1
|
Kalnay E, Cai M. Impact of urbanization and land-use change on climate. Nature 2003; 423:528-31. [PMID: 12774119 DOI: 10.1038/nature01675] [Citation(s) in RCA: 500] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 04/23/2003] [Indexed: 11/09/2022]
Abstract
The most important anthropogenic influences on climate are the emission of greenhouse gases and changes in land use, such as urbanization and agriculture. But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature. The impact of urbanization has been estimated by comparing observations in cities with those in surrounding rural areas, but the results differ significantly depending on whether population data or satellite measurements of night light are used to classify urban and rural areas. Here we use the difference between trends in observed surface temperatures in the continental United States and the corresponding trends in a reconstruction of surface temperatures determined from a reanalysis of global weather over the past 50 years, which is insensitive to surface observations, to estimate the impact of land-use changes on surface warming. Our results suggest that half of the observed decrease in diurnal temperature range is due to urban and other land-use changes. Moreover, our estimate of 0.27 degrees C mean surface warming per century due to land-use changes is at least twice as high as previous estimates based on urbanization alone.
Collapse
|
|
22 |
500 |
2
|
Caffrey M, Cai M, Kaufman J, Stahl SJ, Wingfield PT, Covell DG, Gronenborn AM, Clore GM. Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J 1998; 17:4572-84. [PMID: 9707417 PMCID: PMC1170787 DOI: 10.1093/emboj/17.16.4572] [Citation(s) in RCA: 336] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The solution structure of the ectodomain of simian immunodeficiency virus (SIV) gp41 (e-gp41), consisting of residues 27-149, has been determined by multidimensional heteronuclear NMR spectroscopy. SIV e-gp41 is a symmetric 44 kDa trimer with each subunit consisting of antiparallel N-terminal (residues 30-80) and C-terminal (residues 107-147) helices connected by a 26 residue loop (residues 81-106). The N-terminal helices of each subunit form a parallel coiled-coil structure in the interior of the complex which is surrounded by the C-terminal helices located on the exterior of the complex. The loop region is ordered and displays numerous intermolecular and non-sequential intramolecular contacts. The helical core of SIV e-gp41 is similar to recent X-ray structures of truncated constructs of the helical core of HIV-1 e-gp41. The present structure establishes unambiguously the connectivity of the N- and C-terminal helices in the trimer, and characterizes the conformation of the intervening loop, which has been implicated by mutagenesis and antibody epitope mapping to play a key role in gp120 association. In conjunction with previous studies, the solution structure of the SIV e-gp41 ectodomain provides insight into the binding site of gp120 and the mechanism of cell fusion. The present structure of SIV e-gp41 represents one of the largest protein structures determined by NMR to date.
Collapse
|
research-article |
27 |
336 |
3
|
Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J. The genome of Prunus mume. Nat Commun 2012; 3:1318. [PMID: 23271652 PMCID: PMC3535359 DOI: 10.1038/ncomms2290] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/14/2012] [Indexed: 11/21/2022] Open
Abstract
Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees.
Collapse
|
research-article |
13 |
279 |
4
|
Cai M, Davis RW. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 1990; 61:437-46. [PMID: 2185892 DOI: 10.1016/0092-8674(90)90525-j] [Citation(s) in RCA: 269] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The centromere and its binding proteins constitute the kinetochore structure of metaphase chromosomes, which is crucial for the high accuracy of the chromosome segregation process. Isolation and analysis of the gene encoding a centromere binding protein from the yeast S. cerevisiae, CBF1, are described in this paper. DNA sequence analysis of the CBF1 gene reveals homology with the transforming protein myc and a family of regulatory proteins known as the helix-loop-helix (HLH) proteins. Disruption of the CBF1 gene caused a decrease in the growth rate, an increase in the rate of chromosome loss/nondisjunction, and hypersensitivity to the antimitotic drug thiabendazole. Unexpectedly, the cbf1 null mutation concomitantly resulted in a methionine auxotrophic phenotype, which suggests that CBF1, like other HLH proteins in higher eukaryotic cells, participates in the regulation of gene expression.
Collapse
|
Comparative Study |
35 |
269 |
5
|
Cai M, Painter O, Vahala KJ. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. PHYSICAL REVIEW LETTERS 2000; 85:74-7. [PMID: 10991162 DOI: 10.1103/physrevlett.85.74] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/1999] [Indexed: 05/22/2023]
Abstract
We present the observation of critical coupling in a high- Q fused-silica microsphere whispering-gallery mode resonator coupled to a fiber taper. Extremely efficient and controlled power transfer to high- Q ( approximately 10(7)) resonators has been demonstrated. Off-resonance scattering loss was measured to be less than 0.3%. On-resonance extinction in transmitted optical power through the fiber coupler was measured as high as 26 dB at the critical coupling point. This result opens up a range of new applications in fields as diverse as near-field sensing and quantum optics.
