1
|
Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 2013; 3:1355-61. [PMID: 23707065 PMCID: PMC3706192 DOI: 10.1016/j.celrep.2013.05.009] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 02/06/2023] Open
Abstract
The presence of foreign DNA in the cytosol of mammalian cells elicits a potent antiviral interferon response. Recently, cytosolic DNA was proposed to induce the synthesis of cyclic GMP-AMP (cGAMP) upon binding to an enzyme called cGAMP synthase (cGAS). cGAMP activates an interferon response by binding to a downstream receptor called STING. Here, we identify natural variants of human STING (hSTING) that are poorly responsive to cGAMP yet, unexpectedly, are normally responsive to DNA and cGAS signaling. We explain this paradox by demonstrating that the cGAS product is actually a noncanonical cyclic dinucleotide, cyclic [G(2'-5')pA(3'-5')p], which contains a single 2'-5' phosphodiester bond. Cyclic [G(2'-5')pA(3'-5')p] potently activates diverse hSTING receptors and, therefore, may be a useful adjuvant or immunotherapeutic. Our results indicate that hSTING variants have evolved to distinguish conventional (3'-5') cyclic dinucleotides, known to be produced mainly by bacteria, from the noncanonical cyclic dinucleotide produced by mammalian cGAS.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
592 |
2
|
Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, Roth A, Breaker RR. Tandem riboswitch architectures exhibit complex gene control functions. Science 2006; 314:300-4. [PMID: 17038623 DOI: 10.1126/science.1130716] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Riboswitches are structured RNAs typically located in the 5' untranslated regions of bacterial mRNAs that bind metabolites and control gene expression. Most riboswitches sense one metabolite and function as simple genetic switches. However, we found that the 5' region of the Bacillus clausii metE messenger RNA includes two riboswitches that respond to S-adenosylmethionine and coenzyme B12. This tandem arrangement yields a composite gene control system that functions as a two-input Boolean NOR logic gate. These findings and the discovery of additional tandem riboswitch architectures reveal how simple RNA elements can be assembled to make sophisticated genetic decisions without involving protein factors.
Collapse
MESH Headings
- 5' Untranslated Regions/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Bacillus/genetics
- Bacillus/growth & development
- Bacillus/metabolism
- Base Sequence
- Cobamides/metabolism
- Cobamides/pharmacology
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Ligands
- Methionine/biosynthesis
- Methionine/pharmacology
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- S-Adenosylmethionine/metabolism
- Transcription, Genetic
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
195 |
3
|
Kellenberger CA, Wilson SC, Sales-Lee J, Hammond MC. RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 2013; 135:4906-9. [PMID: 23488798 DOI: 10.1021/ja311960g] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyclic dinucleotides are an important class of signaling molecules that regulate a wide variety of pathogenic responses in bacteria, but tools for monitoring their regulation in vivo are lacking. We have designed RNA-based fluorescent biosensors for cyclic di-GMP and cyclic AMP-GMP by fusing the Spinach aptamer to variants of a natural GEMM-I riboswitch. In live cell imaging experiments, these biosensors demonstrate fluorescence turn-on in response to cyclic dinucleotides, and they were used to confirm in vivo production of cyclic AMP-GMP by the enzyme DncV.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
193 |
4
|
Hallberg ZF, Su Y, Kitto RZ, Hammond MC. Engineering and In Vivo Applications of Riboswitches. Annu Rev Biochem 2017; 86:515-539. [PMID: 28375743 DOI: 10.1146/annurev-biochem-060815-014628] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Riboswitches are common gene regulatory units mostly found in bacteria that are capable of altering gene expression in response to a small molecule. These structured RNA elements consist of two modular subunits: an aptamer domain that binds with high specificity and affinity to a target ligand and an expression platform that transduces ligand binding to a gene expression output. Significant progress has been made in engineering novel aptamer domains for new small molecule inducers of gene expression. Modified expression platforms have also been optimized to function when fused with both natural and synthetic aptamer domains. As this field expands, the use of these privileged scaffolds has permitted the development of tools such as RNA-based fluorescent biosensors. In this review, we summarize the methods that have been developed to engineer new riboswitches and highlight applications of natural and synthetic riboswitches in enzyme and strain engineering, in controlling gene expression and cellular physiology, and in real-time imaging of cellular metabolites and signals.
