1
|
Liu T, Zhu S, Fu L, Tang Q, Yu Y, Chen P, Luan M, Wang C, Tang S. Development and characterization of 1,827 expressed sequence tag-derived simple sequence repeat markers for ramie (Boehmeria nivea L. Gaud). PLoS One 2013; 8:e60346. [PMID: 23565230 PMCID: PMC3614921 DOI: 10.1371/journal.pone.0060346] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fiber crops, and improvement of fiber yield and quality is the main goal in efforts to breed superior cultivars. However, efforts aimed at enhancing the understanding of ramie genetics and developing more effective breeding strategies have been hampered by the shortage of simple sequence repeat (SSR) markers. In our previous study, we had assembled de novo 43,990 expressed sequence tags (ESTs). In the present study, we searched these previously assembled ESTs for SSRs and identified 1,685 ESTs (3.83%) containing 1,878 SSRs. Next, we designed 1,827 primer pairs complementary to regions flanking these SSRs, and these regions were designated as SSR markers. Among these markers, dinucleotide and trinucleotide repeat motifs were the most abundant types (36.4% and 36.3%, respectively), whereas tetranucleotide, pentanucleotide, and hexanucleotide motifs represented <10% of the markers. The motif AG/CT was the most abundant, accounting for 28.74% of the markers. One hundred EST-SSR markers (97 SSRs located in genes encoding transcription factors and 3 SSRs in genes encoding cellulose synthases) were amplified using polymerase chain reaction for detecting 24 ramie varieties. Of these 100 markers, 98 markers were successfully amplified and 81 markers were polymorphic, with 2–6 alleles among the 24 varieties. Analysis of the genetic diversity of all 24 varieties revealed similarity coefficients that ranged from 0.51 to 0.80. The EST-SSRs developed in this study represent the first large-scale development of SSR markers for ramie. These SSR markers could be used for development of genetic and physical maps, quantitative trait loci mapping, genetic diversity studies, association mapping, and cultivar fingerprinting.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
27 |
2
|
Niu J, Shi Y, Huang K, Zhong Y, Chen J, Sun Z, Luan M, Chen J. Integrative transcriptome and proteome analyses provide new insights into different stages of Akebia trifoliata fruit cracking during ripening. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:149. [PMID: 32843898 PMCID: PMC7441727 DOI: 10.1186/s13068-020-01789-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/16/2020] [Indexed: 06/07/2023]
Abstract
BACKGROUND Akebia trifoliata (Thunb.) Koidz may have applications as a new potential source of biofuels owing to its high seed count, seed oil content, and in-field yields. However, the pericarp of A. trifoliata cracks longitudinally during fruit ripening, which increases the incidence of pests and diseases and can lead to fruit decay and deterioration, resulting in significant losses in yield. Few studies have evaluated the mechanisms underlying A. trifoliata fruit cracking. RESULTS In this study, by observing the cell wall structure of the pericarp, we found that the cell wall became thinner and looser and showed substantial breakdown in the pericarp of cracking fruit compared with that in non-cracking fruit. Moreover, integrative analyses of transcriptome and proteome profiles at different stages of fruit ripening demonstrated changes in the expression of various genes and proteins after cracking. Furthermore, the mRNA levels of 20 differentially expressed genes were analyzed, and parallel reaction monitoring analysis of 20 differentially expressed proteins involved in cell wall metabolism was conducted. Among the molecular targets, pectate lyases and pectinesterase, which are involved in pentose and glucuronate interconversion, and β-galactosidase 2, which is involved in galactose metabolism, were significantly upregulated in cracking fruits than in non-cracking fruits. This suggested that they might play crucial roles in A. trifoliata fruit cracking. CONCLUSIONS Our findings provided new insights into potential genes influencing the fruit cracking trait in A. trifoliata and established a basis for further research on the breeding of cracking-resistant varieties to increase seed yields for biorefineries.