Collapse
|
|
25 |
256 |
6
|
Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM. Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. NATURE STRUCTURAL BIOLOGY 1997; 4:567-77. [PMID: 9228950 DOI: 10.1038/nsb0797-567] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The solution structure of the N-terminal zinc binding domain (residues 1-55; IN1-55) of HIV-1 integrase has been solved by NMR spectroscopy. IN1-55 is dimeric, and each monomer comprises four helices with the zinc tetrahedrally coordinated to His 12, His 16, Cys 40 and Cys 43. IN1-55 exists in two interconverting conformational states that differ with regard to the coordination of the two histidine side chains to zinc. The different histidine arrangements are associated with large conformational differences in the polypeptide backbone (residues 9-18) around the coordinating histidines. The dimer interface is predominantly hydrophobic and is formed by the packing of the N-terminal end of helix 1, and helices 3 and 4. The monomer fold is remarkably similar to that of a number of helical DNA binding proteins containing a helix-turn-helix (HTH) motif with helices 2 and 3 of IN1-55 corresponding to the HTH motif. In contrast to the DNA binding proteins where the second helix of the HTH motif is employed for DNA recognition, IN1-55 uses this helix for dimerization.
Collapse
|
|
28 |
251 |
7
|
Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J, Zhang H, Wu W, Xu N, Ng SC, Fesik SW. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 1999; 401:818-22. [PMID: 10548111 DOI: 10.1038/44617] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inhibitor-of-apoptosis (IAP) family of proteins, originally identified in baculoviruses, regulate programmed cell death in a variety of organisms. IAPs inhibit specific enzymes (caspases) in the death cascade and contain one to three modules of a common 70-amino-acid motif called the BIR domain. Here we describe the nuclear magnetic resonance structure of a region encompassing the second BIR domain (BIR2) of a human IAP family member, XIAP (also called hILP or MIHA). The structure of the BIR domain consists of a three-stranded antiparallel beta-sheet and four alpha-helices and resembles a classical zinc finger. Unexpectedly, conserved amino acids within the linker region between the BIR1 and BIR2 domains were found to be critical for inhibiting caspase-3. The absence or presence of these residues may explain the differences in caspase inhibition observed for different truncated and full-length IAPs. Our data further indicate that these residues may bind to the active site and that the BIR domain may interact with an adjacent site on the enzyme.
Collapse
|
|
26 |
247 |
8
|
Sun C, Cai M, Meadows RP, Xu N, Gunasekera AH, Herrmann J, Wu JC, Fesik SW. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 2000; 275:33777-81. [PMID: 10934209 DOI: 10.1074/jbc.m006226200] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitor of apoptosis proteins (IAPs) regulate the caspase family of cysteine proteases, which play an important role in the execution of programmed cell death. Human X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases-3, -7, and -9. Here we show that the Bir3 domain is the minimal region of XIAP that is needed for potent caspase-9 inhibition. The three-dimensional structure of the Bir3 domain of XIAP, determined by NMR spectroscopy, resembles a classical zinc finger and consists of five alpha-helices, a three-stranded beta-sheet, and a zinc atom chelated to three cysteines and one histidine. The structure of the Bir3 domain is similar to that of the Bir2 domain of XIAP but differs from the previously determined structure of the Bir3 domain of MIHB. Based on site-directed mutagenesis, we have identified the regions of the Bir3 domain of XIAP that are important for inhibiting caspase-9. Despite the structural similarities of the Bir2 and Bir3 domain of XIAP, a different set of residues were found to be critical for inhibiting the individual caspases. These results suggest that XIAP inhibits caspase-3 and caspase-9 in a different manner.
