determined. A new design of the biolayer interferometry (BLI) method with specific AVI-tagged constructs was used to determine the affinity to galectins, and compared with the gold-standard method of isothermal titration calorimetry (ITC). This study reveals new routes to low nanomolar glycoconjugate inhibitors of galectins of interest for biomedical research.
Collapse
|
|
2 |
7 |
4
|
Konvalinková D, Dolníček F, Hovorková M, Červený J, Kundrát O, Pelantová H, Petrásková L, Cvačka J, Faizulina M, Varghese B, Kovaříček P, Křen V, Lhoták P, Bojarová P. Glycocalix[4]arenes and their affinity to a library of galectins: the linker matters. Org Biomol Chem 2023; 21:1294-1302. [PMID: 36647793 DOI: 10.1039/d2ob02235d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Galectins are lectins that bind β-galactosides. They are involved in important extra- and intracellular biological processes such as apoptosis, and regulation of the immune system or the cell cycle. High-affinity ligands of galectins may introduce new therapeutic approaches or become new tools for biomedical research. One way of increasing the low affinity of β-galactoside ligands to galectins is their multivalent presentation, e.g., using calixarenes. We report on the synthesis of glycocalix[4]arenes in cone, partial cone, 1,2-alternate, and 1,3-alternate conformations carrying a lactosyl ligand on three different linkers. The affinity of the prepared compounds to a library of human galectins was determined using competitive ELISA assay and biolayer interferometry. Structure-affinity relationships regarding the influence of the linker and the core structure were formulated. Substantial differences were found between various linker lengths and the position of the triazole unit. The formation of supramolecular clusters was detected by atomic force microscopy. The present work gives a systematic insight into prospective galectin ligands based on the calix[4]arene core.
Collapse
|
|
2 |
5 |
5
|
Kurfiřt M, Dračínský M, Červenková Šťastná L, Cuřínová P, Hamala V, Hovorková M, Bojarová P, Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19 F NMR Probes to Study Carbohydrate-Galectin Interactions. Chemistry 2021; 27:13040-13051. [PMID: 34216419 DOI: 10.1002/chem.202101752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 01/12/2023]
Abstract
Galectins are widely expressed galactose-binding lectins implied, for example, in immune regulation, metastatic spreading, and pathogen recognition. N-Acetyllactosamine (Galβ1-4GlcNAc, LacNAc) and its oligomeric or glycosylated forms are natural ligands of galectins. To probe substrate specificity and binding mode of galectins, we synthesized a complete series of six mono-deoxyfluorinated analogues of LacNAc, in which each hydroxyl has been selectively replaced by fluorine while the anomeric position has been protected as methyl β-glycoside. Initial evaluation of their binding to human galectin-1 and -3 by ELISA and 19 F NMR T2 -filter revealed that deoxyfluorination at C3, C4' and C6' completely abolished binding to galectin-1 but very weak binding to galectin-3 was still detectable. Moreover, deoxyfluorination of C2' caused an approximately 8-fold increase in the binding affinity towards galectin-1, whereas binding to galectin-3 was essentially not affected. Lipophilicity measurement revealed that deoxyfluorination at the Gal moiety affects log P very differently compared to deoxyfluorination at the GlcNAc moiety.