Collapse
|
research-article |
5 |
23 |
3
|
Hua W, Fan LM, Dai R, Luan M, Xie H, Li AQ, Li L. Comparison of two series of non-invasive instruments used for the skin physiological properties measurements: the DermaLab ® from Cortex Technology vs. the series of detectors from Courage & Khazaka. Skin Res Technol 2016; 23:70-78. [PMID: 27637867 DOI: 10.1111/srt.12303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND/PURPOSE The detectors from Courage & Khazaka and DermaLab® from Cortex Technology were two series of the most commonly used non-invasive instruments for the skin physiological properties measurements. The aim of this study is to reveal the differences and correlations in measuring skin color, hydration, transepidermal water loss (TEWL), sebum and elasticity on the forearm or faces between two commercially available series of instruments. METHODS 30 subjects were enrolled to be measured by the two series of instruments. The measurements by each series were performed on the left/right side of the body randomly. The hydration, sebum, elasticity and TEWL measurements were performed on different sites. RESULTS Positive correlations were found in the values of skin color, hydration, TEWL, sebum and visco-elasticity detected by the two series. The values related to skin firmness measured by the two instruments were statistically negative correlated. Contrary to the results in measuring the skin color, the detectors from Courage & Khazaka presented lower values of variation in measuring skin hydration and TEWL than those from DermaLab® . CONCLUSION The two series have significant correlations.The differences of the two series can be due either to differences in the design of the probe or left/right part of the body.
Collapse
|
Validation Study |
9 |
17 |
4
|
Tang Q, Zang G, Cheng C, Luan M, Dai Z, Xu Y, Yang Z, Zhao L, Su J. Diplosporous development in Boehmeria tricuspis: Insights from de novo transcriptome assembly and comprehensive expression profiling. Sci Rep 2017; 7:46043. [PMID: 28382950 PMCID: PMC5382578 DOI: 10.1038/srep46043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 01/05/2023] Open
Abstract
Boehmeria tricuspis includes sexually reproducing diploid and apomictic triploid individuals. Previously, we established that triploid B. tricuspis reproduces through obligate diplospory. To understand the molecular basis of apomictic development in B. tricuspis, we sequenced and compared transcriptomic profiles of the flowers of sexual and apomictic plants at four key developmental stages. A total of 283,341 unique transcripts were obtained from 1,463 million high-quality paired-end reads. In total, 18,899 unigenes were differentially expressed between the reproductive types at the four stages. By classifying the transcripts into gene ontology categories of differentially expressed genes, we showed that differential plant hormone signal transduction, cell cycle regulation, and transcription factor regulation are possibly involved in apomictic development and/or a polyploidization response in B. tricuspis. Furthermore, we suggest that specific gene families are possibly related to apomixis and might have important effects on diplosporous floral development. These results make a notable contribution to our understanding of the molecular basis of diplosporous development in B. tricuspis.
Collapse
|
research-article |
8 |
11 |
5
|
Lv W, Zheng J, Luan M, Shi M, Zhu H, Zhang M, Lv H, Shang Z, Duan L, Zhang R, Jiang Y. Comparing the evolutionary conservation between human essential genes, human orthologs of mouse essential genes and human housekeeping genes. Brief Bioinform 2015; 16:922-31. [DOI: 10.1093/bib/bbv025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 12/31/2022] Open
|
|
10 |
10 |
6
|
Song Z, Yang X, Zhang X, Luan M, Guo B, Liu C, Pan J, Mei S. Rapid and Visual Detection of Meloidogyne hapla Using Recombinase Polymerase Amplification Combined with a Lateral Flow Dipstick Assay. PLANT DISEASE 2021; 105:2697-2703. [PMID: 33267643 DOI: 10.1094/pdis-06-20-1345-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The northern root-knot nematode, Meloidogyne hapla, is a biotrophic parasite that infects many crops and causes severe economic losses worldwide. Rapid and accurate detection of M. hapla is crucial for disease forecasting and control. We developed a recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay for rapid detection of M. hapla. The primers and probe were designed based on the effector gene 16D10 sequence and were highly specific to M. hapla. The RPA reaction was performed at a wide range of temperatures from 25 to 45°C within 5 to 25 min, and the amplicon was visualized directly on the LFD within 5 min. The detection limits of the RPA-LFD assay were 10-3 females and 10-2 second-stage juveniles/0.5 g of soil, which was 10 times more sensitive than the conventional PCR assay. In addition, the RPA-LFD assay can detect M. hapla from infested plant roots and soil samples, and the entire detection process can be completed within 1.5 h. These results indicate that the RPA-LFD assay is a simple, rapid, specific, sensitive, and visual method that can be used for rapid detection of M. hapla in the field and in resource-limited conditions.