Collapse
|
|
25 |
194 |
9
|
Zhao Z, Li G, Ruan H, Chen K, Cai Z, Lu G, Li R, Deng L, Cai M, Cui W. Capturing Magnesium Ions via Microfluidic Hydrogel Microspheres for Promoting Cancellous Bone Regeneration. ACS NANO 2021; 15:13041-13054. [PMID: 34342981 DOI: 10.1021/acsnano.1c02147] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal ions are important trace elements in the human body, which directly affect the human metabolism and the regeneration of damaged tissues. For instance, the advanced combination of magnesium ions (Mg2+) and bone repair materials make the composite materials have the function of promoting vascular repair and enhancing the adhesion of osteoblasts. Herein, inspired by magnets to attract metals, we utilized the coordination reaction of metal ion ligand to construct a bisphosphonate-functionalized injectable hydrogel microsphere (GelMA-BP-Mg) which could promote cancellous bone reconstruction of osteoporotic bone defect via capturing Mg2+. By grafting bisphosphonate (BP) on GelMA microspheres, GelMA-BP microspheres could produce powerful Mg2+ capture ability and sustained release performance through coordination reaction, while sustained release BP has bone-targeting properties. In the injectable GelMA-BP-Mg microsphere system, the atomic percentage of captured Mg2+ was 0.6%, and the captured Mg2+ could be effectively released for 18 days. These proved that the composite microspheres could effectively capture Mg2+ and provided the basis for the composite microspheres to activate osteoblasts and endothelial cells and inhibit osteoclasts. Both in vivo and in vitro experimental results revealed that the magnet-inspired Mg2+-capturing composite microspheres are beneficial to osteogenesis and angiogenesis by stimulating osteoblasts and endothelial cells while restraining osteoclasts, and ultimately effectively promote cancellous bone regeneration. This study could provide some meaningful conceptions for the treatment of osteoporotic bone defects on the basis of metal ions.
Collapse
|
|
4 |
167 |
10
|
Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MTS, Wang H, Chen J, Ng SSM, Chen M, Sung JJY, Yu J. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 2012. [PMID: 23208495 DOI: 10.1038/onc.2012.526] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using microRNA (miRNA) expression array, we identified that miR-7 was deregulated in colorectal cancer (CRC). We studied the biological role and molecular target of miR-7 in CRC. miR-7 was downregulated in six out of seven colon cancer cell lines. Ectopic expression of miR-7 suppressed colon cancer cell proliferation (P<0.05), induced apoptosis (P<0.05) and caused cell-cycle arrest in G1 phase (P<0.05). The tumor suppressive function of miR-7 was further confirmed in nude mice (P<0.05). The 3'-untranslated region (3'UTR) of Yin Yang 1 (YY1) mRNA contains an evolutionarily conserved miR-7 binding site using in silico searches, luciferase reporter assay and western blot analysis confirmed that miR-7 directly bound to YY1 3'UTR to negatively regulate the protein expression of YY1 in colon cancer cell lines HCT116 and LOVO. Intriguingly, knock-down of YY1 in three colon cancer cell lines (HCT116, LOVO and DLD1) consistently suppressed cell proliferation (P<0.01) and induced apoptosis (P<0.01), indicating the opposite functions of miR-7 and YY1 in CRC. Consistent with these data, ectopic expression of YY1 promoted cell growth by increasing proliferation (P<0.01) and suppressing apoptosis (P<0.001). The tumorigenic ability of YY1 was further confirmed in vivo in xenograft-nude mouse model (P<0.01). In addition, pathway analyses revealed that the oncogenic effect by YY1 was associated with inhibiting p53 and modulating its downstream effectors p15, caspase cascades and C-Jun, and activating Wnt signaling pathway through activating β-catenin, anti-apoptotic survivin and fibroblast growth factor 4. Furthermore, multivariate analysis revealed that patients with YY1 protein high expression had a significant decrease in overall survival, and Kaplan-Meier survival curves showed that these patients had significantly shorter survival than others (P<0.0001). In conclusion, MiR-7 is a novel miRNA with tumor suppressive function in colon cancer by targeting oncogenic YY1. YY1 promotes colon cancer growth through inhibiting p53 and promoting Wnt signaling pathways and serves as an independent prognostic biomarker for CRC patients.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
164 |
11
|
Cai M, Huang Y, Sakaguchi K, Clore GM, Gronenborn AM, Craigie R. An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. JOURNAL OF BIOMOLECULAR NMR 1998; 11:97-102. [PMID: 9566315 DOI: 10.1023/a:1008222131470] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cost-effective protocol for uniform 15N and/or 13C isotope labeling of bacterially expressed proteins is presented. Unlike most standard protocols, cells are initially grown in a medium containing nutrients at natural abundance and isotopically labeled nutrients are only supplied at the later stages of growth and during protein expression. This permits the accumulation of a large cell mass without the need to employ expensive isotopically labeled nutrients. The abrupt decrease in oxygen consumption that occurs upon complete exhaustion of essential nutrients is used to precisely time the switch between unlabeled and labeled nutrients. Application of the protocol is demonstrated for wild-type and a mutant of the N-terminal zinc-binding domain of HIV-1 integrase.
