1
|
Cavalera M, Wang J, Frangogiannis NG. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res 2014; 164:323-35. [PMID: 24880146 PMCID: PMC4180761 DOI: 10.1016/j.trsl.2014.05.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 05/03/2014] [Indexed: 02/09/2023]
Abstract
Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias, and sudden cardiac death in obese subjects. This review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiological alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis, and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiological alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation, and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes, and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the renin-angiotensin-aldosterone system, induction of transforming growth factor β, oxidative stress, advanced glycation end-products, endothelin 1, Rho-kinase signaling, leptin-mediated actions, and upregulation of matricellular proteins (such as thrombospondin 1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response after cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to the development of novel therapies to prevent heart failure and attenuate postinfarction cardiac remodeling in patients with obesity.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
177 |
2
|
Gonzalez-Quesada C, Cavalera M, Biernacka A, Kong P, Lee DW, Saxena A, Frunza O, Dobaczewski M, Shinde A, Frangogiannis NG. Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ Res 2013; 113:1331-44. [PMID: 24081879 PMCID: PMC4408537 DOI: 10.1161/circresaha.113.302593] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Diabetes mellitus is associated with cardiac fibrosis. Matricellular proteins are induced in fibrotic conditions and modulate fibrogenic and angiogenic responses by regulating growth factor signaling. OBJECTIVE Our aim was to test the hypothesis that the prototypical matricellular protein thrombospondin (TSP)-1, a potent angiostatic molecule and crucial activator of transforming growth factor-β, may play a key role in remodeling of the diabetic heart. METHODS AND RESULTS Obese diabetic db/db mice exhibited marked myocardial TSP-1 upregulation in the interstitial and perivascular space. To study the role of TSP-1 in remodeling of the diabetic heart, we generated and characterized db/db TSP-1(-/-) (dbTSP) mice. TSP-1 disruption did not significantly affect weight gain and metabolic function in db/db animals. When compared with db/db animals, dbTSP mice had increased left ventricular dilation associated with mild nonprogressive systolic dysfunction. Chamber dilation in dbTSP mice was associated with decreased myocardial collagen content and accentuated matrix metalloproteinase-2 and -9 activity. TSP-1 disruption did not affect inflammatory gene expression and activation of transforming growth factor-β/small mothers against decapendaplegic signaling in the db/db myocardium. In cardiac fibroblasts populating collagen pads, TSP-1 incorporation into the matrix did not activate transforming growth factor-β responses, but inhibited leptin-induced matrix metalloproteinase-2 activation. TSP-1 disruption abrogated age-associated capillary rarefaction in db/db mice, attenuating myocardial upregulation of angiopoietin-2, a mediator that induces vascular regression. In vitro, TSP-1 stimulation increased macrophage, but not endothelial cell, angiopoietin-2 synthesis. CONCLUSIONS TSP-1 upregulation in the diabetic heart prevents chamber dilation by exerting matrix-preserving actions on cardiac fibroblasts and mediates capillary rarefaction through effects that may involve angiopoietin-2 upregulation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
107 |
3
|
Russo I, Cavalera M, Huang S, Su Y, Hanna A, Chen B, Shinde AV, Conway SJ, Graff J, Frangogiannis NG. Protective Effects of Activated Myofibroblasts in the Pressure-Overloaded Myocardium Are Mediated Through Smad-Dependent Activation of a Matrix-Preserving Program. Circ Res 2020; 124:1214-1227. [PMID: 30686120 DOI: 10.1161/circresaha.118.314438] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RATIONALE The heart contains abundant interstitial and perivascular fibroblasts. Traditional views suggest that, under conditions of mechanical stress, cytokines, growth factors, and neurohumoral mediators stimulate fibroblast activation, inducing ECM (extracellular matrix) protein synthesis and promoting fibrosis and diastolic dysfunction. Members of the TGF (transforming growth factor)-β family are upregulated and activated in the remodeling myocardium and modulate phenotype and function of all myocardial cell types through activation of intracellular effector molecules, the Smads (small mothers against decapentaplegic), and through Smad-independent pathways. OBJECTIVES To examine the role of fibroblast-specific TGF-β/Smad3 signaling in the remodeling pressure-overloaded myocardium. METHODS AND RESULTS We examined the effects of cell-specific Smad3 loss in activated periostin-expressing myofibroblasts using a mouse model of cardiac pressure overload, induced through transverse aortic constriction. Surprisingly, FS3KO (myofibroblast-specific Smad3 knockout) mice exhibited accelerated systolic dysfunction after pressure overload, evidenced by an early 40% reduction in ejection fraction after 7 days of transverse aortic constriction. Accelerated systolic dysfunction in pressure-overloaded FS3KO mice was associated with accentuated matrix degradation and generation of collagen-derived matrikines, accompanied by cardiomyocyte myofibrillar loss and apoptosis, and by enhanced macrophage-driven inflammation. In vitro, TGF-β1, TGF-β2, and TGF-β3 stimulated a Smad3-dependent matrix-preserving phenotype in cardiac fibroblasts, suppressing MMP (matrix metalloproteinase)-3 and MMP-8 synthesis and inducing TIMP (tissue inhibitor of metalloproteinases)-1. In vivo, administration of an MMP-8 inhibitor attenuated early systolic dysfunction in pressure-overloaded FS3KO mice, suggesting that the protective effects of activated cardiac myofibroblasts in the pressure-overloaded myocardium are, at least in part, because of suppression of MMPs and activation of a matrix-preserving program. MMP-8 stimulation induces a proinflammatory phenotype in isolated macrophages. CONCLUSIONS In the pressure-overloaded myocardium, TGF-β/Smad3-activated cardiac fibroblasts play an important protective role, preserving the ECM network, suppressing macrophage-driven inflammation, and attenuating cardiomyocyte injury. The protective actions of the myofibroblasts are mediated, at least in part, through Smad-dependent suppression of matrix-degrading proteases.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