Collapse
|
Review |
8 |
104 |
5
|
Kellenberger CA, Chen C, Whiteley AT, Portnoy DA, Hammond MC. RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic di-AMP. J Am Chem Soc 2015; 137:6432-5. [PMID: 25965978 DOI: 10.1021/jacs.5b00275] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human pathogen Listeria monocytogenes, cdiA is an essential molecule that regulates metabolic function and cell wall homeostasis, and decreased levels of cdiA result in increased antibiotic susceptibility. We have generated fluorescent biosensors for cdiA through fusion of the Spinach2 aptamer to ligand-binding domains of cdiA riboswitches. The biosensor was used to visualize intracellular cdiA levels in live L. monocytogenes strains and to determine the catalytic domain of the phosphodiesterase PdeA. Furthermore, a flow cytometry assay based on this biosensor was used to screen for diadenylate cyclase activity and confirmed the enzymatic activity of DisA-like proteins from Clostridium difficile and Methanocaldococcus jannaschii. Thus, we have expanded the development of RNA-based biosensors for in vivo metabolite imaging in Gram-positive bacteria and have validated the first dinucleotide cyclase from Archaea.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
90 |
6
|
Weinberg Z, Regulski EE, Hammond MC, Barrick JE, Yao Z, Ruzzo WL, Breaker RR. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA (NEW YORK, N.Y.) 2008; 14:822-8. [PMID: 18369181 PMCID: PMC2327355 DOI: 10.1261/rna.988608] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/11/2008] [Indexed: 05/20/2023]
Abstract
A novel family of riboswitches, called SAM-IV, is the fourth distinct set of mRNA elements to be reported that regulate gene expression via direct sensing of S-adenosylmethionine (SAM or AdoMet). SAM-IV riboswitches share conserved nucleotide positions with the previously described SAM-I riboswitches, despite rearranged structures and nucleotide positions with family-specific nucleotide identities. Sequence analysis and molecular recognition experiments suggest that SAM-I and SAM-IV riboswitches share similar ligand binding sites, but have different scaffolds. Our findings support the view that RNA has considerable structural versatility and reveal that riboswitches exploit this potential to expand the scope of RNA in genetic regulation.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Base Sequence
- Binding Sites/genetics
- DNA Primers/genetics
- Evolution, Molecular
- Ligands
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/classification
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- S-Adenosylmethionine/metabolism
- Streptomyces coelicolor/genetics
- Streptomyces coelicolor/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
17 |
86 |
7
|
Wang XC, Wilson SC, Hammond MC. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Res 2016; 44:e139. [PMID: 27382070 PMCID: PMC5041473 DOI: 10.1093/nar/gkw580] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022] Open
Abstract
Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host–microbial and microbial–microbial interactions through small molecule signals.