Collapse
|
|
4 |
9 |
7
|
Niu J, Wang Y, Shi Y, Wang X, Sun Z, Huang K, Gong C, Luan M, Chen J. Development of SSR markers via de novo transcriptome assembly in Akebia trifoliata (Thunb.) Koidz. Genome 2019; 62:817-831. [PMID: 31491340 DOI: 10.1139/gen-2019-0068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Owing to its high nutritive, economic, and medicinal values, Akebia trifoliata has received increased attention, making worthy of being used as a new fruit crop for further domestication and commercialization in China. However, molecular research of A. trifoliata has lagged as investigations of its genomic resources and molecular markers are rare. In this study, a cDNA library of A. trifoliata leaves was sequenced using the Illumina NovaSeq. 6000 sequencing system. In total, 101 417 transcripts, 63 757 unigenes, and 9494 simple sequence repeats were assembled and identified from the transcriptome datasets. The majority of the SSRs were di- and trinucleotide repeats. Length and number of SSR motifs ranged from 15 to 66, and 5 to 48 bp, respectively. Of which, the A/T mononucleotide motif and AG/TC and CT/GA dinucleotide motifs were the most abundant. Furthermore, 100 SSR primers were randomly selected to validate amplification and polymorphism, and 88 A. trifoliata accessions were definitively distinguished by 49 primers. With the Qinling mountains and Huaihe River line as the boundaries, the northern and southern accessions were clustered into different groups, but no clear geographical patterns (city or origin) were observed in the southern accessions. These newly identified molecular markers may provide a foundation for the genetic identification and diversity analysis and marker-assisted selection breeding in species of Akebia.
Collapse
|
Journal Article |
6 |
9 |
8
|
Ren N, Liu J, Yang D, Chen J, Luan M, Hong J. Sequence-related amplified polymorphism (SRAP) marker as a new method for identification of endophytic fungi from Taxus. World J Microbiol Biotechnol 2011; 28:215-21. [PMID: 22806797 DOI: 10.1007/s11274-011-0810-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/31/2011] [Indexed: 11/26/2022]
Abstract
A total of 20 endophytic fungi stains were classified into four groups using traditional morphological identification method, and were studied for genetic diversity by sequence-related amplified polymorphism (SRAP) technique. Genomic DNA (deoxyribonucleic acid) of these strains was extracted with CTAB method. SRAP analysis was done with 24 pairs of primers. All strains could be uniquely distinguished with 584 bands and 446 polymorphism bands which generated 76.4% of polymorphic ratio. Unweighted pair-group method with arithmetical averages cluster analysis enabled construction of a dendrogram for estimating genetic distances between different strains. All strains, which were just divided into four groups by traditional morphology identification, were clustered into four major groups at GS = 0.603 and further separated into eight sub-groups at GS = 0.921. Dendrogram also revealed a large genetic variation in 20 strains; different primer combinations allowed them distinctly distinguished one from others with relatively low genetic similarity. The results show that the SRAP technology is more efficient than traditional morphology identification. It is found that SRAP markers could more really reflect the genetic diversity of endophytic fungi strains from Taxus, and also could be used as a method for identification of endophytic fungi from Taxus. It also suggests that SRAP can be used to establish foundation for further screening of taxol-producing endophytic fungi strains which can produce high levels of paclitaxel.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
7 |
9
|