94 |
4
|
Biernacka A, Cavalera M, Wang J, Russo I, Shinde A, Kong P, Gonzalez-Quesada C, Rai V, Dobaczewski M, Lee DW, Wang XF, Frangogiannis NG. Smad3 Signaling Promotes Fibrosis While Preserving Cardiac and Aortic Geometry in Obese Diabetic Mice. Circ Heart Fail 2015; 8:788-98. [PMID: 25985794 DOI: 10.1161/circheartfailure.114.001963] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/15/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heart failure in diabetics is associated with cardiac hypertrophy, fibrosis and diastolic dysfunction. Activation of transforming growth factor-β/Smad3 signaling in the diabetic myocardium may mediate fibrosis and diastolic heart failure, while preserving matrix homeostasis. We hypothesized that Smad3 may play a key role in the pathogenesis of cardiovascular remodeling associated with diabetes mellitus and obesity. METHODS AND RESULTS We generated leptin-resistant db/db Smad3 null mice and db/db Smad3+/- animals. Smad3 haploinsufficiency did not affect metabolic function in db/db mice, but protected from myocardial diastolic dysfunction, while causing left ventricular chamber dilation. Improved cardiac compliance and chamber dilation in db/db Smad3+/- animals were associated with decreased cardiomyocyte hypertrophy, reduced collagen deposition, and accentuated matrix metalloproteinase activity. Attenuation of hypertrophy and fibrosis in db/db Smad3+/- hearts was associated with reduced myocardial oxidative and nitrosative stress. db/db Smad3 null mice had reduced weight gain and decreased adiposity associated with attenuated insulin resistance, but also exhibited high early mortality, in part, because of spontaneous rupture of the ascending aorta. Ultrasound studies showed that both lean and obese Smad3 null animals had significant aortic dilation. Aortic dilation in db/db Smad3 null mice occurred despite reduced hypertension and was associated with perturbed matrix balance in the vascular wall. CONCLUSIONS Smad3 mediates diabetic cardiac hypertrophy, fibrosis, and diastolic dysfunction, while preserving normal cardiac geometry and maintaining the integrity of the vascular wall.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
89 |
5
|
Fiorentino L, Cavalera M, Menini S, Marchetti V, Mavilio M, Fabrizi M, Conserva F, Casagrande V, Menghini R, Pontrelli P, Arisi I, D'Onofrio M, Lauro D, Khokha R, Accili D, Pugliese G, Gesualdo L, Lauro R, Federici M. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol Med 2013; 5:441-55. [PMID: 23401241 PMCID: PMC3598083 DOI: 10.1002/emmm.201201475] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 01/15/2023] Open
Abstract
ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3−/− mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3−/− mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re-expression of Timp3 in Timp3−/− mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
85 |
6
|
Fiorentino L, Vivanti A, Cavalera M, Marzano V, Ronci M, Fabrizi M, Menini S, Pugliese G, Menghini R, Khokha R, Lauro R, Urbani A, Federici M. Increased tumor necrosis factor alpha-converting enzyme activity induces insulin resistance and hepatosteatosis in mice. Hepatology 2010; 51:103-10. [PMID: 19877183 DOI: 10.1002/hep.23250] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Tumor necrosis factor alpha-converting enzyme (TACE, also known as ADAM17) was recently involved in the pathogenesis of insulin resistance. We observed that TACE activity was significantly higher in livers of mice fed a high-fat diet (HFD) for 1 month, and this activity was increased in liver > white adipose tissue > muscle after 5 months compared with chow control. In mouse hepatocytes, C(2)C(12) myocytes, and 3T3F442A adipocytes, TACE activity was triggered by palmitic acid, lipolysaccharide, high glucose, and high insulin. TACE overexpression significantly impaired insulin-dependent phosphorylation of AKT, GSK3, and FoxO1 in mouse hepatocytes. To test the role of TACE activation in vivo, we used tissue inhibitor of metalloproteinase 3 (Timp3) null mice, because Timp3 is the specific inhibitor of TACE and Timp3(-/-) mice have higher TACE activity compared with wild-type (WT) mice. Timp3(-/-) mice fed a HFD for 5 months are glucose-intolerant and insulin-resistant; they showed macrovesicular steatosis and ballooning degeneration compared with WT mice, which presented only microvesicular steatosis. Shotgun proteomics analysis revealed that Timp3(-/-) liver showed a significant differential expression of 38 proteins, including lower levels of adenosine kinase, methionine adenosysltransferase I/III, and glycine N-methyltransferase and higher levels of liver fatty acid-binding protein 1. These changes in protein levels were also observed in hepatocytes infected with adenovirus encoding TACE. All these proteins play a role in fatty acid uptake, triglyceride synthesis, and methionine metabolism, providing a molecular explanation for the increased hepatosteatosis observed in Timp3(-/-) compared with WT mice. CONCLUSION We have identified novel mechanisms, governed by the TACE-Timp3 interaction, involved in the determination of insulin resistance and liver steatosis during overfeeding in mice.