Collapse
|
|
27 |
159 |
12
|
Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, Tzan K, Wang A, Parthasarathy S, He G, Rajagopalan S, Sun Q. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1115-25. [PMID: 21368268 DOI: 10.1152/ajpregu.00806.2010] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A high-fat diet (HFD) is associated with adipose inflammation, which contributes to key components of metabolic syndrome, including obesity and insulin resistance. The increased visceral adipose tissue mass associated with obesity is the result of hyperplasia and hypertrophy of adipocytes. To investigate the effects of exercise on HFD-induced metabolic disorders, male C57BL/6 mice were divided into four groups: SED (sedentary)-ND (normal diet), EX (exercise)-ND, SED-HFD, and EX-HFD. Exercise was performed on a motorized treadmill at 15 m/min, 40 min/day, and 5 day/wk for 8 wk. Exercise resulted in a decrease in abdominal fat contents and inflammation, improvements in glucose tolerance and insulin resistance, and enhancement of vascular constriction and relaxation responses. Exercise with or without HFD increased putative brown adipocyte progenitor cells in brown adipose tissue compared with groups with the same diet, with an increase in brown adipocyte-specific gene expression in brown and white adipose tissue. Exercise training enhanced in vitro differentiation of the preadipocytes from brown adipose depots into brown adipocytes and enhanced the expression of uncoupling protein 1. These findings suggest that exercise ameliorates high-fat diet-induced metabolic disorders and vascular dysfunction, and increases adipose progenitor cell population in brown adipose tissue, which might thereby contribute to enhanced functional brown adipose.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
153 |
13
|
Pielke RA, Davey CA, Niyogi D, Fall S, Steinweg-Woods J, Hubbard K, Lin X, Cai M, Lim YK, Li H, Nielsen-Gammon J, Gallo K, Hale R, Mahmood R, Foster S, McNider RT, Blanken P. Unresolved issues with the assessment of multidecadal global land surface temperature trends. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008229] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
18 |
135 |
14
|
Tang HY, Xu J, Cai M. Pan1p, End3p, and S1a1p, three yeast proteins required for normal cortical actin cytoskeleton organization, associate with each other and play essential roles in cell wall morphogenesis. Mol Cell Biol 2000; 20:12-25. [PMID: 10594004 PMCID: PMC85029 DOI: 10.1128/mcb.20.1.12-25.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1999] [Accepted: 09/28/1999] [Indexed: 11/20/2022] Open
Abstract
The EH domain proteins Pan1p and End3p of budding yeast have been known to form a complex in vivo and play important roles in organization of the actin cytoskeleton and endocytosis. In this report, we describe new findings concerning the function of the Pan1p-End3p complex. First, we found that the Pan1p-End3p complex associates with Sla1p, another protein known to be required for the assembly of cortical actin structures. Sla1p interacts with the first long repeat region of Pan1p and the N-terminal EH domain of End3p, thus leaving the Pan1p-End3p interaction, which requires the second long repeat of Pan1p and the C-terminal repeat region of End3p, undisturbed. Second, Pan1p, End3p, and Sla1p are also required for normal cell wall morphogenesis. Each of the Pan1-4, sla1Delta, and end3Delta mutants displays the abnormal cell wall morphology previously reported for the act1-1 mutant. These cell wall defects are also exhibited by wild-type cells overproducing the C-terminal region of Sla1p that is responsible for interactions with Pan1p and End3p. These results indicate that the functions of Pan1p, End3p, and Sla1p in cell wall morphogenesis may depend on the formation of a heterotrimeric complex. Interestingly, the cell wall abnormalities exhibited by these cells are independent of the actin cytoskeleton organization on the cell cortex, as they manifest despite the presence of apparently normal cortical actin cytoskeleton. Examination of several act1 mutants also supports this conclusion. These observations suggest that the Pan1p-End3p-Sla1p complex is required not only for normal actin cytoskeleton organization but also for normal cell wall morphogenesis in yeast.