Ren Z, Chen X, Luan M, Guo B, Song Z. First Report of Meloidogyne enterolobii on Industrial Hemp ( Cannabis sativa) in China. PLANT DISEASE 2020; 105:230. [PMID: 32755367 DOI: 10.1094/pdis-07-20-1451-pdn] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Industrial hemp (Cannabis sativa L.) is an important annual herbaceous plant that has great economic value. In March 2020, many small to large galls were observed on the roots of industrial hemp plants growing in a field in Tianya District, Sanya City, Hainan Province, China. The diseased plants did not show obvious aboveground symptoms. Females were obtained by dissecting the galls under a stereomicroscope. Second-stage juveniles (J2s) were collected for 24-48 h from egg masses hatching at 25°C. The morphological characteristics of females and J2s were observed and measured with a Nikon E200 microscope at 100× and 400× magnification. The perineal patterns of females were oval, with coarse and smooth striae, moderately high to high dorsal arches, and lacking distinct lateral lines. Measurements of females (n = 20) included vulval slit length = 26.4 ± 2.7 (23.6 to 31.2) µm, vulval slit to anus distance = 22.1 ± 2.4 (18.9 to 24.7) µm. The J2s had long and narrow tails with bluntly rounded tail tips and distinct hyaline tail termini. Measurements of J2s (n = 20) were body length = 432.4 ± 23.1 (386.8 to 465.3) µm, body width = 16.2 ± 1.8 (14.2 to 18.9) µm, stylet = 12.8 ± 0.5 (11.6 to 13.7) µm, dorsal esophageal gland orifice to stylet base = 3.6 ± 0.4 (3.1 to 4.8) µm, tail = 52.9 ± 3.8 (46.3 to 61.4) µm, hyaline tail length = 15.7 ± 2.6 (12.5 to 19.2) µm. These morphological characteristics were consistent with the original description of M. enterolobii (Yang and Eisenback 1983). Molecular biology analyses were also conducted to confirm species identification. Genomic DNA was extracted from a single J2 (Song et al. 2017). The ITS rRNA gene and D2-D3 region of the 28S rRNA gene were amplified using the primers 18s/26s (TTGATTACGTCCCTGCCCTTT/TTTCACTCGCCGTTACTAAGG) and D2A/D3B (ACAAGTACCGTGAGGGAAAGT/TCGGAAGGAACCAGCTACTA), respectively (Vrain et al. 1992; Subbotin et al. 2006). The ITS rRNA gene sequence (765 bp, GenBank accession No. MT654126) was 100% identical to M. enterolobii sequences previously obtained from Fujian, China (MT406251) and Vietnam (MG773551), and the D2/D3 region sequence of 28S rRNA gene (759 bp, MT654127) revealed 99% identity with M. enterolobii sequences from Fujian (MT193450) and Taiwan (KP411230), China, and South Carolina, USA (MH800969). In addition, species identification was further confirmed using the M. enterolobii-specific primers Me-F/Me-R (AACTTTTGTGAAAGTGCCGCTG/TCAGTTCAGGCAGGATCAACC) and MK7-F/MK7-R (GATCAGAGGCGGGCGCATTGCGA/CGAACTCGCTCGAACTCGAC), respectively (Long et al. 2006; Tigano et al. 2010). The PCR products had the expected fragment lengths of 236 bp and 520 bp, which were consistent with those previously reported for M. enterolobii (Long et al. 2006; Tigano et al. 2010). The pathogenicity test of this nematode was performed in a greenhouse at 25°C. Ten industrial hemp seedlings (cv. Longma No. 5 ) maintained in 12-cm diameter and 12-cm high pots containing autoclaved soil, were inoculated with 800 freshly hatched J2s of the original population of M. enterolobii per plant, and 8 non-inoculated seedlings were used as controls. At 60 d after inoculation, all inoculated plants exhibited gall symptoms on the roots similar to those in the field, and the nematode reproduction factor (final population density/initial population density) was 18.2. No symptoms were observed on control plants. These results confirmed the pathogenicity of M. enterolobii on industrial hemp. To our knowledge, this is the first report of industrial hemp as a new host of M. enterolobii in China. As M. enterolobii has a broad host range, a strong pathogenicity, and a high reproduction rate, it could become a major threat to industrial hemp production. Further monitoring and research on effective control strategies are needed.