Collapse
|
|
15 |
81 |
7
|
Kong P, Gonzalez-Quesada C, Li N, Cavalera M, Lee DW, Frangogiannis NG. Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am J Physiol Endocrinol Metab 2013; 305:E439-50. [PMID: 23757408 PMCID: PMC3742854 DOI: 10.1152/ajpendo.00006.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a typical matricellular protein, thrombospondin (TSP)-1, binds to the structural matrix and regulates cellular behavior by modulating growth factor and cytokine signaling. Obesity and diabetes are associated with marked upregulation of TSP-1 in adipose tissue. We hypothesized that endogenous TSP-1 may play an important role in the pathogenesis of diet-induced obesity and metabolic dysfunction. Accordingly, we examined the effects of TSP-1 gene disruption on weight gain, adiposity, and adipose tissue inflammation in mice receiving a high-fat diet (HFD: 60% fat, 20% carbohydrate) or a high-carbohydrate low-fat diet (HCLFD: 10% fat, 70% carbohydrate). HFD mice had significantly higher TSP-1 expression in perigonadal adipose tissue; TSP-1 was predominantly localized in the adipose interstitium. TSP-1 loss attenuated weight gain and fat accumulation in HFD and HCLFD groups. Compared with corresponding wild-type animals, TSP-1-null mice had decreased insulin levels but exhibited elevated free fatty acid and triglyceride levels, suggesting impaired fatty acid uptake. TSP-1 loss did not affect adipocyte size and had no effect on adipose vascular density. However, TSP-1-null mice exhibited attenuated tumor necrosis factor-α mRNA expression and reduced macrophage infiltration, suggesting a role for TSP-1 in mediating obesity-associated inflammation. In vitro, TSP-1 enhanced proliferation of 3T3-L1 preadipocytes but did not modulate inflammatory cytokine and chemokine synthesis. In conclusion, TSP-1 upregulation contributes to weight gain, adipose growth, and the pathogenesis of metabolic dysfunction. The effects of TSP-1 may involve stimulation of adipocyte proliferation, activation of inflammatory signaling, and facilitated fatty acid uptake by adipocytes.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
69 |
8
|
Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, Federici M. Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol 2013; 50:965-9. [PMID: 23797704 DOI: 10.1007/s00592-013-0492-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/11/2013] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is the major cause of chronic kidney disease in developed countries and contributes significantly to increased morbidity and mortality among diabetic patients. Morphologically, DN is characterized by tubulo-interstitial fibrosis, thickening of the glomerular basement membrane and mesangial expansion mainly due to accumulation of extracellular matrix (ECM). ECM turnover is regulated by metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs) activities. In diabetic conditions, TIMP3 expression in kidney is strongly reduced, but the causes of this reduction are still unknown. The aim of this study was to elucidate at least one of these mechanisms which relies on differential expression of TIMP3-targeting microRNAs (miRs) in a hyperglycemic environment either in vitro (MES13 cell line) or in vivo (mouse kidney and human biopsies). Among the TIMP3-targeting miRs, miR-21 and miR-221 were significantly upregulated in kidneys from diabetic mice compared to control littermates, and in a mesangial cell line grown in high glucose conditions. In human samples, only miR-21 expression was increased in kidney biopsies from diabetic patients compared to healthy controls. The expression of miR-217, which targets TIMP3 indirectly through downregulation of SirT1, was also increased in diabetic kidney and MES13 cell line. In agreement with these result, SirT1 expression was reduced in mouse and human diabetic kidneys as well as in MES13 mesangial cell line. TIMP3 deficiency has recently emerged as a hallmark of DN in mouse and human. In this study, we demonstrated that this reduction is due, at least in part, to increased expression of certain TIMP3-targeting miRs in diabetic kidneys compared to healthy controls. Unveiling the post-transcriptional mechanisms responsible for TIMP3 downregulation in hyperglycemic conditions may orient toward the use of this protein as a possible therapeutic target in DN.