Collapse
|
research-article |
25 |
129 |
15
|
Tang HY, Munn A, Cai M. EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:4294-304. [PMID: 9234686 PMCID: PMC232282 DOI: 10.1128/mcb.17.8.4294] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several proteins from diverse organisms have been shown to share a region of sequence homology with the mammalian epidermal growth factor receptor tyrosine kinase substrate Eps15. Included in this new protein family, termed EH domain proteins, are two yeast proteins, Pan1p and End3p. We have shown previously that Pan1p is required for normal organization of the actin cytoskeleton and that it associates with the actin patches on the cell cortex. End3p has been shown by others to be an important factor in the process of endocytosis. End3p is also known to be required for the organization of the actin cytoskeleton. Here we report that Pan1p and End3p act as a complex in vivo. Using the pan1-4 mutant which we isolated and characterized previously, the END3 gene was identified as a suppressor of pan1-4 when overexpressed. Suppression of the pan1-4 mutation by multicopy END3 required the presence of the mutant Pan1p protein. Coimmunoprecipitation and two-hybrid protein interaction experiments indicated that Pan1p and End3p associate with each other. The localization of Pan1p to the cortical actin cytoskeleton became weakened in the end3 mutant at the permissive temperature and undetectable at the restrictive temperature, suggesting that End3p may be important for proper localization of Pan1p to the cortical actin cytoskeleton. The finding that the pan1-4 mutant was defective in endocytosis as severely as the end3 mutant under nonpermissive conditions supports the notion that the association between Pan1p and End3p is of physiological relevance. Together with results of earlier reports, these results provide strong evidence suggesting that Pan1p and End3p are the components of a complex that has essential functions in both the organization of cell membrane-associated actin cytoskeleton and the process of endocytosis.
Collapse
|
research-article |
28 |
110 |
16
|
Yang R, Li G, Zhuang C, Yu P, Ye T, Zhang Y, Shang P, Huang J, Cai M, Wang L, Cui W, Deng L. Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. SCIENCE ADVANCES 2021; 7:eabg3816. [PMID: 34162547 PMCID: PMC8221628 DOI: 10.1126/sciadv.abg3816] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/29/2021] [Indexed: 05/11/2023]
Abstract
Although gradients play an essential role in guiding the function of tissues, achieving synchronous regeneration of gradient tissue injuries remains a challenge. Here, a gradient bimetallic (Cu and Zn) ion-based hydrogel was first constructed via the one-step coordinative crosslinking of sulfhydryl groups with copper and zinc ions for the microstructure reconstruction of the tendon-to-bone insertion. In this bimetallic hydrogel system, zinc and copper ions could not only act as crosslinkers but also provide strong antibacterial effects and induce regenerative capacity in vitro. The capability of hydrogels in simultaneously promoting tenogenesis and osteogenesis was further verified in a rat rotator cuff tear model. It was found that the Cu/Zn gradient layer could induce considerable collagen and fibrocartilage arrangement and ingrowth at the tendon-to-bone interface. Overall, the gradient bimetallic ion-based hydrogel ensures accessibility and provides opportunities to regenerate inhomogeneous tissue with physiological complexity or interface tissue.
Collapse
|
research-article |
4 |
101 |
17
|
Cai M, Huang Y, Zheng R, Wei SQ, Ghirlando R, Lee MS, Craigie R, Gronenborn AM, Clore GM. Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration. NATURE STRUCTURAL BIOLOGY 1998; 5:903-9. [PMID: 9783751 DOI: 10.1038/2345] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The solution structure of the human barrier-to-autointegration factor, BAF, a 21,000 Mr dimer, has been solved by NMR, including extensive use of dipolar couplings which provide a priori long range structural information. BAF is a highly evolutionarily conserved DNA binding protein that is responsible for inhibiting autointegration of retroviral DNA, thereby promoting integration of retroviral DNA into the host chromosome. BAF is largely helical, and each subunit is composed of five helices. The dimer is elongated in shape and the dimer interface comprises principally hydrophobic contacts supplemented by a single salt bridge. Despite the absence of any sequence similarity to any other known protein family, the topology of helices 3-5 is similar to that of a number of DNA binding proteins, with helices 4 and 5 constituting a helix-turn-helix motif. A model for the interaction of BAF with DNA that is consistent with structural and mutagenesis data is proposed.
Collapse
|
|
27 |
91 |
18
|
Zeng G, Cai M. Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p. J Cell Biol 1999; 144:71-82. [PMID: 9885245 PMCID: PMC2148122 DOI: 10.1083/jcb.144.1.71] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal actin cytoskeleton organization in budding yeast requires the function of the Pan1p/ End3p complex. Mutations in PAN1 and END3 cause defects in the organization of actin cytoskeleton and endocytosis. By screening for mutations that can suppress the temperature sensitivity of a pan1 mutant (pan1-4), a novel serine/threonine kinase Prk1p is now identified as a new factor regulating the actin cytoskeleton organization in yeast. The suppression of pan1-4 by prk1 requires the presence of mutant Pan1p. Although viable, the prk1 mutant is unable to maintain an asymmetric distribution of the actin cytoskeleton at 37 degreesC. Consistent with its role in the regulation of actin cytoskeleton, Prk1p localizes to the regions of cell growth and coincides with the polarized actin patches. Overexpression of the PRK1 gene in wild-type cells leads to lethality and actin cytoskeleton abnormalities similar to those exhibited by the pan1 and end3 mutants. In vitro phosphorylation assays demonstrate that Prk1p is able to phosphorylate regions of Pan1p containing the LxxQxTG repeats, including the region responsible for binding to End3p. Based on these findings, we propose that the Prk1 protein kinase regulates the actin cytoskeleton organization by modulating the activities of some actin cytoskeleton-related proteins such as Pan1p/End3p.