Collapse
|
|
5 |
6 |
10
|
Zhong Y, Wang Y, Sun Z, Niu J, Shi Y, Huang K, Chen J, Chen J, Luan M. Genetic Diversity of a Natural Population of Akebia trifoliata (Thunb.) Koidz and Extraction of a Core Collection Using Simple Sequence Repeat Markers. Front Genet 2021; 12:716498. [PMID: 34531899 PMCID: PMC8438410 DOI: 10.3389/fgene.2021.716498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Understand genetic diversity and genetic structure of germplasm is premise of germplasm conservation and utilization. And core collection can reduce the cost and difficulty of germplasm conservation. Akebia trifoliata (Thunb.) Koidz is an important medicinal, fruit and oil crop, particularly in China. In this study, 28 simple sequence repeat (SSR) markers were used to assess the genetic diversity and genetic structure of 955 A. trifoliata germplasms, determine their molecular identity and extract a core collection. The genetic diversity of the 955 germplasms was moderately polymorphic. The average number of alleles (Na), observed heterozygosity (HO), expected heterozygosity (HE), Shannon’s information index (I∗), and polymorphic information content (PIC) were 3.71, 0.24, 0.46, 0.81, and 0.41, respectively. Four subpopulations were identified, indicating a weak genetic structure. A 955 germplasms could be completely distinguished by the characters of s28, s25, s74, s89, s68, s30, s13, s100, s72, s77, and s3. And each germplasm’s molecular identity was made up of eleven characters. The core collection was composed of 164 germplasms (17.2% of 955 total germplasms in the population) and diversity parameters differed significantly from those of a random core collection. These results have implications for germplasm conservation. At the same time, based on the results, the 955 germplasm could be better used and managed.
Collapse
|
|
4 |
6 |
11
|
Niu J, Sun Z, Shi Y, Huang K, Zhong Y, Chen J, Chen J, Luan M. Comparative Analysis of Akebia trifoliata Fruit Softening at Different Flesh Ripening Stages Using Tandem Mass Tag Technology. Front Nutr 2021; 8:684271. [PMID: 34291071 PMCID: PMC8287030 DOI: 10.3389/fnut.2021.684271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Owing to its medicinal and high nutritional values, Akebia trifoliata can be considered as a new type of medicinal and edible homologous resources, and it has begun to be widely cultivated in many areas of China. Over-softening of fruit would affect the sensorial quality, utilization rate, and consumer acceptance of the fruit postharvest. However, fruit softening has not been characterized and the molecular mechanism underlying A. trifoliata fruit softening during ripening remains unclear. A comparative proteomic analysis was performed on the fruit at three developmental stages using tandem mass tag technology. In total, 2,839 proteins and 302 differentially abundant proteins (DAPs) were identified. Bioinformatics analysis indicated that most DAPs were implicated in oxidoreductase activity, protein domain-specific binding and pyruvate metabolism. Moreover, 29 DAPs associated with cell wall metabolism, plant hormone, and stress and defense response pathways were validated using quantitative PCR. Notably, pectinesterase, pectate lyase, and β-galactosidase, which are involved in cell wall degradation, as well as gibberellin regulated protein, cysteine protease, thaumatin-like protein and heat shock proteins which is involved in plant hormone, and stress and defense response, were significantly up-regulated in softening fruit compared with the levels in non-softening fruit. This indicated that they might play key roles in A. trifoliata fruit softening. Our findings will provide new insights into potential genes influencing fruit softening traits of A. trifoliata, which will help to develop strategies to improve fruit quality and reduce softening-related losses.