Collapse
|
|
12 |
65 |
9
|
Casagrande V, Menghini R, Menini S, Marino A, Marchetti V, Cavalera M, Fabrizi M, Hribal ML, Pugliese G, Gentileschi P, Schillaci O, Porzio O, Lauro D, Sbraccia P, Lauro R, Federici M. Overexpression of Tissue Inhibitor of Metalloproteinase 3 in Macrophages Reduces Atherosclerosis in Low-Density Lipoprotein Receptor Knockout Mice. Arterioscler Thromb Vasc Biol 2012; 32:74-81. [DOI: 10.1161/atvbaha.111.238402] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
13 |
63 |
10
|
Cavalera M, Frangogiannis N. Targeting the Chemokines in Cardiac Repair. Curr Pharm Des 2014; 20:1971-9. [DOI: 10.2174/13816128113199990449] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
|
|
11 |
45 |
11
|
Fabrizi M, Marchetti V, Mavilio M, Marino A, Casagrande V, Cavalera M, Moreno-Navarrete JM, Mezza T, Sorice GP, Fiorentino L, Menghini R, Lauro R, Monteleone G, Giaccari A, Fernandez Real JM, Federici M. IL-21 is a major negative regulator of IRF4-dependent lipolysis affecting Tregs in adipose tissue and systemic insulin sensitivity. Diabetes 2014; 63:2086-96. [PMID: 24430438 DOI: 10.2337/db13-0939] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obesity elicits immune cell infiltration of adipose tissue provoking chronic low-grade inflammation. Regulatory T cells (Tregs) are specifically reduced in adipose tissue of obese animals. Since interleukin (IL)-21 plays an important role in inducing and maintaining immune-mediated chronic inflammatory processes and negatively regulates Treg differentiation/activity, we hypothesized that it could play a role in obesity-induced insulin resistance. We found IL-21 and IL-21R mRNA expression upregulated in adipose tissue of high-fat diet (HFD) wild-type (WT) mice and in stromal vascular fraction from human obese subjects in parallel to macrophage and inflammatory markers. Interestingly, a larger infiltration of Treg cells was seen in the adipose tissue of IL-21 knockout (KO) mice compared with WT animals fed both normal diet and HFD. In a context of diet-induced obesity, IL-21 KO mice, compared with WT animals, exhibited lower body weight, improved insulin sensitivity, and decreased adipose and hepatic inflammation. This metabolic phenotype is accompanied by a higher induction of interferon regulatory factor 4 (IRF4), a transcriptional regulator of fasting lipolysis in adipose tissue. Our data suggest that IL-21 exerts negative regulation on IRF4 and Treg activity, developing and maintaining adipose tissue inflammation in the obesity state.
Collapse
|
|
11 |
44 |
12
|
Markstad H, Edsfeldt A, Yao Mattison I, Bengtsson E, Singh P, Cavalera M, Asciutto G, Björkbacka H, Fredrikson GN, Dias N, Volkov P, Orho-Melander M, Nilsson J, Engström G, Gonçalves I. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc 2020; 8:e009874. [PMID: 30744454 PMCID: PMC6405674 DOI: 10.1161/jaha.118.009874] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background When the lectinlike oxidized low-density lipoprotein (ox LDL) receptor-1 ( LOX -1), a scavenger receptor for ox LDL , binds ox LDL , processes leading to endothelial dysfunction and inflammation are promoted. We aimed to study release mechanisms of LOX -1 and how circulating levels of soluble LOX -1 ( sLOX -1) relate to plaque inflammation and future risk for ischemic stroke. Methods and Results Endothelial cells and leukocytes were used to study release of sLOX -1. Plasma levels of sLOX -1 were determined in 4703 participants in the Malmö Diet and Cancer cohort. Incidence of ischemic stroke was monitored. For 202 patients undergoing carotid endarterectomy, levels of sLOX -1 were analyzed in plasma and plaque homogenates and related to plaque inflammation factors. Endothelial cells released sLOX -1 when exposed to ox LDL . A total of 257 subjects experienced stroke during a mean follow-up of 16.5 years. Subjects in the highest tertile of sLOX -1 had a stroke hazard ratio of 1.75 (95% CI, 1.28-2.39) compared with those in the lowest tertile after adjusting for age and sex. The patients undergoing carotid endarterectomy had a significant association between plasma sLOX -1 and the plaque content of sLOX -1 ( r=0.209, P=0.004). Plaques with high levels of sLOX -1 had more ox LDL , proinflammatory cytokines, and matrix metalloproteinases. Conclusions Our findings demonstrate that ox LDL induces the release of sLOX -1 from endothelial cells and that circulating levels of sLOX -1 correlate with carotid plaque inflammation and risk for ischemic stroke. These observations provide clinical support to experimental studies implicating LOX -1 in atherosclerosis and its possible role as target for cardiovascular intervention.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
34 |
13
|
Stöhr R, Cavalera M, Menini S, Mavilio M, Casagrande V, Rossi C, Urbani A, Cardellini M, Pugliese G, Menghini R, Federici M. Loss of TIMP3 exacerbates atherosclerosis in ApoE null mice. Atherosclerosis 2014; 235:438-43. [DOI: 10.1016/j.atherosclerosis.2014.05.946] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/17/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
|
|
11 |
34 |
14
|
Monteleone I, Federici M, Sarra M, Franzè E, Casagrande V, Zorzi F, Cavalera M, Rizzo A, Lauro R, Pallone F, MacDonald TT, Monteleone G. Tissue inhibitor of metalloproteinase-3 regulates inflammation in human and mouse intestine. Gastroenterology 2012; 143:1277-1287.e4. [PMID: 22819866 DOI: 10.1053/j.gastro.2012.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 06/28/2012] [Accepted: 07/10/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Tissue inhibitor of metalloproteinases (TIMP)-3 is an inhibitor of matrix metalloproteinases, which regulates tissue inflammation, damage, and repair. We investigated the role of TIMP-3 in intestinal inflammation in human beings and mice. METHODS We used real-time polymerase chain reaction and flow cytometry to measure levels of TIMP-3 in intestine samples from patients with Crohn's disease (CD) and those without (controls). We also analyzed TIMP-3 levels in lamina propria mononuclear cells (LPMCs) collected from biopsy samples of individuals with or without CD (controls) and then stimulated with transforming growth factor (TGF)-β1, as well as in biopsy samples collected from patients with CD and then incubated with a Smad7 anti-sense oligonucleotide (knock down). LPMCs and biopsy samples from patients with CD were cultured with exogenous TIMP-3 and levels of inflammatory cytokines were measured. We evaluated the susceptibility of wild-type, TIMP-3-knockout (TIMP-3-KO), and transgenic (TIMP-3-Tg) mice to induction of colitis with 2, 4, 6-trinitrobenzene-sulfonic-acid (TNBS), and the course of colitis in recombinase-activating gene-1-null mice after transfer of wild-type or TIMP-3-KO T cells. RESULTS Levels of TIMP-3 were reduced in intestine samples from patients with CD compared with controls. Incubation of control LPMCs with TGF-β1 up-regulated TIMP-3; knockdown of Smad7, an inhibitor of TGF-β1, in biopsy samples from patients with CD increased levels of TIMP-3. Exogenous TIMP-3 reduced levels of inflammatory cytokines in CD LPMCs and biopsy samples. TIMP-3-KO mice developed severe colitis after administration of TNBS, whereas TIMP-3-Tg mice were resistant to TNBS-induced colitis. Reconstitution of recombinase-activating gene-1-null mice with T cells from TIMP-3-KO mice increased the severity of colitis, compared with reconstitution with wild-type T cells. CONCLUSIONS TIMP-3 is down-regulated in inflamed intestine of patients with CD. Its expression is regulated by TGF-β1, and knock-down of Smad7 in intestinal tissues from patient with CD up-regulates TIMP-3. Loss or reduction of TIMP-3 in mice promotes development of colitis.
