1
|
Metelev M, Arseniev A, Bushin LB, Kuznedelov K, Artamonova TO, Kondratenko R, Khodorkovskii M, Seyedsayamdost MR, Severinov K. Acinetodin and Klebsidin, RNA Polymerase Targeting Lasso Peptides Produced by Human Isolates of Acinetobacter gyllenbergii and Klebsiella pneumoniae. ACS Chem Biol 2017; 12:814-824. [PMID: 28106375 DOI: 10.1021/acschembio.6b01154] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the bioinformatic prediction and structural validation of two lasso peptides, acinetodin and klebsidin, encoded by the genomes of several human-associated strains of Acinetobacter and Klebsiella. Computation of the three-dimensional structures of these peptides using NMR NOESY constraints verifies that they contain a lasso motif. Despite the lack of sequence similarity to each other or to microcin J25, a prototypical lasso peptide and transcription inhibitor from Escherichia coli, acinetodin and klebsidin also inhibit transcript elongation by the E. coli RNA polymerase by binding to a common site. Yet, unlike microcin J25, acinetodin and klebsidin are unable to permeate wild type E. coli cells and inhibit their growth. We show that the E. coli cells become sensitive to klebsidin when expressing the outer membrane receptor FhuA homologue from Klebsiella pneumoniae. It thus appears that specificity to a common target, the RNA polymerase secondary channel, can be attained by a surprisingly diverse set of primary sequences folded into a common threaded-lasso fold. In contrast, transport into cells containing sensitive targets appears to be much more specific and must be the major determinant of the narrow range of bioactivity of known lasso peptides.
Collapse
|
|
8 |
51 |
2
|
Metelev M, Osterman IA, Ghilarov D, Khabibullina NF, Yakimov A, Shabalin K, Utkina I, Travin DY, Komarova ES, Serebryakova M, Artamonova T, Khodorkovskii M, Konevega AL, Sergiev PV, Severinov K, Polikanov YS. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat Chem Biol 2017; 13:1129-1136. [PMID: 28846667 PMCID: PMC5701663 DOI: 10.1038/nchembio.2462] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
While screening of small-molecular metabolites produced by most cultivatable microorganisms often results in rediscovery of known compounds, genome-mining programs allow to harness much greater chemical diversity and result in discovery of new molecular scaffolds. Here we report genome-guided identification of a new antibiotic klebsazolicin (KLB) from Klebsiella pneumoniae that inhibits growth of sensitive cells by targeting ribosome. A member of ribosomally-synthesized post-translationally modified peptides (RiPPs), KLB is characterized by the presence of unique N-terminal amidine ring essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosome by interfering with translation elongation. Structural analysis of the ribosome-KLB complex reveals the compound bound in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramins-B. KLB adopts compact conformation and largely obstructs the tunnel. Engineered KLB fragments retain in vitro activity and can serve as a starting point for the development of new bioactive compounds.
Collapse
|
Journal Article |
8 |
35 |
3
|
Kulichkova VA, Artamonova TO, Lyublinskaya OG, Khodorkovskii MA, Tomilin AN, Tsimokha AS. Proteomic analysis of affinity-purified extracellular proteasomes reveals exclusively 20S complexes. Oncotarget 2017; 8:102134-102149. [PMID: 29254231 PMCID: PMC5731941 DOI: 10.18632/oncotarget.22230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
Proteasome-mediated proteolysis is important for many basic cellular processes. In addition to their functions in the cell, proteasomes have been found in physiological fluids of both healthy and diseased humans including cancer patients. Higher levels of these proteasomes are associated with higher cancer burden and stage. The etiology and functions of these proteasomes, referred to as circulating, plasmatic, or extracellular proteasomes (ex-PSs), are unclear. Here we show that human cancer cell lines, as well as human endometrium-derived mesenchymal stem cells (hMESCs), release proteasome complexes into culture medium (CM). To define ex-PS composition, we have affinity purified them from CM conditioned by human leukemia cell line K562. Using matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS), we have identified core 20S proteasome subunits and a set of 15 proteasome-interacting proteins (PIPs), all previously described as exosome cargo proteins. Three of them, PPIase A, aldolase A, and transferrin, have never been reported as PIPs. The study provides compelling arguments that ex-PSs do not contain 19S or PA200 regulatory particles and are represented exclusively by the 20S complex.
