1
|
Gueye A, Diop OM, Ploquin MJY, Kornfeld C, Faye A, Cumont MC, Hurtrel B, Barré-Sinoussi F, Müller-Trutwin MC. Viral load in tissues during the early and chronic phase of non-pathogenic SIVagm infection. J Med Primatol 2004; 33:83-97. [PMID: 15061721 DOI: 10.1111/j.1600-0684.2004.00057.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
African green monkeys (AGMs) persistently infected with SIVagm do not develop AIDS, although their plasma viremia levels can reach those reported for pathogenic HIV-1 and SIVmac infections. In contrast, the viral burden in lymph nodes in SIVagm-infected AGMs is generally lower in comparison with HIV/SIVmac pathogenic infections, at least during the chronic phase of SIVagm infection. We searched for the primary targets of viral replication, which might account for the high viremias in SIVagm-infected AGMs. We evaluated for the first time during primary infection SIVagm dissemination in various lymphoid and non-lymphoid tissues. Sixteen distinct organs at a time point corresponding to maximal virus production were analyzed for viral RNA and DNA load. At days 8 and 9 p.i., viral RNA could be detected in a wide range of tissues, such as jejunum, spleen, mesenteric lymph nodes, thymus and lung. Quantification of viral DNA and RNA as well as of productively infected cells revealed that viral replication during this early phase takes place mainly in secondary lymphoid organs and in the gut (5 x 10(4)-5 x 10(8) RNA copies/10(6) cells). By 4 years p.i., RNA copy numbers were below detection level in thymus and lung. Secondary lymphoid organs displayed 6 x 10(2)-2 x 10(6) RNA copies/10(6) cells, while some tissue fragments of ileum and jejunum still showed high viral loads (up to 10(9) copies/10(6) cells). Altogether, these results indicate a rapid dissemination of SIVagm into lymphoid tissues, including the small intestine. The latter, despite showing marked regional variations, most likely contributes significantly to the high levels of viremia observed during SIVagm infection.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
52 |
2
|
Young GR, Ploquin MJY, Eksmond U, Wadwa M, Stoye JP, Kassiotis G. Negative selection by an endogenous retrovirus promotes a higher-avidity CD4+ T cell response to retroviral infection. PLoS Pathog 2012; 8:e1002709. [PMID: 22589728 PMCID: PMC3349761 DOI: 10.1371/journal.ppat.1002709] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022] Open
Abstract
Effective T cell responses can decisively influence the outcome of retroviral infection. However, what constitutes protective T cell responses or determines the ability of the host to mount such responses is incompletely understood. Here we studied the requirements for development and induction of CD4+ T cells that were essential for immunity to Friend virus (FV) infection of mice, according to their TCR avidity for an FV-derived epitope. We showed that a self peptide, encoded by an endogenous retrovirus, negatively selected a significant fraction of polyclonal FV-specific CD4+ T cells and diminished the response to FV infection. Surprisingly, however, CD4+ T cell-mediated antiviral activity was fully preserved. Detailed repertoire analysis revealed that clones with low avidity for FV-derived peptides were more cross-reactive with self peptides and were consequently preferentially deleted. Negative selection of low-avidity FV-reactive CD4+ T cells was responsible for the dominance of high-avidity clones in the response to FV infection, suggesting that protection against the primary infecting virus was mediated exclusively by high-avidity CD4+ T cells. Thus, although negative selection reduced the size and cross-reactivity of the available FV-reactive naïve CD4+ T cell repertoire, it increased the overall avidity of the repertoire that responded to infection. These findings demonstrate that self proteins expressed by replication-defective endogenous retroviruses can heavily influence the formation of the TCR repertoire reactive with exogenous retroviruses and determine the avidity of the response to retroviral infection. Given the overabundance of endogenous retroviruses in the human genome, these findings also suggest that endogenous retroviral proteins, presented by products of highly polymorphic HLA alleles, may shape the human TCR repertoire that reacts with exogenous retroviruses or other infecting pathogens, leading to interindividual heterogeneity.