Collapse
|
|
13 |
31 |
15
|
Kong P, Cavalera M, Frangogiannis NG. The role of thrombospondin (TSP)-1 in obesity and diabetes. Adipocyte 2014; 3:81-4. [PMID: 24575376 DOI: 10.4161/adip.26990] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Matricellular proteins are extracellular macromolecules that do not serve a structural role, but when incorporated into the matrix, modulate cell:cell and cell:matrix interactions. The matricellular protein thrombospondin (TSP)-1, a potent angiostatic mediator and activator of transforming growth factor (TGF)-β, is upregulated in diabetes and obesity and may be involved in the pathogenesis of metabolic dysregulation and organ dysfunction. This manuscript discusses recently published observations on the role of TSP-1 in metabolic disease. In obesity models induced by a high-fat diet, adipose tissue TSP-1 upregulation induces inflammation and promotes weight gain and metabolic dysfunction. TSP-1 may have direct effects on adipocyte proliferation and fatty acid uptake. In diabetic subjects, TSP-1 upregulation in kidney, myocardium, and vascular tissue may promote dysfunction. In the myocardium, TSP-1 upregulation may transduce angiostatic signals inducing vascular rarefaction. Dissection of the functional domains involved in TSP-1 actions may lead to the development of peptide-based strategies for treatment of diabetes and its complications.
Collapse
|
Journal Article |
11 |
26 |
16
|
Gonçalves I, Singh P, Tengryd C, Cavalera M, Yao Mattisson I, Nitulescu M, Flor Persson A, Volkov P, Engström G, Orho-Melander M, Nilsson J, Edsfeldt A. sTRAIL-R2 (Soluble TNF [Tumor Necrosis Factor]-Related Apoptosis-Inducing Ligand Receptor 2) a Marker of Plaque Cell Apoptosis and Cardiovascular Events. Stroke 2019; 50:1989-1996. [DOI: 10.1161/strokeaha.119.024379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and Purpose—
Cellular apoptosis is an important feature in atherosclerosis, contributing to necrotic core formation, and plaque vulnerability. Activation of the death receptor TRAIL-R2 (TNF [tumor necrosis factor]-related apoptosis-inducing ligand receptor 2) through its ligand tumor necrosis factor-relate apoptosis-inducing ligand (TRAIL), induces apoptosis in cells in vitro. sTRAIL-R2 (soluble TRAIL-R2) was recently shown to predict cardiovascular events in healthy individuals. In the present study, we explored if plaque levels of sTRAIL-R2 and sTRAIL reflect plaque apoptosis and vulnerability and if plasma levels of these markers predict future events in subjects with advanced atherosclerosis.
Methods—
Plasma from 558 patients and 202 carotid plaques from the Carotid Plaque Imaging Project biobank were used. sTRAIL-R2, sTRAIL, and caspase-8 levels were assessed using a Proseek Multiplex CVD
96×96
assay. Active caspase-3 was measured using ELISA to assess plaque apoptosis. Plaque morphology was studied by immunohistochemistry. Inflammatory cytokines were assessed by Luminex. mRNA levels were quantified by RNA sequencing. Monocytes, T cells, B cells, and human coronary artery smooth muscle cells were used to study sTRAIL-R2 and sTRAIL release on cell apoptosis and inflammatory stimuli in vitro.
Results—
Plaque levels of sTRAIL-R2 and sTRAIL correlated to markers of extrinsic induced apoptosis (caspase-3 and -8). sTRAIL-R2 and sTRAIL protein expression were increased in symptomatic carotid plaques and patients with higher plasma levels of sTRAIL-R2 had a higher risk of future cardiovascular events. sTRAIL-R2 and sTRAIL were released upon activation of the extrinsic apoptosis pathway in vitro. sTRAIL-R2 and sTRAIL correlated with inflammatory cytokines, to CD68 expression and inversely to α-actin in the plaque tissue.
Conclusions—
The present study shows that sTRAIL-R2 and sTRAIL are associated to human plaque cell apoptosis, plaque inflammatory activity, and with symptomatic carotid plaques. Furthermore, high plasma levels of sTRAIL-R2 in plasma predict, independently, future cardiovascular events in individuals with manifest atherosclerotic disease.