Collapse
|
research-article |
8 |
22 |
4
|
Yakimov A, Pobegalov G, Bakhlanova I, Khodorkovskii M, Petukhov M, Baitin D. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide. Nucleic Acids Res 2017; 45:9788-9796. [PMID: 28934502 PMCID: PMC5766188 DOI: 10.1093/nar/gkx687] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance.
Collapse
|
Journal Article |
8 |
22 |
5
|
Morozova N, Sabantsev A, Bogdanova E, Fedorova Y, Maikova A, Vedyaykin A, Rodic A, Djordjevic M, Khodorkovskii M, Severinov K. Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system. Nucleic Acids Res 2016; 44:790-800. [PMID: 26687717 PMCID: PMC4737168 DOI: 10.1093/nar/gkv1490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 11/14/2022] Open
Abstract
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
21 |
6
|
Jerebtsova M, Klotchenko SA, Artamonova TO, Ammosova T, Washington K, Egorov VV, Shaldzhyan AA, Sergeeva MV, Zatulovskiy EA, Temkina OA, Petukhov MG, Vasin AV, Khodorkovskii MA, Orlov YN, Nekhai S. Mass spectrometry and biochemical analysis of RNA polymerase II: targeting by protein phosphatase-1. Mol Cell Biochem 2010; 347:79-87. [PMID: 20941529 DOI: 10.1007/s11010-010-0614-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/28/2010] [Indexed: 01/21/2023]
Abstract
Transcription of eukaryotic genes is regulated by phosphorylation of serine residues of heptapeptide repeats of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII). We previously reported that protein phosphatase-1 (PP1) dephosphorylates RNAPII CTD in vitro and inhibition of nuclear PP1-blocked viral transcription. In this article, we analyzed the targeting of RNAPII by PP1 using biochemical and mass spectrometry analysis of RNAPII-associated regulatory subunits of PP1. Immunoblotting showed that PP1 co-elutes with RNAPII. Mass spectrometry approach showed the presence of U2 snRNP. Co-immunoprecipitation analysis points to NIPP1 and PNUTS as candidate regulatory subunits. Because NIPP1 was previously shown to target PP1 to U2 snRNP, we analyzed the effect of NIPP1 on RNAPII phosphorylation in cultured cells. Expression of mutant NIPP1 promoted RNAPII phosphorylation suggesting that the deregulation of cellular NIPP1/PP1 holoenzyme affects RNAPII phosphorylation and pointing to NIPP1 as a potential regulatory factor in RNAPII-mediated transcription.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
19 |
7
|
E. Laukhina E, P. Bubnov V, I. Estrin Y, A. Golod Y, A. Khodorkovskii M, K. Koltover V, B. Yagubskii E. Novel proficient method for isolation of endometallofullerenes from fullerene-containing soots by two-stepo-xylene–N, N-dimethylformamide extraction. ACTA ACUST UNITED AC 1998. [DOI: 10.1039/a708385e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
27 |
17 |
8
|
Orekhova M, Koreshova A, Artamonova T, Khodorkovskii M, Yakunina M. The study of the phiKZ phage non-canonical non-virion RNA polymerase. Biochem Biophys Res Commun 2019; 511:759-764. [PMID: 30833081 DOI: 10.1016/j.bbrc.2019.02.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