Collapse
|
Journal Article |
9 |
68 |
8
|
Su Y, Hickey SF, Keyser SGL, Hammond MC. In Vitro and In Vivo Enzyme Activity Screening via RNA-Based Fluorescent Biosensors for S-Adenosyl-l-homocysteine (SAH). J Am Chem Soc 2016; 138:7040-7. [PMID: 27191512 DOI: 10.1021/jacs.6b01621] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-throughput enzyme activity screens are essential for target characterization and drug development, but few assays employ techniques or reagents that are applicable to both in vitro and live cell settings. Here, we present a class of selective and sensitive fluorescent biosensors for S-adenosyl-l-homocysteine (SAH) that provide a direct "mix and go" activity assay for methyltransferases (MTases), an enzyme class that includes several cancer therapeutic targets. Our riboswitch-based biosensors required an alternate inverted fusion design strategy, but retained full selectivity for SAH over its close structural analogue, the highly abundant methylation cofactor S-adenosyl-l-methionine (SAM). The level of ligand selectivity for these fluorescent biosensors exceeded that of commercial antibodies for SAH and proved critical to cellular applications, as we employed them to measure methylthioadenosine nucleosidase (MTAN) activity in live Escherichia coli. In particular, we were able to monitor in vivo increase of SAH levels upon chemical inhibition of MTAN using flow cytometry, which demonstrates high-throughput, single cell measurement of an enzyme activity associated with the biosynthesis of quorum sensing signal AI-2. Thus, this study presents RNA-based fluorescent biosensors as promising molecular reagents for high-throughput enzymatic assays that successfully bridge the gap between in vitro and in vivo applications.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
67 |
9
|
Meyer MM, Hammond MC, Salinas Y, Roth A, Sudarsan N, Breaker RR. Challenges of ligand identification for riboswitch candidates. RNA Biol 2011; 8:5-10. [PMID: 21317561 DOI: 10.4161/rna.8.1.13865] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expanding DNA sequence databases and improving methods for comparative analysis are being exploited to identify numerous noncoding RNA elements including riboswitches. Ligands for many riboswitch classes usually can be inferred based on the genomic contexts of representative RNAs, and complex formation or genetic regulation subsequently demonstrated experimentally. However, there are several candidate riboswitches for which ligands have not been identified. In this report, we discuss three of the most compelling riboswitch candidates: the ykkC/ykkD, yybP/ykoY and pfl RNAs. Each of these RNAs is numerous, phylogenetically widespread, and carries features that are hallmarks of metabolite-binding riboswitches, such as a well-conserved aptamer-like structure and apparent interactions with gene regulation elements such as ribosome binding sites or intrinsic transcription termination stems. These RNAs likely represent only a small sampling of the challenging motifs that researchers will encounter as new noncoding RNAs are identified.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
56 |
10
|
Sadhu MJ, Guan Q, Li F, Sales-Lee J, Iavarone AT, Hammond MC, Cande WZ, Rine J. Nutritional control of epigenetic processes in yeast and human cells. Genetics 2013; 195:831-44. [PMID: 23979574 PMCID: PMC3813867 DOI: 10.1534/genetics.113.153981] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/12/2013] [Indexed: 02/02/2023] Open
Abstract
The vitamin folate is required for methionine homeostasis in all organisms. In addition to its role in protein synthesis, methionine is the precursor to S-adenosyl-methionine (SAM), which is used in myriad cellular methylation reactions, including all histone methylation reactions. Here, we demonstrate that folate and methionine deficiency led to reduced methylation of lysine 4 of histone H3 (H3K4) in Saccharomyces cerevisiae. The effect of nutritional deficiency on H3K79 methylation was less pronounced, but was exacerbated in S. cerevisiae carrying a hypomorphic allele of Dot1, the enzyme responsible for H3K79 methylation. This result suggested a hierarchy of epigenetic modifications in terms of their susceptibility to nutritional limitations. Folate deficiency caused changes in gene transcription that mirrored the effect of complete loss of H3K4 methylation. Histone methylation was also found to respond to nutritional deficiency in the fission yeast Schizosaccharomyces pombe and in human cells in culture.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
46 |
11
|
Bose D, Su Y, Marcus A, Raulet DH, Hammond MC. An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway. Cell Chem Biol 2016; 23:1539-1549. [PMID: 27889408 DOI: 10.1016/j.chembiol.2016.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/02/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
In mammalian cells, the second messenger (2'-5',3'-5') cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP), is produced by the cytosolic DNA sensor cGAMP synthase (cGAS), and subsequently bound by the stimulator of interferon genes (STING) to trigger interferon response. Thus, the cGAS-cGAMP-STING pathway plays a critical role in pathogen detection, as well as pathophysiological conditions including cancer and autoimmune disorders. However, studying and targeting this immune signaling pathway has been challenging due to the absence of tools for high-throughput analysis. We have engineered an RNA-based fluorescent biosensor that responds to 2',3'-cGAMP. The resulting "mix-and-go" cGAS activity assay shows excellent statistical reliability as a high-throughput screening (HTS) assay and distinguishes between direct and indirect cGAS inhibitors. Furthermore, the biosensor enables quantitation of 2',3'-cGAMP in mammalian cell lysates. We envision this biosensor-based assay as a resource to study the cGAS-cGAMP-STING pathway in the context of infectious diseases, cancer immunotherapy, and autoimmune diseases.