Collapse
|
|
6 |
21 |
17
|
Stöhr R, Kappel BA, Carnevale D, Cavalera M, Mavilio M, Arisi I, Fardella V, Cifelli G, Casagrande V, Rizza S, Cattaneo A, Mauriello A, Menghini R, Lembo G, Federici M. TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice. Mol Metab 2015; 4:741-52. [PMID: 26500845 PMCID: PMC4588459 DOI: 10.1016/j.molmet.2015.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinase 3 (TIMP3) is an extracellular matrix (ECM) bound protein, which has been shown to be downregulated in human subjects and experimental models with cardiometabolic disorders, including type 2 diabetes mellitus, hypertension and atherosclerosis. The aim of this study was to investigate the effects of TIMP3 on cardiac energy homeostasis during increased metabolic stress conditions. METHODS ApoE(-/-)TIMP3(-/-) and ApoE(-/-) mice on a C57BL/6 background were subjected to telemetric ECG analysis and experimental myocardial infarction as models of cardiac stress induction. We used Western blot, qRT-PCR, histology, metabolomics, RNA-sequencing and in vivo phenotypical analysis to investigate the molecular mechanisms of altered cardiac energy metabolism. RESULTS ApoE(-/-)TIMP3(-/-) revealed decreased lifespan. Telemetric ECG analysis showed increased arrhythmic episodes, and experimental myocardial infarction by left anterior descending artery (LAD) ligation resulted in increased peri-operative mortality together with increased scar formation, ventricular dilatation and a reduction of cardiac function after 4 weeks in the few survivors. Hearts of ApoE(-/-)TIMP3(-/-) exhibited accumulation of neutral lipids when fed a chow diet, which was exacerbated by a high fat, high cholesterol diet. Metabolomics analysis revealed an increase in circulating markers of oxidative stress with a reduction in long chain fatty acids. Using whole heart mRNA sequencing, we identified apelin as a putative modulator of these metabolic defects. Apelin is a regulator of fatty acid oxidation, and we found a reduction in the levels of enzymes involved in fatty acid oxidation in the left ventricle of ApoE(-/-)TIMP3(-/-) mice. Injection of apelin restored the hitherto identified metabolic defects of lipid oxidation. CONCLUSION TIMP3 regulates lipid metabolism as well as oxidative stress response via apelin. These findings therefore suggest that TIMP3 maintains metabolic flexibility in the heart, particularly during episodes of increased cardiac stress.
Collapse
|
Journal Article |
10 |
18 |
18
|
Youssef A, Cavalera M, Pacella G, Salsi G, Morganelli G, Montaguti E, Cataneo I, Pilu G, Rizzo N. Is curved three-dimensional ultrasound reconstruction needed to assess the warped pelvic floor plane? ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2017; 50:388-394. [PMID: 27642724 DOI: 10.1002/uog.17304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/12/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES Caudal distension of the female pelvic floor is common and results in perineal descent and a caudally curved levator hiatus (warping). Image reconstruction of the pelvic floor using currently available ultrasound techniques involves a linear approach (flat-plane reconstruction). We aimed to evaluate the feasibility, reproducibility and potential usefulness of a new three-dimensional (3D) technique capable of reconstructing a curved plane of the levator hiatus. METHODS Primiparous women were recruited to undergo a 3D/four-dimensional transperineal ultrasound examination 3-6 months after delivery. Levator ani muscle warping was evaluated on Valsalva maneuver by measuring the distance between the plane extending from the pubic rami to the anorectal angle and the plane of minimal hiatal dimensions on the coronal plane. Warping distance was used to reconstruct a curved plane of the levator hiatus using the curved OmniView volume contrast imaging (VCI) technique (C-OV). Intra- and interobserver reproducibility of the C-OV technique were assessed, as was intermethod agreement between the C-OV technique and the linear OmniView-VCI (L-OV) technique, for the measurement of levator hiatal area on Valsalva maneuver. RESULTS Measurement of the levator hiatal area using C-OV was feasible in all 84 women recruited. The warping distance ranged from -3.5 to 9.7 mm, confirming that the 1-2-cm slice thickness traditionally used for linear reconstruction was adequate for proper assessment of levator hiatal area in our population. C-OV showed excellent intra- and interobserver reproducibility, as well as excellent agreement with the L-OV technique for measuring levator hiatal area. No systematic difference was demonstrated in any of the reproducibility studies performed. CONCLUSIONS 3D reconstruction of the warped levator hiatal plane is feasible and highly reproducible. In our population, reconstruction of a curved plane to correct for levator hiatal warping did not offer any benefit over the traditionally performed linear reconstruction. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