Collapse
|
research-article |
26 |
85 |
19
|
Lin Z, Cai M, Zhang P, Li G, Liu T, Li X, Cai K, Nie X, Wang J, Liu J, Liu H, Zhang W, Gao J, Wu C, Wang L, Fan J, Zhang L, Wang Z, Hou Z, Ma C, Yang K, Wu G, Tao K, Zhang T. Phase II, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer. J Immunother Cancer 2021; 9:e003554. [PMID: 34725214 PMCID: PMC8562535 DOI: 10.1136/jitc-2021-003554] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND In locally advanced rectal cancer (LARC), preoperative short-course radiotherapy (SCRT) with delayed surgery has been shown to be as effective as long-course chemoradiotherapy, with only modest benefits. This study aimed to evaluate the efficacy and safety of preoperative SCRT combined with subsequent CAPOX (capecitabine and oxaliplatin) and the anti-PD-1 antibody camrelizumab in patients with LARC. METHODS This was a prospective, single-arm, phase II trial. Treatment-naïve patients with histologically confirmed T3-4N0M0 or T1-4N+M0 rectal adenocarcinoma received 5×5 Gy SCRT with two subsequent 21-day cycles of CAPOX plus camrelizumab after 1 week, followed by radical surgery after 1 week. The primary endpoint was pathological complete response (pCR) rate. Biomarker analysis was performed to identify a potential predictor of pCR to treatment. RESULTS From November 7, 2019 to September 14, 2020, 30 patients were enrolled, and 27 patients received at least one dose of CAPOX plus camrelizumab. Surgery was performed in 27 (100%) patients. The pCR (ypT0N0) rate was 48.1% (13/27), including 46.2% (12/26) for proficient mismatch repair (MMR) tumors and 100% (1/1) for deficient MMR tumors. Immune-related adverse events were all grade 1-2, with the most common being reactive cutaneous capillary endothelial proliferation (81.5%). No grade 4/5 adverse events occurred. Biomarker analysis showed patients without FGFR1-3 deletions had a better tendency for pCR. CONCLUSIONS SCRT combined with subsequent CAPOX plus camrelizumab followed by delayed surgery showed a favorable pCR rate with good tolerance in patients with LARC, especially in the proficient MMR setting. A randomized controlled trial is ongoing to confirm these results. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier: NCT04231552.
Collapse
|
Clinical Trial, Phase II |
4 |
85 |
20
|
Tang HY, Cai M. The EH-domain-containing protein Pan1 is required for normal organization of the actin cytoskeleton in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:4897-914. [PMID: 8756649 PMCID: PMC231492 DOI: 10.1128/mcb.16.9.4897] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Normal cell growth and division in the yeast Saccharomyces cerevisiae involve dramatic and frequent changes in the organization of the actin cytoskeleton. Previous studies have suggested that the reorganization of the actin cytoskeleton in accordance with cell cycle progression is controlled, directly or indirectly, by the cyclin-dependent kinase Cdc28. Here we report that by isolating rapid-death mutants in the background of the Start-deficient cdc28-4 mutation, the essential yeast gene PAN1, previously thought to encode the yeast poly(A) nuclease, is identified as a new factor required for normal organization of the actin cytoskeleton. We show that at restrictive temperature, the pan1 mutant exhibited abnormal bud growth, failed to maintain a proper distribution of the actin cytoskeleton, was unable to reorganize actin the cytoskeleton during cell cycle, and was defective in cytokinesis. The mutant also displayed a random pattern of budding even at permissive temperature. Ectopic expression of PAN1 by the GAL promoter caused abnormal distribution of the actin cytoskeleton when a single-copy vector was used. Immunofluorescence staining revealed that the Pan1 protein colocalized with the cortical actin patches, suggesting that it may be a filamentous actin-binding protein. The Pan1 protein contains an EF-hand calcium-binding domain, a putative Src homology 3 (SH3)-binding domain, a region similar to the actin cytoskeleton assembly control protein Sla1, and two repeats of a newly identified protein motif known as the EH domain. These findings suggest that Pan1, recently recognized as not responsible for the poly(A) nuclease activity (A. B. Sachs and J. A. Deardorff, erratum, Cell 83:1059, 1995; R. Boeck, S. Tarun, Jr., M. Rieger, J. A. Deardorff, S. Muller-Auer, and A. B. Sachs, J. Biol. Chem. 271:432-438, 1996), plays an important role in the organization of the actin cytoskeleton in S. cerevisiae.