Collapse
|
Journal Article |
9 |
46 |
12
|
Ren A, Wang XC, Kellenberger CA, Rajashankar KR, Jones RA, Hammond MC, Patel DJ. Structural basis for molecular discrimination by a 3',3'-cGAMP sensing riboswitch. Cell Rep 2015; 11:1-12. [PMID: 25818298 PMCID: PMC4732562 DOI: 10.1016/j.celrep.2015.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022] Open
Abstract
Cyclic dinucleotides are second messengers that target the adaptor STING and stimulate the innate immune response in mammals. Besides protein receptors, there are bacterial riboswitches that selectively recognize cyclic dinucleotides. We recently discovered a natural riboswitch that targets 3',3'-cGAMP, which is distinguished from the endogenous mammalian signal 2',3'-cGAMP by its backbone connectivity. Here, we report on structures of the aptamer domain of the 3',3'-cGAMP riboswitch from Geobacter in the 3',3'-cGAMP and c-di-GMP bound states. The riboswitch adopts a tuning fork-like architecture with a junctional ligand-binding pocket and different orientations of the arms are correlated with the identity of the bound cyclic dinucleotide. Subsequent biochemical experiments revealed that specificity of ligand recognition can be affected by point mutations outside of the binding pocket, which has implications for both the assignment and reengineering of riboswitches in this structural class.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
45 |
13
|
Hammond MC, Harris BZ, Lim WA, Bartlett PA. Beta strand peptidomimetics as potent PDZ domain ligands. ACTA ACUST UNITED AC 2007; 13:1247-51. [PMID: 17185220 DOI: 10.1016/j.chembiol.2006.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
The search for general strategies for inhibiting protein-protein interactions has been stimulated by recognition of the key role they play in virtually every process of living systems. Multiprotein complex assembly and localization by PDZ domain-containing proteins exemplify processes critical to cell physiology and function that are mediated by beta strand association. Here we describe the development of substituted "@-tides," protease-resistant peptidomimetics incorporating conformationally restricted amino acid surrogates that reproduce the hydrogen-bonding pattern and side-chain functionality of a beta strand. The synthetic flexibility and generality of the substituted @-tide design was demonstrated by the synthesis of a panel of ligands for the alpha1-syntrophin PDZ domain. The rational design of a small molecule of unprecedented affinity for the PDZ domain suggests that these peptidomimetics may provide a general method for inhibiting protein-protein interactions involving extended peptide chains.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
43 |
14
|
Hammond MC, Wachter A, Breaker RR. A plant 5S ribosomal RNA mimic regulates alternative splicing of transcription factor IIIA pre-mRNAs. Nat Struct Mol Biol 2009; 16:541-9. [PMID: 19377483 PMCID: PMC2680232 DOI: 10.1038/nsmb.1588] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 03/11/2009] [Indexed: 02/07/2023]
Abstract
Transcription factor IIIA (TFIIIA) is required for eukaryotic synthesis of 5S ribosomal RNA by RNA polymerase III. Here we report the discovery of a structured RNA element with striking resemblance to 5S rRNA that is conserved within TFIIIA precursor mRNAs (pre-mRNAs) from diverse plant lineages. TFIIIA protein expression is controlled by alternative splicing of the exon containing the plant 5S rRNA mimic (P5SM). P5SM triggers exon skipping upon binding of ribosomal protein L5, a natural partner of 5S rRNA, which demonstrates the functional adaptation of its structural mimicry. Since the exon-skipped splice product encodes full-length TFIIIA protein, these results reveal a ribosomal protein-mRNA interaction that is involved in 5S rRNA synthesis and has implications for cross-coordination of ribosomal components. This study also provides insight into the origin and function of a newfound class of structured RNA that regulates alternative splicing.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
40 |
15
|
Hickey SF, Hammond MC. Structure-guided design of fluorescent S-adenosylmethionine analogs for a high-throughput screen to target SAM-I riboswitch RNAs. CHEMISTRY & BIOLOGY 2014; 21:345-56. [PMID: 24560607 PMCID: PMC4074398 DOI: 10.1016/j.chembiol.2014.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/12/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