Non-canonical multisubunit DNA-dependent RNA-polymerases (RNAP) form a new group of the main transcription enzymes, which have only distinct homology to the catalytic subunits of canonical RNAPs of bacteria, archaea and eukaryotes. One of the rare non-canonical RNAP, which was partially biochemically characterized, is non-virion RNAP (nvRNAP) encoded by Pseudomonas phage phiKZ. PhiKZ nvRNAP consists of five subunits, four of which are homologs of β and β' subunit of bacterial RNAP, and the fifth subunits with unknown function. To understand the role of the fifth subunit in phiKZ nvRNAP, we created co-expression system allowing to get recombinant full five-subunit (5s) and four-subunit (4s) complexes and performed their comparison. The 5s recombinant complex is active on phage promoters in vitro as the native nvRNAP. The 4s complex cannot extend RNA, so 4s complex is not a catalytically active core of phiKZ nvRNAP. Thus, the phiKZ fifth subunit is not only a promoter-recognition subunit, but it plays an important role in the formation of active phiKZ nvRNAP.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
17 |
9
|
Sokolova M, Borukhov S, Lavysh D, Artamonova T, Khodorkovskii M, Severinov K. A non-canonical multisubunit RNA polymerase encoded by the AR9 phage recognizes the template strand of its uracil-containing promoters. Nucleic Acids Res 2017; 45:5958-5967. [PMID: 28402520 PMCID: PMC5449584 DOI: 10.1093/nar/gkx264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
AR9 is a giant Bacillus subtilis phage whose uracil-containing double-stranded DNA genome encodes distant homologs of β and β’ subunits of bacterial RNA polymerase (RNAP). The products of these genes are thought to assemble into two non-canonical multisubunit RNAPs - a virion RNAP (vRNAP) that is injected into the host along with phage DNA to transcribe early phage genes, and a non-virion RNAP (nvRNAP), which is synthesized during the infection and transcribes late phage genes. We purified the AR9 nvRNAP from infected B. subtilis cells and characterized its transcription activity in vitro. The AR9 nvRNAP requires uracils rather than thymines at specific conserved positions of late viral promoters. Uniquely, the nvRNAP recognizes the template strand of its promoters and is capable of specific initiation of transcription from both double- and single-stranded DNA. While the AR9 nvRNAP does not contain homologs of bacterial RNAP α subunits, it contains, in addition to the β and β’-like subunits, a phage protein gp226. The AR9 nvRNAP lacking gp226 is catalytically active but unable to bind to promoter DNA. Thus, gp226 is required for promoter recognition by the AR9 nvRNAP and may represent a new group of transcription initiation factors.
Collapse
|
Journal Article |
8 |
17 |
10
|
Vedyaykin AD, Vishnyakov IE, Polinovskaya VS, Khodorkovskii MA, Sabantsev AV. New insights into FtsZ rearrangements during the cell division of Escherichia coli from single-molecule localization microscopy of fixed cells. Microbiologyopen 2016; 5:378-86. [PMID: 26840800 PMCID: PMC4905991 DOI: 10.1002/mbo3.336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
FtsZ - a prokaryotic tubulin homolog - is one of the central components of bacterial division machinery. At the early stage of cytokinesis FtsZ forms the so-called Z-ring at mid-cell that guides septum formation. Many approaches were used to resolve the structure of the Z-ring, however, researchers are still far from consensus on this question. We utilized single-molecule localization microscopy (SMLM) in combination with immunofluorescence staining to visualize FtsZ in Esherichia coli fixed cells that were grown under slow and fast growth conditions. This approach allowed us to obtain images of FtsZ structures at different stages of cell division and accurately measure Z-ring dimensions. Analysis of these images demonstrated that Z-ring thickness increases during constriction, starting at about 70 nm at the beginning of division and increasing by approximately 25% half-way through constriction.