Collapse
|
research-article |
29 |
84 |
21
|
Zeng G, Yu X, Cai M. Regulation of yeast actin cytoskeleton-regulatory complex Pan1p/Sla1p/End3p by serine/threonine kinase Prk1p. Mol Biol Cell 2001; 12:3759-72. [PMID: 11739778 PMCID: PMC60753 DOI: 10.1091/mbc.12.12.3759] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2001] [Revised: 08/03/2001] [Accepted: 09/12/2001] [Indexed: 11/11/2022] Open
Abstract
The serine/threonine kinase Prk1p is known to be involved in the regulation of the actin cytoskeleton organization in budding yeast. One possible function of Prk1p is the negative regulation of Pan1p, an actin patch regulatory protein that forms a complex in vivo with at least two other proteins, Sla1p and End3p. In this report, we identified Sla1p as another substrate for Prk1p. The phosphorylation of Sla1p by Prk1p was established in vitro with the use of immunoprecipitated Prk1p and in vivo with the use of PRK1 overexpression, and was further supported by the finding that immunoprecipitated Sla1p contained PRK1- and ARK1-dependent kinase activities. Stable complex formation between Prk1p and Sla1p/Pan1p in vivo could be observed once the phosphorylation reaction was blocked by mutation in the catalytic site of Prk1p. Elevation of Prk1p activities in wild-type cells resulted in a number of deficiencies, including those in colocalization of Pan1p and Sla1p, endocytosis, and cell wall morphogenesis, likely attributable to a disintegration of the Pan1p/Sla1p/End3p complex. These results lend a strong support to the model that the phosphorylation of the Pan1p/Sla1p/End3p complex by Prk1p is one of the important mechanisms by which the organization and functions of the actin cytoskeleton are regulated.
Collapse
|
research-article |
24 |
83 |
22
|
Li G, Cai M, Fu D, Chen K, Sun M, Cai Z, Cheng B. Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem 2012. [PMID: 23208072 DOI: 10.1159/000343336] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS Over the past decade, heat shock protein 90 (Hsp90) has emerged as a potential therapeutic target for cancer. However, the molecular mechanisms of down-regulation Hsp90 expression in osteosarcoma are incompletely understood. To develop potential therapy targeting Heat shock protein 90B1 (Hsp90B1), we studied the roles of miR- 223 in the proliferation and apoptosis of human osteosarcoma. METHODS pcDNA3.1(+)- miR-223 plasmid vectors were constructed and transfected into MG63 cells. Co-transfection of miR-223 expression vector with pMIR-Hsp90B1 (The recombined vector of pMIR-GLOTM luciferase vector containing Hsp90B1-3'UTR) led to the reduced activity of luciferase in a dual-luciferase reporter gene assay, suggesting that Hsp90B1 is a target gene of miR-223. Expression of HSP90B1 was detected by RT-PCR and western blotting analysis. Cell proliferation was determined using the MTT assay. Cell-cycle distribution and apoptosis were examined by flow cytometry. PI3K, p-Akt, Akt, mTOR, Bcl-2 and Bid were also detected by western blotting analysis. After a mouse xenograft model of human MG63 tumors was constructed, tumor growth, microvessel density and proliferation in each group was determined. RESULTS The pcDNA3.1(+)-miR-223 vector efficiently suppressed the expression of HSP90B1, while silencing miR-223 increased expression of Hsp90B1. Furthermore, overexpression of miR-223 results in significant inhibition of cell growth on culture plates. Moreover, cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing. Protein levels of PI3k, p-Akt, mTOR, and Bcl-2 were decreased, whereas Bid levels were increased. Microvessel density as assessed by CD34 levels and cell growth by PCNA levels decreased according to immunohistochemical analysis. CONCLUSION Hsp90B1 is a direct target of miR-223 and miR- 223 may have a tumor suppressor function in osteosarcoma through the PI3K/Akt/mTOR pathway and could be used in anticancer therapies in osteosarcoma.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
81 |
23
|
Cai M, Wang H, Li JJ, Zhang YL, Xin L, Li F, Lou SJ. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise. Brain Behav Immun 2016; 57:347-359. [PMID: 27189035 DOI: 10.1016/j.bbi.2016.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/24/2022] Open
Abstract