Collapse
|
|
4 |
3 |
6
|
Hovorková M, Kulik N, Konvalinková D, Petrásková L, Křen V, Bojarová P. Mutagenesis of Catalytic Nucleophile of β‐Galactosidase Retains Residual Hydrolytic Activity and Affords a Transgalactosidase. ChemCatChem 2021. [DOI: 10.1002/cctc.202101107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
|
4 |
2 |
7
|
Hovorková M, Kulik N, Konvalinková D, Petrásková L, Křen V, Bojarová P. Cover Feature: Mutagenesis of Catalytic Nucleophile of β‐Galactosidase Retains Residual Hydrolytic Activity and Affords a Transgalactosidase (ChemCatChem 21/2021). ChemCatChem 2021. [DOI: 10.1002/cctc.202101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
4 |
|
8
|
Rozsíval P, Kana V, Hovorková M. [Selective laser trabeculoplasty]. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2004; 60:267-74. [PMID: 15369263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The prospective clinical study of the selective laser trabeculoplasty (SLT) by means the Coherent Selecta 7000 laser (wave length 532 nm) was conducted. Totally 108.7 +/- 18.3 laser non-overlapping spots (mean energy level 1.04 +/- 0.22 mJ) along the whole circle of the trabecular meshwork in the anterior chamber angle were applied. The study included 258 eyes of 146 patients (50 of them were men) with glaucoma. The mean age of the whole group was 55.9 +/- 13.7 years. The group of unsuccessfully treated patients (30 patients, 41 eyes) in whom the intraocular pressure (IOP) elevated from 23.2 +/- 3.7 mm Hg in 4.7% (measured 493 +/- 474 days after the treatment) during the follow up, was removed from the study. In the group with good response to the SLT, 116 patients (217 eyes) were evaluated 650 +/- 405 days after treatment. Before treatment, in this group the IOP was 23.9 +/- 3.0 mm Hg, at the end of the study the IOP was lowered by 4.5 +/- 2.9 mm Hg, in total by 18.6%. IOP decrease was more pronounced in patients with higher level of IOP at the beginning. Immediately after SLT, no significant rising of the IOP level was recorded. Selective laser trabeculoplasty preserves the integrity of the trabecular meshwork of the anterior chamber angle, and is a safe and clinically effective method of treatment of different forms of glaucoma and ocular hypertension.
Collapse
|
English Abstract |
21 |
|
9
|
Novák J, Hovorková M, Rozsíval P, Lochman J, Kvasnicka J. [Use of 5-fluorouracil in trabeculectomy]. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2000; 56:376-84. [PMID: 11225270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The cytostatic 5-fluorouracil (5-FU) is used at present in the postoperative treatment of glaucoma. In 1993-6 we administered by the subconjunctival route at the Ophthalmological Clinic in Hradec Králové 5-FU to a group of 158 eyes after trabeculectomy (TE). The basic indication was ingrowth of the filtration vesicle or a rise of intraocular tension to 20 torr and more in 148 eyes. Preventively 5-FU was administered during operation during revisions of TE in 10 eyes. In the mentioned group with an unfavourable course of postoperative scar formation in the wound we achieved during the investigation period of two years after surgery normalization of the intraocular pressure to less than 16 torr without further treatment (we consider the value and condition without treatment as the optimal condition) in 37% of cases and in 81% less than 20 torr with treatment. Side-effects of administration of 5-FU (most frequently erosion of the corneal epithelium were transient. For the mentioned indications 5-FU appears, being a cytostatic where the dosage can be exact, sufficiently safe for administration and it exerts an optimal effect.
Collapse
|
English Abstract |
25 |
|
10
|
Langrová H, Hejcmanová D, Peregrin J, Bytton L, Hovorková M. [Effect of YAG capsulotomy of secondary cataracts on visual functions]. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2002; 58:292-7. [PMID: 12428405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
1. 20 patients (20 eyes) with secondary cataract and best corrected visual acuity (BCVA) of 20/30 or 20/20 using Snellen charts were examined before Nd-YAG capsulotomy and 14 days postoperatively. 2. Contrast sensitivity (CS) was tested on a computerized system of the Contrast sensitivity 8010 type and on VCTS charts in 6 spatial frequencies, BCVA was measured on the logMAR charts with Landolt rings and influence of glare of 342.6 cd/m2 was tested using Brightness Acuity Tester (BAT). 3. BCVA (without and under glare) in patients before and after YAG capsulotomy was significantly lower compared to the control group (p < 0.001). Postoperative improvement of BCVA was markedly higher on logMAR charts (up to 6.6 standardized lines) than using Snellen charts (1 line). 4. CS (without and under glare) using both methods in patients before and after YAG capsulotomy was significantly lower compared to the control group (p < 0.05 to p < 0.001) in spite of significant improvement postoperatively (p < 0.05 to p < 0.001), first of all at intermediate and high spatial frequencies. 5. Glare had only nonsignificant influence on BCVA and CS in all groups.