Collapse
|
Journal Article |
4 |
5 |
12
|
Zhong Y, Zhang Z, Chen J, Niu J, Shi Y, Wang Y, Chen T, Sun Z, Chen J, Luan M. Physicochemical properties, content, composition and partial least squares models of A. trifoliata seeds oil. Food Chem X 2021; 12:100131. [PMID: 34632368 PMCID: PMC8488009 DOI: 10.1016/j.fochx.2021.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Feasibility of using A. trifoliata seed oil (ASO) as an edible oil was studied. A partial least squares regression model for the ASO content was established. The PLS model was well suited for the determination of ASO and UFA content. Based on the study, High ASO content germplasm could be used in A. trifoliata breeding. Physicochemical properties, oil content, and fatty acids (FAs) composition are key for determining the value of oil crops. The aim of this study was to illustrate the potential of exploiting A. trifoliata as an edible oil crop, and establish a rapid measurement model for the A. trifoliata seeds oil (ASO) content and composition. In 130 A. trifoliata germplasms, the highest content of ASO was 51.27%, and unsaturated fatty acids (UFAs) mainly accounted for 74–78% of ASO. The partial least squares (PLS) model based on GC–MS and near-infrared spectroscopy was well-suited for the determination of ASO and UFA content; however, the PLS model for oleic acid (OA) and linoleic acid (LA) was not effective. The acid values and peroxide values for ASO also conformed to the Chinese food safety standards. Our findings will provide new insights and guidance for the use of A. trifoliata as oil crops..
Collapse
Key Words
- ASO, A. trfoliata seed oil
- Akebia trifoliate
- D1, First derivative (Savitzky-Golay)
- D2, Second derivative (Savitzky-Golay)
- Edible oil
- FAs, Fatty acids
- GC-MS
- LA, Linoleic acid
- MSC, Multiplicative scatter correction
- NIRS, Near-infrared spectroscopy
- Near-infrared spectroscopy
- OA, Oleic acid
- PCA, Principal component analysis
- PLS, Partial least squares
- R2cal, Coefficients of determination for calibration
- R2cv, Coefficient of determination for cross-validation
- RMSEC, Root mean square error of calibration
- RMSEP, Root mean square error of prediction
- SNV, Standard normal variate
- UFA, Unsaturated fatty acids
Collapse
|
|
4 |
4 |
13
|
Chen T, Niu J, Sun Z, Chen J, Wang Y, Chen J, Luan M. Transcriptome Analysis and VIGS Identification of Key Genes Regulating Citric Acid Metabolism in Citrus. Curr Issues Mol Biol 2023; 45:4647-4664. [PMID: 37367044 DOI: 10.3390/cimb45060295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Citrus (Citrus reticulata) is one of the world's most widely planted and highest-yielding fruit trees. Citrus fruits are rich in a variety of nutrients. The content of citric acid plays a decisive role in the flavor quality of the fruit. There is a high organic acid content in early-maturing and extra-precocious citrus varieties. Reducing the amount of organic acid after fruit ripening is significant to the citrus industry. In this study, we selected a low-acid variety, "DF4", and a high-acid variety, "WZ", as research materials. Through WGCNA analysis, two differentially expressed genes, citrate synthase (CS) and ATP citrate-pro-S-lyase (ACL), were screened out, which related to the changing citric acid. The two differentially expressed genes were preliminarily verified by constructing a virus-induced gene-silencing (VIGS) vector. The VIGS results showed that the citric acid content was negatively correlated with CS expression and positively correlated with ACL expression, while CS and ACL oppositely control citric acid and inversely regulate each other. These results provide a theoretical basis for promoting the breeding of early-maturing and low-acid citrus varieties.
Collapse
|
|
2 |
2 |
14
|
Wu B, Li Y, Li J, Xie Z, Luan M, Gao C, Shi Y, Chen S. Genome-Wide Analysis of Alternative Splicing and Non-Coding RNAs Reveal Complicated Transcriptional Regulation in Cannabis sativa L. Int J Mol Sci 2021; 22:ijms222111989. [PMID: 34769433 PMCID: PMC8584933 DOI: 10.3390/ijms222111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
It is of significance to mine the structural genes related to the biosynthetic pathway of fatty acid (FA) and cellulose as well as explore the regulatory mechanism of alternative splicing (AS), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the biosynthesis of cannabinoids, FA and cellulose, which would enhance the knowledge of gene expression and regulation at post-transcriptional level in Cannabis sativa L. In this study, transcriptome, small RNA and degradome libraries of hemp 'Yunma No.1' were established, and comprehensive analysis was performed. As a result, a total of 154, 32 and 331 transcripts encoding key enzymes involved in the biosynthesis of cannabinoids, FA and cellulose were predicted, respectively, among which AS occurred in 368 transcripts. Moreover, 183 conserved miRNAs, 380 C. sativa-specific miRNAs and 7783 lncRNAs were predicted. Among them, 70 miRNAs and 17 lncRNAs potentially targeted 13 and 17 transcripts, respectively, encoding key enzymes or transporters involved in the biosynthesis of cannabinoids, cellulose or FA. Finally, the crosstalk between AS and miRNAs or lncRNAs involved in cannabinoids and cellulose was also predicted. In summary, all these results provided insights into the complicated network of gene expression and regulation in C. sativa.