Many classes of S-adenosylmethionine (SAM)-binding RNAs and proteins are of interest as potential drug targets in diverse therapeutic areas, from infectious diseases to cancer. In the former case, the SAM-I riboswitch is an attractive target because this structured RNA element is found only in bacterial mRNAs and regulates multiple genes in several human pathogens. Here, we describe the synthesis of stable and fluorescent analogs of SAM in which the fluorophore is introduced through a functionalizable linker to the ribose. A Cy5-labeled SAM analog was shown to bind several SAM-I riboswitches via in-line probing and fluorescence polarization assays, including one from Staphylococcus aureus that controls the expression of SAM synthetase in this organism. A fluorescent ligand displacement assay was developed and validated for high-throughput screening of compounds to target the SAM-I riboswitch class.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
25 |
16
|
Kellenberger CA, Hammond MC. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors. Methods Enzymol 2014; 550:147-72. [PMID: 25605385 DOI: 10.1016/bs.mie.2014.10.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The development of fluorescent biosensors has been motivated by the interest to monitor and measure the levels of specific metabolites in live cells in real time. Common approaches include fusing a protein-based receptor to fluorescent proteins or synthesizing a small molecule reactive probe. Natural metabolite-sensing riboswitches also have been used in reporter-based systems that take advantage of ligand-dependent regulation of downstream gene expression. More recently, it has been shown that RNA-based fluorescent biosensors can be generated by fusing a riboswitch aptamer to the in vitro selected Spinach aptamer, which binds a cell-permeable and conditionally fluorescent molecule. Here, we describe methods to design, prepare, and analyze riboswitch-Spinach aptamer fusion RNAs for ligand-dependent activation of fluorescence in vitro. Examples of procedures to measure fluorescence activation, ligand binding selectivity and affinity, and binding kinetics are given for a cyclic di-GMP-responsive biosensor. The relative ease of in vitro RNA synthesis and purification should make this method accessible to other researchers interested in developing riboswitch-based fluorescent biosensors.
Collapse
|
|
11 |
23 |
17
|
Karns K, Vogan JM, Qin Q, Hickey SF, Wilson SC, Hammond MC, Herr AE. Microfluidic screening of electrophoretic mobility shifts elucidates riboswitch binding function. J Am Chem Soc 2013; 135:3136-43. [PMID: 23343213 DOI: 10.1021/ja310742m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Riboswitches are RNA sensors that change conformation upon binding small molecule metabolites, in turn modulating gene expression. Our understanding of riboswitch regulatory function would be accelerated by a high-throughput, quantitative screening tool capable of measuring riboswitch-ligand binding. We introduce a microfluidic mobility shift assay that enables precise and rapid quantitation of ligand binding and subsequent riboswitch conformational change. In 0.3% of the time required for benchtop assays (3.2 versus 1020 min), we screen and validate five candidate SAM-I riboswitches isolated from thermophilic and cryophilic bacteria. The format offers enhanced resolution of conformational change compared to slab gel formats, quantitation, and repeatability for statistical assessment of small mobility shifts, low reagent consumption, and riboswitch characterization without modification of the aptamer structure. Appreciable analytical sensitivity coupled with high-resolution separation performance allows quantitation of equilibrium dissociation constants (K(d)) for both rapidly and slowly interconverting riboswitch-ligand pairs as validated through experiments and modeling. Conformational change, triplicate mobility shift measurements, and K(d) are reported for both a known and a candidate SAM-I riboswitch with comparison to in-line probing assay results. The microfluidic mobility shift assay establishes a scalable format for the study of riboswitch-ligand binding that will advance the discovery and selection of novel riboswitches and the development of antibiotics to target bacterial riboswitches.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
23 |
18
|