Collapse
|
Journal Article |
9 |
17 |
11
|
Sulatskaya AI, Rodina NP, Polyakov DS, Sulatsky MI, Artamonova TO, Khodorkovskii MA, Shavlovsky MM, Kuznetsova IM, Turoverov KK. Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T. Int J Mol Sci 2018; 19:E2762. [PMID: 30223436 PMCID: PMC6164334 DOI: 10.3390/ijms19092762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
The persistence of high concentrations of beta-2-microglobulin (β2M) in the blood of patients with acute renal failure leads to the development of the dialysis-related amyloidosis. This disease manifests in the deposition of amyloid fibrils formed from the various forms of β2M in the tissues and biological fluids of patients. In this paper, the amyloid fibrils formed from the full-length β2M (β2m) and its variants that lack the 6 and 10 N-terminal amino acids of the protein polypeptide chain (ΔN6β2m and ΔN10β2m, respectively) were probed by using the fluorescent dye thioflavin T (ThT). For this aim, the tested solutions were prepared via the equilibrium microdialysis approach. Spectroscopic analysis of the obtained samples allowed us to detect one binding mode (type) of ThT interaction with all the studied variants of β2M amyloid fibrils with affinity ~10⁴ M-1. This interaction can be explained by the dye molecules incorporation into the grooves that were formed by the amino acids side chains of amyloid protofibrils along the long axis of the fibrils. The decrease in the affinity and stoichiometry of the dye interaction with β2M fibrils, as well as in the fluorescence quantum yield and lifetime of the bound dye upon the shortening of the protein amino acid sequence were shown. The observed differences in the ThT-β2M fibrils binding parameters and characteristics of the bound dye allowed to prove not only the difference of the ΔN10β2m fibrils from other β2M fibrils (that can be detected visually, for example, by transmission electron microscopy (TEM), but also the differences between β2m and ΔN6β2m fibrils (that can not be unequivocally confirmed by other approaches). These results prove an essential role of N-terminal amino acids of the protein in the formation of the β2M amyloid fibrils. Information about amyloidogenic protein sequences can be claimed in the development of ways to inhibit β2M fibrillogenesis for the treatment of dialysis-related amyloidosis.
Collapse
|
research-article |
7 |
17 |
12
|
Starkova TY, Polyanichko AM, Artamonova TO, Khodorkovskii MA, Kostyleva EI, Chikhirzhina EV, Tomilin AN. Post-translational modifications of linker histone H1 variants in mammals. Phys Biol 2017; 14:016005. [PMID: 28000612 DOI: 10.1088/1478-3975/aa551a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2-H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
16 |
13
|
Fedorova I, Vasileva A, Selkova P, Abramova M, Arseniev A, Pobegalov G, Kazalov M, Musharova O, Goryanin I, Artamonova D, Zyubko T, Shmakov S, Artamonova T, Khodorkovskii M, Severinov K. PpCas9 from Pasteurella pneumotropica - a compact Type II-C Cas9 ortholog active in human cells. Nucleic Acids Res 2020; 48:12297-12309. [PMID: 33152077 PMCID: PMC7708072 DOI: 10.1093/nar/gkaa998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
CRISPR-Cas defense systems opened up the field of genome editing due to the ease with which effector Cas nucleases can be programmed with guide RNAs to access desirable genomic sites. Type II-A SpCas9 from Streptococcus pyogenes was the first Cas9 nuclease used for genome editing and it remains the most popular enzyme of its class. Nevertheless, SpCas9 has some drawbacks including a relatively large size and restriction to targets flanked by an 'NGG' PAM sequence. The more compact Type II-C Cas9 orthologs can help to overcome the size limitation of SpCas9. Yet, only a few Type II-C nucleases were fully characterized to date. Here, we characterized two Cas9 II-C orthologs, DfCas9 from Defluviimonas sp.20V17 and PpCas9 from Pasteurella pneumotropica. Both DfCas9 and PpCas9 cleave DNA in vitro and have novel PAM requirements. Unlike DfCas9, the PpCas9 nuclease is active in human cells. This small nuclease requires an 'NNNNRTT' PAM orthogonal to that of SpCas9 and thus potentially can broaden the range of Cas9 applications in biomedicine and biotechnology.
Collapse
|
research-article |
5 |
15 |
14
|
Fedorova I, Arseniev A, Selkova P, Pobegalov G, Goryanin I, Vasileva A, Musharova O, Abramova M, Kazalov M, Zyubko T, Artamonova T, Artamonova D, Shmakov S, Khodorkovskii M, Severinov K. DNA targeting by Clostridium cellulolyticum CRISPR-Cas9 Type II-C system. Nucleic Acids Res 2020; 48:2026-2034. [PMID: 31943070 PMCID: PMC7038990 DOI: 10.1093/nar/gkz1225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023] Open
Abstract
Type II CRISPR-Cas9 RNA-guided nucleases are widely used for genome engineering. Type II-A SpCas9 protein from Streptococcus pyogenes is the most investigated and highly used enzyme of its class. Nevertheless, it has some drawbacks, including a relatively big size, imperfect specificity and restriction to DNA targets flanked by an NGG PAM sequence. Cas9 orthologs from other bacterial species may provide a rich and largely untapped source of biochemical diversity, which can help to overcome the limitations of SpCas9. Here, we characterize CcCas9, a Type II-C CRISPR nuclease from Clostridium cellulolyticum H10. We show that CcCas9 is an active endonuclease of comparatively small size that recognizes a novel two-nucleotide PAM sequence. The CcCas9 can potentially broaden the existing scope of biotechnological applications of Cas9 nucleases and may be particularly advantageous for genome editing of C. cellulolyticum H10, a bacterium considered to be a promising biofuel producer.