Collapse
|
English Abstract |
23 |
|
11
|
Vrbata D, Červený J, Kulik N, Hovorková M, Balogová S, Vlachová M, Pelantová H, Křen V, Bojarová P. Glycomimetic inhibitors of tandem-repeat galectins: Simple and efficient. Bioorg Chem 2024; 145:107231. [PMID: 38394919 DOI: 10.1016/j.bioorg.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The binding of human galectins by glycomimetic inhibitors is a promising therapeutic approach. The structurally distinct group of tandem-repeat galectins has scarcely been studied so far, and there is hardly any knowledge on their ligand specificity or their inhibitory potential, particularly concerning non-natural carbohydrates. Here, we present the synthesis of a library of seven 3-O-disubstituted thiodigalactoside-derived glycomimetics and their affinity to two tandem-repeat galectins, Gal-8 and Gal-9. The straightforward synthesis of these glycomimetics involved dibutyltin oxide-catalyzed 3,3́-O-disubstitution of commercially available unprotected thiodigalactoside, and conjugation of various aryl substituents by copper-catalyzed Huisgen azide-alkyne cycloaddition (CuAAC). The inhibitory potential of the prepared glycomimetics for Gal-8 and Gal-9 was assessed, and compared with the established galectins Gal-1 and Gal-3. The introduction of C-3 substituents resulted in an over 40-fold increase in affinity compared with unmodified TDG. The structure-affinity relations within the studied series were discussed using molecular modeling. Furthermore, the prepared glycomimetics were shown to scavenge Gal-8 and Gal-9 from the surface of cancer cells. This pioneering study on the synthetic inhibitors especially of Gal-9 identified lead compounds that may be used in further biomedical research.
Collapse
|
|
1 |
|
12
|
Müllerová M, Hovorková M, Závodná T, Červenková Št́astná L, Krupková A, Hamala V, Nováková K, Topinka J, Bojarová P, Strašák T. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules 2023; 24:4705-4717. [PMID: 37680126 PMCID: PMC10646984 DOI: 10.1021/acs.biomac.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Galectins, the glycan binding proteins, and their respective carbohydrate ligands represent a unique fundamental regulatory network modulating a plethora of biological processes. The advances in galectin-targeted therapy must be based on a deep understanding of the mechanism of ligand-protein recognition. Carbosilane dendrimers, the well-defined and finely tunable nanoscaffolds with low toxicity, are promising for multivalent carbohydrate ligand presentation to target galectin receptors. The study discloses a synthetic method for two types of lactose-functionalized carbosilane glycodendrimers (Lac-CS-DDMs). Furthermore, we report their outstanding, dendritic effect-driven affinity to tandem-type galectins, especially Gal-9. In the enzyme-linked immunosorbent assay, the affinity of the third-generation multivalent dendritic ligand bearing 32 lactose units to Gal-9 reached nanomolar values (IC50 = 970 nM), being a 1400-fold more effective inhibitor than monovalent lactose for this protein. This demonstrates a game-changing impact of multivalent presentation on the inhibitory effect of a ligand as simple as lactose. Moreover, using DLS hydrodynamic diameter measurements, we correlated the increased affinity of the glycodendrimer ligands to Gal-3 and Gal-8 but especially to Gal-9 with the formation of relatively uniform and stable galectin/Lac-CS-DDM aggregates.
Collapse
|
research-article |
2 |
|
13
|
Hovorková M, Kaščáková B, Petrásková L, Havlíčková P, Nováček J, Pinkas D, Gardian Z, Křen V, Bojarová P, Smatanová IK. The variable structural flexibility of the Bacillus circulans β-galactosidase isoforms determines their unique functionalities. Structure 2024; 32:2023-2037.e5. [PMID: 39353423 DOI: 10.1016/j.str.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
β-Galactosidase from Bacillus circulans ATCC 31382 (BgaD) is a biotechnologically important enzyme for the synthesis of β-galactooligosaccharides (GOS). Among its four isoforms, isoform A (BgaD-A) has distinct synthetic properties. Here, we present cryoelectron microscopy (cryo-EM) structures of BgaD-A and compare them with the known X-ray crystal structure of isoform D (BgaD-D), revealing substantial structural divergences between the two isoforms. In contrast to BgaD-D, BgaD-A features a flexible Big-4 domain and another enigmatic domain. The newly identified flexible region in BgaD-A is termed as "barrier domain 8," and serves as a barricade, obstructing the access of longer oligosaccharide substrates into the active site of BgaD-A. The transgalactosylation reactions catalyzed by both isoforms revealed that BgaD-A has a higher selectivity than BgaD-D in the earlier stages of the reaction and is prevailingly directed to shorter galactooligosaccharides. This study improves our understanding of the structural determinants governing β-galactosidase catalysis, with implications for tailored GOS production.
Collapse
|
|
1 |
|