Yeo J, Dippel AB, Wang XC, Hammond MC. In Vivo Biochemistry: Single-Cell Dynamics of Cyclic Di-GMP in Escherichia coli in Response to Zinc Overload. Biochemistry 2017; 57:108-116. [PMID: 29052983 DOI: 10.1021/acs.biochem.7b00696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intracellular signaling enzymes drive critical changes in cellular physiology and gene expression, but their endogenous activities in vivo remain highly challenging to study in real time and for individual cells. Here we show that flow cytometry can be performed in complex media to monitor single-cell population distributions and dynamics of cyclic di-GMP signaling, which controls the bacterial colonization program. These in vivo biochemistry experiments are enabled by our second-generation RNA-based fluorescent (RBF) biosensors, which exhibit high fluorescence turn-on in response to cyclic di-GMP. Specifically, we demonstrate that intracellular levels of cyclic di-GMP in Escherichia coli are repressed with excess zinc, but not with other divalent metals. Furthermore, in both flow cytometry and fluorescence microscopy setups, we monitor the dynamic increase in cellular cyclic di-GMP levels upon zinc depletion and show that this response is due to de-repression of the endogenous diguanylate cyclase DgcZ. In the presence of zinc, cells exhibit enhanced cell motility and increased sensitivity to antibiotics due to inhibited biofilm formation. Taken together, these results showcase the application of RBF biosensors in visualizing single-cell dynamic changes in cyclic di-GMP signaling in direct response to environmental cues such as zinc and highlight our ability to assess whether observed phenotypes are related to specific signaling enzymes and pathways.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
23 |
19
|
Dippel AB, Anderson WA, Evans RS, Deutsch S, Hammond MC. Chemiluminescent Biosensors for Detection of Second Messenger Cyclic di-GMP. ACS Chem Biol 2018; 13:1872-1879. [PMID: 29466657 DOI: 10.1021/acschembio.7b01019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteria colonize highly diverse and complex environments, from gastrointestinal tracts to soil and plant surfaces. This colonization process is controlled in part by the intracellular signal cyclic di-GMP, which regulates bacterial motility and biofilm formation. To interrogate cyclic di-GMP signaling networks, a variety of fluorescent biosensors for live cell imaging of cyclic di-GMP have been developed. However, the need for external illumination precludes the use of these tools for imaging bacteria in their natural environments, including in deep tissues of whole organisms and in samples that are highly autofluorescent or photosensitive. The need for genetic encoding also complicates the analysis of clinical isolates and environmental samples. Toward expanding the study of bacterial signaling to these systems, we have developed the first chemiluminescent biosensors for cyclic di-GMP. The biosensor design combines the complementation of split luciferase (CSL) and bioluminescence resonance energy transfer (BRET) approaches. Furthermore, we developed a lysate-based assay for biosensor activity that enabled reliable high-throughput screening of a phylogenetic library of 92 biosensor variants. The screen identified biosensors with very large signal changes (∼40- and 90-fold) as well as biosensors with high affinities for cyclic di-GMP ( KD < 50 nM). These chemiluminescent biosensors then were applied to measure cyclic di-GMP levels in E. coli. The cellular experiments revealed an unexpected challenge for chemiluminescent imaging in Gram negative bacteria but showed promising application in lysates. Taken together, this work establishes the first chemiluminescent biosensors for studying cyclic di-GMP signaling and provides a foundation for using these biosensors in more complex systems.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
22 |
20
|
Hallberg ZF, Chan CH, Wright TA, Kranzusch PJ, Doxzen KW, Park JJ, Bond DR, Hammond MC. Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. eLife 2019; 8:43959. [PMID: 30964001 PMCID: PMC6456294 DOI: 10.7554/elife.43959] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