Collapse
|
|
4 |
2 |
15
|
Chen K, Luan M, Xiong H, Chen P, Chen J, Gao G, Huang K, Zhu A, Yu C. Genome-wide association study discovered favorable single nucleotide polymorphisms and candidate genes associated with ramet number in ramie (Boehmeria nivea L.). BMC PLANT BIOLOGY 2018; 18:345. [PMID: 30541445 PMCID: PMC6292125 DOI: 10.1186/s12870-018-1573-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/26/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Ramie (Boehmeria nivea L.) is one of the most important natural fiber crops and an important forage grass in south China. Ramet number, which is a quantitative trait controlled by multigenes, is one of the most important agronomic traits in plants because the ramet number per plant is a key component of grain yield and biomass. However, the genetic variation and genetic architecture of ramie ramet number are rarely known. RESULTS A genome-wide association study was performed using a panel of 112 core germplasms and 108,888 single nucleotide polymorphisms (SNPs) detected using specific-locus amplified fragment sequencing technology. Trait-SNP association analysis detected 44 significant SNPs that were associated with ramet number at P < 0.01. The favorable SNP Marker20170-64 emerged at least twice in the three detected stages and was validated to be associated with the ramie ramet number using genomic DNA polymerase chain reaction with an F1 hybrid progeny population. Comparative genome analysis predicted nine candidate genes for ramet number based on Marker20170-64. Real-time quantitative polymerase chain reaction analysis indicated that six of the genes were specific to upregulation in the ramie variety with high ramet number. These results suggest that these genes could be considered as ramet number-associated candidates in ramie. CONCLUSIONS The identified loci or genes may be promising targets for genetic engineering and selection for modulating the ramet number in ramie. Our work improves understanding of the genetics of ramet number in ramie core germplasms and provides tools for marker-assisted selection for improvement of agricultural traits.
Collapse
|
research-article |
7 |
1 |
16
|
Liu S, Liu H, Luan M. [Cross-section anatomy of the subphrenic spaces]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 1996; 34:120-2. [PMID: 9388340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cross-section anatomy of the subphrenic spaces were investigated in 20 Chinese cadavers. On the horizontal sections, the subphrenic spaces consist of the perihepatic and perisplenic spaces. The fissure for ligamentum venosum was separated into two parts by the lesser omentum, the anterior part communicates with gastrohepatic recess, the posterior is the superior recess of the omental bursa into which the caudate lobe of the liver projected. The bare area of the stomach encroaches upon the posterior surface of the gastric fundus between the right and left layers of the gastrophrenic ligament and lies between the superior and splenic recesses of the omental bursa. Left subphrenic retroperitoneal space is between the bare area of the stomach and the diaphragm.