Collapse
|
research-article |
13 |
46 |
3
|
Ploquin M, Bransi A, Paquet ER, Stasiak AZ, Stasiak A, Yu X, Cieslinska AM, Egelman EH, Moineau S, Masson JY. Functional and structural basis for a bacteriophage homolog of human RAD52. Curr Biol 2008; 18:1142-6. [PMID: 18656357 DOI: 10.1016/j.cub.2008.06.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
In eukaryotes, homologous recombination proteins such as RAD51 and RAD52 play crucial roles in DNA repair and genome stability. Human RAD52 is a member of a large single-strand annealing protein (SSAP) family [1] and stimulates Rad51-dependent recombination [2, 3]. In prokaryotes and phages, it has been difficult to establish the presence of RAD52 homologs with conserved sequences. Putative SSAPs were recently found in several phages that infect strains of Lactococcus lactis[4]. One of these SSAPs was identified as Sak and was found in the virulent L. lactis phage ul36, which belongs to the Siphoviridae family [4, 5]. In this study, we show that Sak is homologous to the N terminus of human RAD52. Purified Sak binds single-stranded DNA (ssDNA) preferentially over double-stranded DNA (dsDNA) and promotes the renaturation of long complementary ssDNAs. Sak also binds RecA and stimulates homologous recombination reactions. Mutations shown to modulate RAD52 DNA binding [6] affect Sak similarly. Remarkably, electron-microscopic reconstruction of Sak reveals an undecameric (11) subunit ring, similar to the crystal structure of the N-terminal fragment of human RAD52 [7, 8]. For the first time, we propose a viral homolog of RAD52 at the amino acid, phylogenic, functional, and structural levels.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
42 |
4
|
Gondois-Rey F, Chéret A, Granjeaud S, Mallet F, Bidaut G, Lécuroux C, Ploquin M, Müller-Trutwin M, Rouzioux C, Avettand-Fenoël V, Moretta A, Pialoux G, Goujard C, Meyer L, Olive D. NKG2C + memory-like NK cells contribute to the control of HIV viremia during primary infection: Optiprim-ANRS 147. Clin Transl Immunology 2017; 6:e150. [PMID: 28791125 PMCID: PMC5539415 DOI: 10.1038/cti.2017.22] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/06/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022] Open
Abstract
Natural-killer (NK) cells are important immune effectors during a viral infection. Latent CMV infection is widely spread and was demonstrated to shape the NK cell repertoire through the NKG2C receptor. An expansion of NKG2C+ NK cells has been reported during primary HIV infection (PHI), but their role is not known. We previously found a correlation between the maturation state of the NK cell compartment and a lower viral load by studying patients from the ANRS 147 Optiprim trial. We investigated here extensively the NKG2C+ NK cells at the time of PHI and its evolution after 3 months of early antiretroviral therapy (combination antiretroviral therapy (cART)). Multiparametric cytometry combined with bioinformatics was used to determine subsets. NKbright NKG2C+ progenitor, NKdim NKG2C+ effector and NKdim NKG2C+CD57+ memory-like populations were identified. Two groups of patients were unraveled according to the distribution of the NKG2C+ subsets skewed toward either progenitor/effector or memory-like phenotype. Patients with high NKG2C+CD57+ NK cell frequencies showed lower HIV-RNA, lower immune activation, higher pDC counts and reached more rapidly undetectable levels of HIV-RNA at M1 under cART. NKG2C+CD57+ NK cell frequency was the only factor strongly correlated to low viral load among other clinical features. While the patients were cytomegalovirus (CMV) infected, there was no sign of reactivation of CMV during PHI suggesting that memory-like NK cells were already present at the time of HIV infection and constituted a preexisting immune response able to contribute to natural control of HIV. This parameter appears to be a good candidate in the search of predictive markers to monitor HIV remission.