Collapse
|
research-article |
5 |
14 |
15
|
Pobegalov G, Cherevatenko G, Alekseev A, Sabantsev A, Kovaleva O, Vedyaykin A, Morozova N, Baitin D, Khodorkovskii M. Deinococcus radiodurans RecA nucleoprotein filaments characterized at the single-molecule level with optical tweezers. Biochem Biophys Res Commun 2015; 466:426-30. [DOI: 10.1016/j.bbrc.2015.09.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/08/2015] [Indexed: 01/08/2023]
|
|
10 |
13 |
16
|
Selkova P, Vasileva A, Pobegalov G, Musharova O, Arseniev A, Kazalov M, Zyubko T, Shcheglova N, Artamonova T, Khodorkovskii M, Severinov K, Fedorova I. Position of Deltaproteobacteria Cas12e nuclease cleavage sites depends on spacer length of guide RNA. RNA Biol 2020; 17:1472-1479. [PMID: 32564655 PMCID: PMC7549622 DOI: 10.1080/15476286.2020.1777378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Cas12e proteins (formerly CasX) form a distinct subtype of Class II type V CRISPR-Cas effectors. Recently, it was shown that DpbCas12e from Deltaproteobacteria and PlmCas12e from Planctomycetes can introduce programmable double-stranded breaks in mammalian genomes. Thus, along with Cas9 and Cas12a Class II effectors, Cas12e could be harnessed for genome editing and engineering. The location of cleavage points in DNA targets is important for application of Cas nucleases in biotechnology. DpbCas12e was reported to produce extensive 5'-overhangs at cleaved targets, which can make it superior for some applications. Here, we used high throughput sequencing to precisely map the DNA cut site positions of DpbCas12e on several DNA targets. In contrast to previous observations, our results demonstrate that DNA cleavage pattern of Cas12e is very similar to that of Cas12a: DpbCas12e predominantly cleaves DNA after nucleotide position 17-19 downstream of PAM in the non-target DNA strand, and after the 22nd position of target strand, producing 3-5 nucleotide-long 5'-overhangs. We also show that reduction of spacer sgRNA sequence from 20nt to 16nt shifts Cas12e cleavage positions on the non-target DNA strand closer to the PAM, producing longer 6-8nt 5'-overhangs. Overall, these findings advance the understanding of Cas12e endonucleases and may be useful for developing of DpbCas12e-based biotechnology instruments.
Collapse
|
research-article |
5 |
12 |
17
|
Nevzglyadova OV, Kuznetsova IM, Mikhailova EV, Artamonova TO, Artemov AV, Mittenberg AG, Kostyleva EI, Turoverov KK, Khodorkovskii MA, Soidla TR. The effect of red pigment on the amyloidization of yeast proteins. Yeast 2011; 28:505-26. [DOI: 10.1002/yea.1854] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/15/2011] [Indexed: 11/11/2022] Open
|
|
14 |
10 |
18
|
Antonova D, Belousova VV, Zhivkoplias E, Sobinina M, Artamonova T, Vishnyakov IE, Kurdyumova I, Arseniev A, Morozova N, Severinov K, Khodorkovskii M, Yakunina MV. The Dynamics of Synthesis and Localization of Jumbo Phage RNA Polymerases inside Infected Cells. Viruses 2023; 15:2096. [PMID: 37896872 PMCID: PMC10612078 DOI: 10.3390/v15102096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
A nucleus-like structure composed of phage-encoded proteins and containing replicating viral DNA is formed in Pseudomonas aeruginosa cells infected by jumbo bacteriophage phiKZ. The PhiKZ genes are transcribed independently from host RNA polymerase (RNAP) by two RNAPs encoded by the phage. The virion RNAP (vRNAP) transcribes early viral genes and must be injected into the cell with phage DNA. The non-virion RNAP (nvRNAP) is composed of early gene products and transcribes late viral genes. In this work, the dynamics of phage RNAPs localization during phage phiKZ infection were studied. We provide direct evidence of PhiKZ vRNAP injection in infected cells and show that it is excluded from the phage nucleus. The nvRNAP is synthesized shortly after the onset of infection and localizes in the nucleus. We propose that spatial separation of two phage RNAPs allows coordinated expression of phage genes belonging to different temporal classes.