|
Evaluation Study |
8 |
13 |
19
|
Edsfeldt A, Singh P, Matthes F, Tengryd C, Cavalera M, Bengtsson E, Dunér P, Volkov P, Karadimou G, Gisterå A, Orho-Melander M, Nilsson J, Sun J, Gonçalves I. Transforming growth factor-β2 is associated with atherosclerotic plaque stability and lower risk for cardiovascular events. Cardiovasc Res 2023; 119:2061-2073. [PMID: 37200403 PMCID: PMC10478752 DOI: 10.1093/cvr/cvad079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS Transforming growth factor-beta (TGF-β) exists in three isoforms TGF-β1, -β2, and -β3. TGF-β1 has been suggested to be important for maintaining plaque stability, yet the role of TGF-β2 and -β3 in atherosclerosis remains to be investigated.This study explores the association of the three isoforms of TGF-β with plaque stability in the human atherosclerotic disease. METHODS AND RESULTS TGF-β1, -β2, and -β3 proteins were quantified in 223 human carotid plaques by immunoassays. Indications for the endarterectomy were: symptomatic carotid plaque with stenosis >70% or without symptoms and >80% stenosis. Plaque mRNA levels were assessed by RNA sequencing. Plaque components and extracellular matrix were measured histologically and biochemically. Matrix metalloproteinases and monocyte chemoattractant protein-1 (MCP-1) was measured with immunoassays. The effect of TGF-β2 on inflammation and protease activity was investigated in vitro using THP-1 and RAW264.7 macrophages. Patients were followed longitudinally for cardiovascular (CV) events.TGF-β2 was the most abundant isoform and was increased at both protein and mRNA levels in asymptomatic plaques. TGF-β2 was the main determinant separating asymptomatic plaques in an Orthogonal Projections to Latent Structures Discriminant Analysis. TGF-β2 correlated positively to features of plaque stability and inversely to markers of plaque vulnerability. TGF-β2 was the only isoform inversely correlated to the matrix-degrading matrix metalloproteinase-9 and inflammation in the plaque tissue. In vitro, TGF-β2 pre-treatment reduced MCP-1 gene and protein levels as well as matrix metalloproteinase-9 gene levels and activity. Patients with plaques with high TGF-β2 levels had a lower risk to suffer from future CV events. CONCLUSIONS TGF-β2 is the most abundant TGF-β isoform in human plaques and may maintain plaque stability by decreasing inflammation and matrix degradation.
Collapse
|
research-article |
2 |
10 |
20
|
Cavalera M, Axling U, Berger K, Holm C. Rose hip supplementation increases energy expenditure and induces browning of white adipose tissue. Nutr Metab (Lond) 2016; 13:91. [PMID: 27980600 DOI: 10.1186/s12986-016-0151-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/29/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Overweight and obesity are widespread chronic disorders defined as excessive fat accumulation, and are major risk factors for several chronic diseases including type 2 diabetes, coronary heart disease, high blood pressure and fatty liver. Changes in lifestyle such as increased physical activity and a healthy diet can be crucial tools for treating obesity. Intake of rose hip, the fruit of several plants belonging to the Rosaceae family, has been shown to reduce body fat mass and prevent body weight gain. Thus, the aim of the study was to elucidate potential mechanisms through which rose hip inhibit diet-induced obesity. METHODS C57BL/6 J mice were fed a high fat diet with (RH) or without (CTR) rose hip supplementation for three months. In vivo indirect calorimetry was monitored, as well as gene expression and protein levels of different adipose depots. RESULTS Although no differences in energy intake were found compared to the CTR group, RH prevented body weight gain and lowered blood glucose, insulin and cholesterol levels. Indirect calorimetry showed that RH-fed mice have significantly higher EE during the dark phase, despite comparable voluntary activity. Moreover, when challenged with treadmill running, RH-fed mice exhibited higher metabolic rate. Therefore, we hypothesized that RH could stimulate the brown adipose tissue (BAT) thermogenic capacity or may induce browning of the white adipose tissue (WAT). Compared to the CTR group, gene expression and protein levels of some brown and "brite" markers, together with genes able to promote brown adipocyte differentiation and thermogenesis (such as ucp1, tbx15, bmp7, and cidea), as well as phosphorylation of AMPK, was increased in WAT (but not in BAT) of RH-fed mice. CONCLUSIONS Taken together these results indicate that dietary rose hip prevents body weight gain by increasing whole body EE and inducing browning of WAT. Thus, it has potential therapeutic implication for treatment of obesity and related metabolic disorders.