Collapse
|
Journal Article |
8 |
42 |
5
|
Sauvageau S, Stasiak AZ, Banville I, Ploquin M, Stasiak A, Masson JY. Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol Cell Biol 2005; 25:4377-87. [PMID: 15899844 PMCID: PMC1140613 DOI: 10.1128/mcb.25.11.4377-4387.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homologous recombination is important for the repair of double-strand breaks during meiosis. Eukaryotic cells require two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, for meiotic recombination. To date, it is not clear, at the biochemical level, why two homologs of RecA are necessary during meiosis. To gain insight into this, we purified Schizosaccharomyces pombe Rad51 and Dmc1 to homogeneity. Purified Rad51 and Dmc1 form homo-oligomers, bind single-stranded DNA preferentially, and exhibit DNA-stimulated ATPase activity. Both Rad51 and Dmc1 promote the renaturation of complementary single-stranded DNA. Importantly, Rad51 and Dmc1 proteins catalyze ATP-dependent strand exchange reactions with homologous duplex DNA. Electron microscopy reveals that both S. pombe Rad51 and Dmc1 form nucleoprotein filaments. Rad51 formed helical nucleoprotein filaments on single-stranded DNA, whereas Dmc1 was found in two forms, as helical filaments and also as stacked rings. These results demonstrate that Rad51 and Dmc1 are both efficient recombinases in lower eukaryotes and reveal closer functional and structural similarities between the meiotic recombinase Dmc1 and Rad51. The DNA strand exchange activity of both Rad51 and Dmc1 is most likely critical for proper meiotic DNA double-strand break repair in lower eukaryotes.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
36 |
6
|
Ploquin M, Petukhova GV, Morneau D, Déry U, Bransi A, Stasiak A, Camerini-Otero RD, Masson JY. Stimulation of fission yeast and mouse Hop2-Mnd1 of the Dmc1 and Rad51 recombinases. Nucleic Acids Res 2007; 35:2719-33. [PMID: 17426123 PMCID: PMC1885673 DOI: 10.1093/nar/gkm174] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic analysis of fission yeast suggests a role for the spHop2-Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2-Mnd1 binds single-strand DNA ends of 3'-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca(2+) alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
36 |
7
|
Pike R, Filby A, Ploquin MJY, Eksmond U, Marques R, Antunes I, Hasenkrug K, Kassiotis G. Race between retroviral spread and CD4+ T-cell response determines the outcome of acute Friend virus infection. J Virol 2009; 83:11211-22. [PMID: 19692462 PMCID: PMC2772778 DOI: 10.1128/jvi.01225-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 08/10/2009] [Indexed: 01/11/2023] Open
Abstract
Retroviruses can establish persistent infection despite induction of a multipartite antiviral immune response. Whether collective failure of all parts of the immune response or selective deficiency in one crucial part underlies the inability of the host to clear retroviral infections is currently uncertain. We examine here the contribution of virus-specific CD4(+) T cells in resistance against Friend virus (FV) infection in the murine host. We show that the magnitude and duration of the FV-specific CD4(+) T-cell response is directly proportional to resistance against acute FV infection and subsequent disease. Notably, significant protection against FV-induced disease is afforded by FV-specific CD4(+) T cells in the absence of a virus-specific CD8(+) T-cell or B-cell response. Enhanced spread of FV infection in hosts with increased genetic susceptibility or coinfection with Lactate dehydrogenase-elevating virus (LDV) causes a proportional increase in the number of FV-specific CD4(+) T cells required to control FV-induced disease. Furthermore, ultimate failure of FV/LDV coinfected hosts to control FV-induced disease is accompanied by accelerated contraction of the FV-specific CD4(+) T-cell response. Conversely, an increased frequency or continuous supply of FV-specific CD4(+) T cells is both necessary and sufficient to effectively contain acute infection and prevent disease, even in the presence of coinfection. Thus, these results suggest that FV-specific CD4(+) T cells provide significant direct protection against acute FV infection, the extent of which critically depends on the ratio of FV-infected cells to FV-specific CD4(+) T cells.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Friend murine leukemia virus/immunology
- Lactate dehydrogenase-elevating virus/immunology
- Leukemia, Experimental/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Transgenic
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- Retroviridae Infections/immunology
- Tumor Virus Infections/immunology
- Interferon gamma Receptor
Collapse
|
Research Support, N.I.H., Intramural |
16 |
31 |
8
|
Chéret A, Durier C, Mélard A, Ploquin M, Heitzmann J, Lécuroux C, Avettand-Fenoël V, David L, Pialoux G, Chennebault JM, Müller-Trutwin M, Goujard C, Rouzioux C, Meyer L. Impact of early cART on HIV blood and semen compartments at the time of primary infection. PLoS One 2017; 12:e0180191. [PMID: 28708873 PMCID: PMC5510829 DOI: 10.1371/journal.pone.0180191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND HIV-infected cells in semen facilitate viral transmission. We studied the establishment of HIV reservoirs in semen and blood during PHI, along with systemic immune activation and the impact of early cART. METHODS Patients in the ANRS-147-OPTIPRIM trial received two years of early cART. Nineteen patients of the trial were analyzed, out of which 8 had acute PHI (WB ≤1 Ab). We quantified total cell-associated (ca) HIV-DNA in blood and semen and HIV-RNA in blood and semen plasma samples, collected during PHI and at 24 months of treatment. RESULTS At enrollment, HIV-RNA load was higher in blood than in semen (median 5.66 vs 4.22 log10 cp/mL, p<0.0001). Semen HIV-RNA load correlated strongly with blood HIV-RNA load (r = 0.81, p = 0.02, the CD4 cell count (r = -0.98, p<0.0001), and the CD4/CD8 ratio (r = -0.85, p<0.01) in acute infection but not in later stages of PHI. Median blood and seminal cellular HIV-DNA levels were 3.59 and 0.31 log10cp/106 cells, respectively. HIV-DNA load peaked in semen later than in blood and then correlated with blood IP10 level (r = 0.62, p = 0.04). HIV-RNA was undetectable in blood and semen after two years of effective cART. Semen HIV-DNA load declined similarly, except in one patient who had persistently high IP-10 and IL-6 levels and used recreational drugs. CONCLUSIONS HIV reservoir cells are found in semen during PHI, with gradual compartmentalization. Its size was linked to the plasma IP-10 level. Early treatment purges both the virus and infected cells, reducing the high risk of transmission during PHI. CLINICAL TRIALS REGISTRATION NCT01033760.