High fat diet (HFD)-induced obesity has been shown to reduce the levels of neuronal plasticity-related proteins, specifically brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN), in the hippocampus. However, the underlying mechanisms are not fully clear. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating gene expression and protein production by affecting stress signaling pathways and ER functions of protein folding and post-translational modification in peripheral tissues of obese rodent models. Additionally, HFD that is associated with hyperglycemia could induce hippocampal ERS, thus impairing insulin signaling and cognitive health in HFD mice. One goal of this study was to determine whether hyperglycemia and hyperlipidemia could cause hippocampal ERS in HFD-induced obese SD rats, and explore the potential mechanisms of ERS regulating hippocampal BDNF and SYN proteins production. Additionally, although regular aerobic exercise could reduce central inflammation and elevate hippocampal BDNF and SYN levels in obese rats, the regulated mechanisms are poorly understood. Nrf2-HO-1 pathways play roles in anti-ERS, anti-inflammation and anti-apoptosis in peripheral tissues. Therefore, the other goal of this study was to determine whether aerobic exercise could activate Nrf2-HO-1 in hippocampus to alleviate obesity-induced hippocampal ERS, which would lead to increased BDNF and SYN levels. Male SD rats were fed on HFD for 8weeks to establish the obese model. Then, 8weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that HFD-induced obesity caused hyperglycemia and hyperlipidemia, and significantly promoted hippocampal glucose transporter 3 (GLUT3) and fatty acid transport protein 1 (FATP1) protein expression. These results were associated with the activation of hippocampal ERS and ERS-mediated apoptosis. At the same time, we found that excessive hippocampal ERS not only significantly decreased proBDNF-the precursor of mature BDNF, but also attenuated p38/ERK-CREB signaling pathways and activated NLRP3-IL-1β pathways in obese rats. These results were associated with reduced BDNF and SYN protein production. However, these adverse changes were obviously reversed by aerobic exercise intervention through activating the Nrf2-HO-1 pathways. These results suggest that dietary obesity could induce hippocampal ERS in male SD rats, and excessive hippocampal ERS plays a critical role in decreasing the levels of BDNF and SYN. Moreover, aerobic exercise could activate hippocampal Nrf2 and HO-1 to relieve ERS and heighten BDNF and SYN production in obese rats.
Collapse
|
|
9 |
81 |
24
|
Cai M, Cai C, Mayorov AV, Xiong C, Cabello CM, Soloshonok VA, Swift JR, Trivedi D, Hruby VJ. Biological and conformational study of beta-substituted prolines in MT-II template: steric effects leading to human MC5 receptor selectivity. ACTA ACUST UNITED AC 2004; 63:116-31. [PMID: 15009533 DOI: 10.1111/j.1399-3011.2003.00105.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the molecular basis for the interaction of the chi-constrained conformation of melanotropin peptide with the human melanocortin receptors, a series of beta-substituted proline analogs were synthesized and incorporated into the Ac-Nle-C[Asp-His-D-Phe-Arg-Trp-Lys]-NH2 (MT-II) template at the His6 and D-Phe7 positions. It was found that the binding affinities generally diminished as the steric bulk of the p-substituents of the 3-phenylproline residues increased. From (2S, 3R)-3-phenyl-Pro6 to (2S, 3R)-3-(p-methoxyphenyl)-Pro6 analogs the binding affinity decreased 23-fold at the human melanocortin-3 receptor (hMC3R), 17-fold at the hMC4R, and eight-fold at the hMC5R, but selectivity for the hMC5R increased. In addition, the substitution of the D-Phe7 residue with a (2R, 3S)-3-phenyl-Pro resulted in greatly reduced binding affinity (10(3)-10(5)) at these melanocortin receptors. Macromodel's Large Scale Low Mode (LLMOD) with OPLS-AA force field simulations revealed that both MT-II and SHU-9119 share a similar backbone conformation and topography with the exception of the orientation of the side chains of D-Phe7/D-Nal (2')7 in chi space. Introduction of the dihedrally constrained phenylproline analogs into the His6 position (analogs 2-6) caused topographical changes that might be responsible for the lower binding affinities. Our findings indicate that hMC3 and hMC4 receptors are more sensitive to steric effects and conformational constraints than the hMC5 receptor. This is the first example for melanocortin receptor selectivity where the propensity of steric interactions in chi space of beta-modified Pro6 analogs of MT-II has been shown to play a critical role for binding as well as bioefficacy of melanotropins at hMC3 and hMC4 receptors, but not at the hMC5 receptor.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
72 |
25
|
Wu J, Li G, Ye T, Lu G, Li R, Deng L, Wang L, Cai M, Cui W. Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. CHEMICAL ENGINEERING JOURNAL 2020; 393:124715. [DOI: 10.1016/j.cej.2020.124715] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
|
5 |
70 |