Collapse
|
research-article |
2 |
8 |
19
|
Melnikov AS, Serdobintsev PY, Vedyaykin AD, Khodorkovskii MA. Two-photon absorption cross section for Coumarins 102, 153 and 307. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/917/6/062029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
6 |
20
|
Tsimokha AS, Artamonova TO, Diakonov EE, Khodorkovskii MA, Tomilin AN. Post-Translational Modifications of Extracellular Proteasome. Molecules 2020; 25:molecules25153504. [PMID: 32752045 PMCID: PMC7435879 DOI: 10.3390/molecules25153504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways in eukaryotic cells. Abnormal functioning of this system has been observed in cancer and neurological diseases. The 20S proteasomes, essential components of the UPS, are present not only within the cells but also in the extracellular space, and their concentration in blood plasma has been found to be elevated and dependent upon the disease state, being of prognostic significance in patients suffering from cancer, liver diseases, and autoimmune diseases. However, functions of extracellular proteasomes and mechanisms of their release by cells remain largely unknown. The main mechanism of proteasome activity regulation is provided by modulation of their composition and post-translational modifications (PTMs). Moreover, diverse PTMs of proteins are known to participate in the loading of specific elements into extracellular vesicles. Since previous studies have revealed that the transport of extracellular proteasomes may occur via extracellular vesicles, we have set out to explore the PTMs of extracellular proteasomes in comparison to cellular counterparts. In this work, cellular and extracellular proteasomes were affinity purified and separated by SDS-PAGE for subsequent trypsinization and matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) analysis. In total, we could identify 64 and 55 PTM sites in extracellular and cellular proteasomes, respectively, including phosphorylation, ubiquitination, acetylation, and succinylation. We observed novel sites of acetylation at K238 and K192 of the proteasome subunits β2 and β3, respectively, that are specific for extracellular proteasomes. Moreover, cellular proteasomes show specific acetylation at K227 of α2 and ubiquitination at K201 of β3. Interestingly, succinylation of β6 at the residue K228 seems not to be present exclusively in extracellular proteasomes, whereas both extracellular and cellular proteasomes may also be acetylated at this site. The same situation takes place at K201 of the β3 subunit where ubiquitination is seemingly specific for cellular proteasomes. Moreover, crosstalk between acetylation, ubiquitination, and succinylation has been observed in the subunit α3 of both proteasome populations. These data will serve as a basis for further studies, aimed at dissection of the roles of extracellular proteasome-specific PTMs in terms of the function of these proteasomes and mechanism of their transport into extracellular space.