A newfound signaling pathway employs a GGDEF enzyme with unique activity compared to the majority of homologs associated with bacterial cyclic di-GMP signaling. This system provides a rare opportunity to study how signaling proteins natively gain distinct function. Using genetic knockouts, riboswitch reporters, and RNA-Seq, we show that GacA, the Hypr GGDEF in Geobacter sulfurreducens, specifically regulates cyclic GMP-AMP (3′,3′-cGAMP) levels in vivo to stimulate gene expression associated with metal reduction separate from electricity production. To reconcile these in vivo findings with prior in vitro results that showed GacA was promiscuous, we developed a full kinetic model combining experimental data and mathematical modeling to reveal mechanisms that contribute to in vivo specificity. A 1.4 Å-resolution crystal structure of the Geobacter Hypr GGDEF domain was determined to understand the molecular basis for those mechanisms, including key cross-dimer interactions. Together these results demonstrate that specific signaling can result from a promiscuous enzyme. Microscopic organisms known as bacteria are found in virtually every environment on the planet. One reason bacteria are so successful is that they are able to form communities known as biofilms on surfaces in animals and other living things, as well as on rocks and other features in the environment. These biofilms protect the bacteria from fluctuations in the environment and toxins. For over 30 years, a class of enzymes called the GGDEF enzymes were thought to make a single signal known as cyclic di-GMP that regulates the formation of biofilms. However, in 2016, a team of researchers reported that some GGDEF enzymes, including one from a bacterium called Geobacter sulfurreducens, were also able to produce two other signals known as cGAMP and cyclic di-AMP. The experiments involved making the enzymes and testing their activity outside the cell. Therefore, it remained unclear whether these enzymes (dubbed ‘Hypr’ GGDEF enzymes) actually produce all three signals inside cells and play a role in forming bacterial biofilms. G. sulfurreducens is unusual because it is able to grow on metallic minerals or electrodes to generate electrical energy. As part of a community of microorganisms, they help break down pollutants in contaminated areas and can generate electricity from wastewater. Now, Hallberg, Chan et al. – including many of the researchers involved in the 2016 work – combined several experimental and mathematical approaches to study the Hypr GGDEF enzymes in G. sulfurreducens. The experiments show that the Hypr GGDEF enzymes produced cGAMP, but not the other two signals, inside the cells. This cGAMP regulated the ability of G. sulfurreducens to grow by extracting electrical energy from the metallic minerals, which appears to be a new, biofilm-less lifestyle. Further experiments revealed how Hypr GGDEF enzymes have evolved to preferentially make cGAMP over the other two signals. Together, these findings demonstrate that enzymes with the ability to make several different signals, are capable of generating specific responses in bacterial cells. By understanding how bacteria make decisions, it may be possible to change their behaviors. The findings of Hallberg, Chan et al. help to identify the signaling pathways involved in this decision-making and provide new tools to study them in the future.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
22 |
21
|
Wright TA, Jiang L, Park JJ, Anderson WA, Chen G, Hallberg ZF, Nan B, Hammond MC. Second messengers and divergent HD-GYP phosphodiesterases regulate 3',3'-cGAMP signaling. Mol Microbiol 2019; 113:222-236. [PMID: 31665539 DOI: 10.1111/mmi.14412] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
3',3'-cyclic GMP-AMP (cGAMP) is the third cyclic dinucleotide (CDN) to be discovered in bacteria. No activators of cGAMP signaling have yet been identified, and the signaling pathways for cGAMP have been inferred to display a narrow distribution based upon the characterized synthases, DncV and Hypr GGDEFs. Here, we report that the ubiquitous second messenger cyclic AMP (cAMP) is an activator of the Hypr GGDEF enzyme GacB from Myxococcus xanthus. Furthermore, we show that GacB is inhibited directly by cyclic di-GMP, which provides evidence for cross-regulation between different CDN pathways. Finally, we reveal that the HD-GYP enzyme PmxA is a cGAMP-specific phosphodiesterase (GAP) that promotes resistance to osmotic stress in M. xanthus. A signature amino acid change in PmxA was found to reprogram substrate specificity and was applied to predict the presence of non-canonical HD-GYP phosphodiesterases in many bacterial species, including phyla previously not known to utilize cGAMP signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
21 |
22
|