Collapse
|
Journal Article |
9 |
9 |
21
|
Sjögren M, Soylu-Kucharz R, Dandunna U, Stan TL, Cavalera M, Sandelius Å, Zetterberg H, Björkqvist M. Leptin deficiency reverses high metabolic state and weight loss without affecting central pathology in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2019; 132:104560. [PMID: 31419548 DOI: 10.1016/j.nbd.2019.104560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 11/18/2022] Open
Abstract
Body weight has been shown to be a predictor of clinical progression in Huntington's disease (HD). Alongside widespread neuronal pathology, both HD patients and the R6/2 mouse model of HD exhibit weight loss and increased energy expenditure, providing a rationale for targeting whole-body energy metabolism in HD. Leptin-deficient mice display low energy expenditure and increased body weight. We therefore hypothesized that normalizing energy metabolism in R6/2 mice, utilizing leptin- deficiency, would lead to a slower disease progression in the R6/2 mouse. In this study, we show that R6/2 mice on a leptin-deficient genetic background display increased body weight and increased fat mass compared to R6/2 mice, as well as wild type littermates. The increased body weight was accompanied by low energy expenditure, illustrated by a reduction in respiratory exchange rate. Leptin-deficient R6/2 mice had large white adipocytes with white adipocyte gene expression characteristics, in contrast to white adipose tissue in R6/2 mice, where white adipose tissue showed signs of browning. Leptin-deficient R6/2 mice did not exhibit improved neuropathological measures. Our results indicate that lowering energy metabolism in HD, by increasing fat mass and reducing respiratory exchange rate, is not sufficient to affect neuropathology. Further studies targeting energy metabolism in HD are warranted.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
9 |
22
|
Tengryd C, Nielsen SH, Cavalera M, Bengtsson E, Genovese F, Karsdal M, Dunér P, Orho-Melander M, Nilsson J, Edsfeldt A, Gonçalves I. The proteoglycan mimecan is associated with carotid plaque vulnerability and increased risk of future cardiovascular death. Atherosclerosis 2020; 313:88-95. [DOI: 10.1016/j.atherosclerosis.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/31/2020] [Accepted: 09/10/2020] [Indexed: 01/28/2023]
|
|
5 |
7 |
23
|
Axling U, Cavalera M, Degerman E, Gåfvels M, Eggertsen G, Holm C. Increased whole body energy expenditure and protection against diet-induced obesity in Cyp8b1-deficient mice is accompanied by altered adipose tissue features. Adipocyte 2020; 9:587-599. [PMID: 33016185 PMCID: PMC7553510 DOI: 10.1080/21623945.2020.1827519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to elucidate mechanisms whereby bile acids exert beneficial metabolic effects, using the Cyp8b1−/- mouse as model. These mice are unable to synthesize cholic acid, resulting in increased synthesis of chenodeoxycholic acid and enlarged bile acid pool. Cyp8b1−/- mice were found to be protected against high-fat diet induced obesity. Bomb calorimetry measurements showed increased faecal energy output in Cyp8b1−/mice. Indirect calorimetry measurements demonstrated increased energy expenditure in Cyp8b1−/- mice. Meal tolerance tests revealed no differences in glucose disposal, but the insulin response was lower in Cyp8b1−/- mice. Intravenous glucose tolerance tests, as well as static incubations of isolated islets, showed no difference between the groups, whereas insulin tolerance tests demonstrated improved insulin sensitivity in Cyp8b1−/- mice. The genes encoding mitochondrial transcription factor A (TFAM) and type 2-iodothyronine deiodinase were upregulated in brown adipose tissue of Cyp8b1/- mice and Western blot analyses showed increased abundance of TFAM, and a trend towards increased abundance of UCP1. The upregulation of TFAM and UCP1 was accompanied by increased mitochondrial density, as shown by transmission electron microscopy. White adipocytes of Cyp8b1−/- mice exhibited increased responsiveness to both catecholamines and insulin in lipolysis experiments and increased insulin-stimulated lipogenesis. In conclusion, increased energy expenditure, mitochondrial density of brown adipocytes and faecal energy output may all contribute to the protection against diet-induced obesity of Cyp8b1−/- mice. Enhanced insulin sensitivity of Cyp8b1−/- mice is accompanied by increased hormonal responsiveness of white adipocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
5 |
24
|
Hansen JS, Tran TH, Cavalera M, Paul S, Chaudhuri A, Lindkvist-Petersson K, Ho JCS, Svanborg C. Peptide-Oleate Complexes Create Novel Membrane-Bound Compartments. Mol Biol Evol 2020; 37:3083-3093. [PMID: 32521018 DOI: 10.1093/molbev/msaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A challenging question in evolutionary theory is the origin of cell division and plausible molecular mechanisms involved. Here, we made the surprising observation that complexes formed by short alpha-helical peptides and oleic acid can create multiple membrane-enclosed spaces from a single lipid vesicle. The findings suggest that such complexes may contain the molecular information necessary to initiate and sustain this process. Based on these observations, we propose a new molecular model to understand protocell division.
Collapse
|
|
5 |
4 |
25
|
Haq F, Sabari S, Háček J, Brisuda A, Ambite I, Cavalera M, Esmaeili P, Wan MLY, Ahmadi S, Babjuk M, Svanborg C. Clinical and molecular response to alpha1-oleate treatment in patients with bladder cancer. Cancer Med 2024; 13:e70149. [PMID: 39254154 PMCID: PMC11386334 DOI: 10.1002/cam4.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The tumoricidal complex alpha1-oleate targets bladder cancer cells, triggering rapid, apoptosis-like tumor cell death. Clinical effects of alpha1-oleate were recently observed in patients with non-muscle invasive bladder cancer (NMIBC), using a randomized, placebo-controlled study protocol. AIMS To investigate if there are dose-dependent effects of alpha1-oleate. MATERIALS AND METHODS Here, patients with NMIBC were treated by intravesical instillation of increasing concentrations of alpha1-oleate (1.7, 8.5, or 17 mM) and the treatment response was defined relative to a placebo group. RESULTS Strong, dose-dependent anti-tumor effects were detected in alpha1-oleate treated patients for a combination of molecular and clinical indicators; a complete or partial response was detected in 88% of tumors treated with 8.5 mM compared to 47% of tumors treated with 1.7 mM of alpha1-oleate. Uptake of alpha1-oleate by the tumor triggered rapid shedding of tumor cells into the urine and cell death by an apoptosis-like mechanism. RNA sequencing of tissue biopsies confirmed the activation of apoptotic cell death and strong inhibition of cancer gene networks, including bladder cancer related genes. Drug-related side effects were not recorded, except for local irritation at the site of instillation. DISCUSSION AND CONCLUSIONS These dose-dependent anti-tumor effects of alpha1-oleate are promising and support the potential of alpha1-oleate treatment in patients with NMIBC.
Collapse
|
Clinical Trial, Phase I |
1 |
|