Collapse
|
|
5 |
6 |
21
|
Bakhmet EI, Nazarov IB, Gazizova AR, Vorobyeva NE, Kuzmin AA, Gordeev MN, Sinenko SA, Aksenov ND, Artamonova TO, Khodorkovskii MA, Alenina N, Onichtchouk D, Wu G, Schöler HR, Tomilin AN. hnRNP-K Targets Open Chromatin in Mouse Embryonic Stem Cells in Concert with Multiple Regulators. Stem Cells 2019; 37:1018-1029. [PMID: 31021473 DOI: 10.1002/stem.3025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023]
Abstract
The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
6 |
22
|
Nevzglyadova OV, Mikhailova EV, Amen TR, Zenin VV, Artemov AV, Kostyleva EI, Mezhenskaya DA, Rodin DI, Saifitdinova AF, Khodorkovskii MA, Sarantseva SV, Soidla TR. Yeast red pigment modifies Amyloid beta growth in Alzheimer disease models in both Saccharomyces cerevisiae and Drosophila melanogaster. Amyloid 2015; 22:100-11. [PMID: 26053105 DOI: 10.3109/13506129.2015.1010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of yeast red pigment on amyloid-β (Aβ) aggregation and fibril growth was studied in yeasts, fruit flies and in vitro. Yeast strains accumulating red pigment (red strains) contained less amyloid and had better survival rates compared to isogenic strains without red pigment accumulation (white strains). Confocal and fluorescent microscopy was used to visualise fluorescent Aβ-GFP aggregates. Yeast cells containing less red pigment had more Aβ-GFP aggregates despite the lower level of overall GFP fluorescence. Western blot analysis with anti-GFP, anti-Aβ and A11 antibodies also revealed that red cells contained a considerably lower amount of Aβ GFP aggregates as compared to white cells. Similar results were obtained with exogenous red pigment that was able to penetrate yeast cells. In vitro experiments with thioflavine and TEM showed that red pigment effectively decreased Aβ fibril growth. Transgenic flies expressing Aβ were cultivated on medium containing red and white isogenic yeast strains. Flies cultivated on red strains had a significant decrease in Aβ accumulation levels and brain neurodegeneration. They also demonstrated better memory and learning indexes and higher locomotor ability.
Collapse
|
|
10 |
6 |
23
|
Alekseev A, Pobegalov G, Morozova N, Vedyaykin A, Cherevatenko G, Yakimov A, Baitin D, Khodorkovskii M. A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. eLife 2022; 11:78409. [PMID: 35730924 PMCID: PMC9252578 DOI: 10.7554/elife.78409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
RecA protein mediates homologous recombination repair in bacteria through assembly of long helical filaments on ssDNA in an ATP-dependent manner. RecX, an important negative regulator of RecA, is known to inhibit RecA activity by stimulating the disassembly of RecA nucleoprotein filaments. Here we use a single-molecule approach to address the regulation of (Escherichia coli) RecA-ssDNA filaments by RecX (E. coli) within the framework of distinct conformational states of RecA-ssDNA filament. Our findings revealed that RecX effectively binds the inactive conformation of RecA-ssDNA filaments and slows down the transition to the active state. Results of this work provide new mechanistic insights into the RecX-RecA interactions and highlight the importance of conformational transitions of RecA filaments as an additional level of regulation of its biological activity.
Collapse
|
|
3 |
4 |
24
|
Alekseev A, Serdakov M, Pobegalov G, Yakimov A, Bakhlanova I, Baitin D, Khodorkovskii M. Single-molecule analysis reveals two distinct states of the compressed RecA filament on single-stranded DNA. FEBS Lett 2020; 594:3464-3476. [PMID: 32880917 DOI: 10.1002/1873-3468.13922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/07/2022]
Abstract
The RecA protein plays a key role in bacterial homologous recombination (HR) and acts through assembly of long helical filaments around single-stranded DNA in the presence of ATP. Large-scale conformational changes induced by ATP hydrolysis result in transitions between stretched and compressed forms of the filament. Here, using a single-molecule approach, we show that compressed RecA nucleoprotein filaments can exist in two distinct interconvertible states depending on the presence of ADP in the monomer-monomer interface. Binding of ADP promotes cooperative conformational transitions and directly affects mechanical properties of the filament. Our findings reveal that RecA nucleoprotein filaments are able to continuously cycle between three mechanically distinct states that might have important implications for RecA-mediated processes of HR.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
4 |
25
|
Serdobintsev PY, Rakcheeva LP, Murashov SV, Melnikov AS, Lyubchik S, Timofeev NA, Pastor AA, Khodorkovskii MA. Relaxation channels of multi-photon excited xenon clusters. J Chem Phys 2015; 143:114302. [PMID: 26395700 DOI: 10.1063/1.4930963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.
Collapse
|
|
10 |
3 |