Kellenberger CA, Sales-Lee J, Pan Y, Gassaway MM, Herr AE, Hammond MC. A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer. RNA Biol 2015; 12:1189-97. [PMID: 26114964 DOI: 10.1080/15476286.2015.1062970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that is important in regulating bacterial physiology and behavior, including motility and virulence. Many questions remain about the role and regulation of this signaling molecule, but current methods of detection are limited by either modest sensitivity or requirements for extensive sample purification. We have taken advantage of a natural, high affinity receptor of c-di-GMP, the Vc2 riboswitch aptamer, to develop a sensitive and rapid electrophoretic mobility shift assay (EMSA) for c-di-GMP quantitation that required minimal engineering of the RNA.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
20 |
23
|
Goldstein B, Hammond MC, Stiens SA, Little JW. Posttraumatic syringomyelia: profound neuronal loss, yet preserved function. Arch Phys Med Rehabil 1998; 79:107-12. [PMID: 9440427 DOI: 10.1016/s0003-9993(98)90217-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Posttraumatic syrinxes may extend many cord segments rostral to a spinal cord injury (SCI) and significantly dilate the spinal cord, yet few neurologic deficits may be noted. Careful physical examination may reveal ascending loss of pain and temperature without evident functional motor decline. We present a 49-year-old man with T4 paraplegia and a large posttraumatic syrinx who died 3 weeks after syringoperitoneal shunting. Neuropathologic study revealed a large bilateral syrinx cavity from T1 to C6 that tapered to a small unilateral syrinx at C2. Light microscopy of sections from T1 to C2 showed massive loss of intermediate to intermedio-lateral gray neurons and moderate reduction of motoneurons at T1 to C6 levels. Despite these findings, manual muscle testing results remained normal for wrist extensors and elbow extensors, and the patient continued to perform independent sliding board transfers. We conclude that this large progressive syrinx did not merely dissect neural elements apart but caused extensive neuronal damage. Loss of interneurons was evident in spinal segments with preserved strength and function. Possible mechanisms to explain the relatively minimal clinical deficits in view of the neuronal loss are discussed.
Collapse
|
Case Reports |
27 |
19 |
24
|
Wilson SC, Cohen DT, Wang XC, Hammond MC. A neutral pH thermal hydrolysis method for quantification of structured RNAs. RNA (NEW YORK, N.Y.) 2014; 20:1153-60. [PMID: 24860014 PMCID: PMC4114692 DOI: 10.1261/rna.045856.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 05/05/2023]
Abstract
Riboswitch aptamers adopt diverse and complex tertiary structural folds that contain both single-stranded and double-stranded regions. We observe that this high degree of secondary structure leads to an appreciable hypochromicity that is not accounted for in the standard method to calculate extinction coefficients using nearest-neighbor effects, which results in a systematic underestimation of RNA concentrations. Here we present a practical method for quantifying riboswitch RNAs using thermal hydrolysis to generate the corresponding pool of mononucleotides, for which precise extinction coefficients have been measured. Thermal hydrolysis can be performed at neutral pH without reaction quenching, avoids the use of nucleases or expensive fluorescent dyes, and does not require generation of calibration curves. The accuracy of this method for determining RNA concentrations has been validated using quantitative (31)P-NMR calibrated to an external standard. We expect that this simple procedure will be generally useful for the accurate quantification of any sequence-defined RNA sample, which is often a critical parameter for in vitro binding and kinetic assays.
Collapse
|
Evaluation Study |
11 |
16 |
25
|
Hammond MC, Bartlett PA. Synthesis of amino acid-derived cyclic acyl amidines for use in beta-strand peptidomimetics. J Org Chem 2007; 72:3104-7. [PMID: 17371075 PMCID: PMC2536638 DOI: 10.1021/jo062664i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The acyl amidine represented by the 4,5-dihydro-2(3H)-pyrazinone ring system 2 is isosteric to the vinylogous amide of the 1,2-dihydro-3(6H)-pyridinone 1, but its assembly from separate amine and amide components enables ready incorporation of an amino acid side chain with correct regio- and stereochemistry. beta-Strand peptidomimetics incorporating amino acid analogues based on 2 have recently been shown to be potent, protease-resistant ligands to a PDZ protein-interaction domain. Two routes to the protected dipeptide analogue 3 are described.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
16 |