Collapse
|
Randomized Controlled Trial |
8 |
23 |
9
|
Gondois-Rey F, Chéret A, Mallet F, Bidaut G, Granjeaud S, Lécuroux C, Ploquin M, Müller-Trutwin M, Rouzioux C, Avettand-Fenoël V, De Maria A, Pialoux G, Goujard C, Meyer L, Olive D. A Mature NK Profile at the Time of HIV Primary Infection Is Associated with an Early Response to cART. Front Immunol 2017; 8:54. [PMID: 28239376 PMCID: PMC5300971 DOI: 10.3389/fimmu.2017.00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are major effectors of the innate immune response. Despite an overall defect in their function associated with chronic human immunodeficiency virus (HIV) infection, their role in primary HIV infection is poorly understood. We investigated the modifications of the NK cell compartment in patients from the ANRS-147-Optiprim trial, a study designed to examine the benefits of intensive combination antiretroviral therapy (cART) in patients with acute or early primary HIV infection. Multiparametric flow cytometry combined with bioinformatics analyses identified the NK phenotypes in blood samples from 30 primary HIV-infected patients collected at inclusion and after 3 months of cART. NK phenotypes were revealed by co-expression of CD56/CD16/NKG2A/NKG2C and CD57, five markers known to delineate stages of NK maturation. Three groups of patients were formed according to their distributions of the 12 NK cell phenotypes identified. Their virological and immunological characteristics were compared along with the early outcome of cART. At inclusion, HIV-infected individuals could be grouped into those with predominantly immature/early differentiated NK cells and those with predominantly mature NK cells. Several virological and immunological markers were improved in patients with mature NK profiles, including lower HIV viral loads, lower immune activation markers on NK and dendritic cell (DC), lower levels of plasma IL-6 and IP-10, and a trend to normal DC counts. Whereas all patients showed a decrease of viremia higher than 3 log10 copies/ml after 3 months of treatment, patients with a mature NK profile at inclusion reached this threshold more rapidly than patients with an immature NK profile (70 vs. 38%). In conclusion, a better early response to cART is observed in patients whose NK profile is skewed to maturation at inclusion. Whether the mature NK cells contributed directly or indirectly to HIV control through a better immune environment under cART is unknown. The NK maturation status of primary infected patients should be considered as a relevant marker of an immune process contributing to the early outcome of cART that could help in the management of HIV-infected patients.
Collapse
|
Journal Article |
8 |
20 |
10
|
Sauvageau S, Ploquin M, Masson JY. Exploring the multiple facets of the meiotic recombinase Dmc1. Bioessays 2004; 26:1151-5. [PMID: 15499584 DOI: 10.1002/bies.20150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Meiotic recombination in eukaryotic cells requires two homologs of E. coli RecA protein, Rad51 and Dmc1. Until recently, the role of Dmc1 in meiotic recombination was mostly attributed to genetic studies as purified Dmc1 was found to be a much weaker recombinase than Rad51 in the test tube. Now, Sehorn and colleagues1 have reported that, like Rad51, human Dmc1 is an efficient recombinase in vitro. Dmc1 forms helical nucleoprotein filaments--the signature of classical recombinases such as Rad51. These observations reveal a high level of similitude between the Dmc1 and the Rad51 family of recombination enzymes in higher eukaryotes.
Collapse
|
|
21 |
5 |
11
|
Kornfeld C, Ploquin MJY, Pandrea I, Faye A, Onanga R, Apetrei C, Poaty-Mavoungou V, Rouquet P, Estaquier J, Mortara L, Desoutter JF, Butor C, Le Grand R, Roques P, Simon F, Barré-Sinoussi F, Diop OM, Müller-Trutwin MC. Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS. J Clin Invest 2005. [DOI: 10.1172/jci23006c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
|
20 |
2 |