Collapse
|
English Abstract |
29 |
|
17
|
Ochiki SN, Chen T, Meng Z, Zhou J, Gao Z, Deng Y, Luan M. Characterization of ATP-dependent phosphofructokinase genes during ripening and their modulation by phytohormones during postharvest storage of citrus fruits (Citrus reticulata Blanco.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109235. [PMID: 39471755 DOI: 10.1016/j.plaphy.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The level of sweetness in citrus fruit is crucial for consumer appeal and market competitiveness, determined mainly by soluble sugars and organic acids. ATP-dependent 6-phosphofructokinase is central to regulating sugar metabolism, yet its role in citrus fruit ripening and postharvest storage remains underexplored. We characterized phosphofructokinase genes in citrus, identifying eight genes classified into pyrophosphate-dependent phosphofructokinase (PFP) and ATP-dependent 6-phosphofructokinase (PFK) subgroups using phylogenetic analysis, genomic architectures, and protein motifs. Comparative genomic analysis with other plants highlighted significant protein homology among CitPFKs. The motif analysis indicated conserved phosphofructokinase domains in CitPFK sequences, with upstream promoter regions containing diverse cis-regulatory elements, most notably light-responsive (LREs). The gene expression profiling throughout fruit development and ripening revealed differential patterns, with responses to gibberellic acid and salicylic acid phytohormones during postharvest indicating their roles in regulating CitPFK genes. The analysis of the transcriptome showed high expression of ATP-dependent 6-phosphofructokinase 3 (CitPFK3) during fruit development, indicating a positive role in fruit maturation. Consequently, silencing CitPFK3 through virus-induced gene silencing (VIGS) increased hexose sugar content, suggesting its function in sugar accumulation. These findings improve our understanding of PFKs in citrus, particularly CitPFK3's pivotal role in regulating hexose sugar dynamics and their modulation by exogenous phytohormones after harvest. This study provides a foundation for optimizing soluble sugar regulation to enhance fruit quality and postharvest handling in citrus production.
Collapse
|
|
1 |
|
18
|
Gao Z, Xie S, Chang L, Tang H, Sun Z, Deng Y, Hu Y, Xu Y, Luan M. Antioxidant and antimicrobial sodium alginate/sodium carboxymethyl cellulose films loaded with self-assembled hesperidin nanorods for fruits preservation. Food Chem 2025; 474:143183. [PMID: 39908821 DOI: 10.1016/j.foodchem.2025.143183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
To develop green food packaging films, we prepared carrier-free hesperidin (HSD) nanoparticles by self-assembly technique and loaded them into Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (CMC) matrices to obtain the composite film. SEM and TEM imaging revealed that these nanoparticles exhibited a rod-like structure (hesperidin nanorods, HSD NRs). Compared to HSD, the water solubility and biological activity of HSD NRs were significantly higher. When HSD NRs were loaded into the SA/CMC film, the antibacterial ratios against S. aureus and E. coli were 91.20 % and 78.02 %, respectively. Moreover, the composite film showed good antioxidant activity against DPPH+, ABTS+, and Fe3+. The addition of HSD NRs significantly improved the film's barrier properties and mechanical strength. Therefore, the SA/CMC-HSD NRs film was more effective than the traditional polyethylene (PE) film in extending the shelf life. These results indicate that the SA/CMC-HSD NRs film holds great potential for fruit preservation.
Collapse
|
|
1 |
|
19
|
Jiang H, Li Y, Luan M, Huang S, Zhao L, Yang G, Pan G. Single-Molecule Real-Time Sequencing of Full-Length Transcriptome and Identification of Genes Related to Male Development in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:3559. [PMID: 36559671 PMCID: PMC9782162 DOI: 10.3390/plants11243559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Female Cannabis sativa plants have important therapeutic properties. The sex ratio of the dioecious cannabis is approximately 1:1. Cultivating homozygous female plants by inducing female plants to produce male flowers is of great practical significance. However, the mechanism underlying cannabis male development remains unclear. In this study, single-molecule real-time (SMRT) sequencing was performed using a mixed sample of female and induced male flowers from the ZYZM1 cannabis variety. A total of 15,241 consensus reads were identified, and 13,657 transcripts were annotated across seven public databases. A total of 48 lncRNAs with an average length of 986.54 bp were identified. In total, 8202 transcripts were annotated as transcription factors, the most common of which were bHLH transcription factors. Moreover, tissue-specific expression pattern analysis showed that 13 MADS transcription factors were highly expressed in male flowers. Furthermore, 232 reads of novel genes were predicted and enriched in lipid metabolism, and qRT-PCR results showed that CER1 may be involved in the development of cannabis male flowers. In addition, 1170 AS events were detected, and two AS events were further validated. Taken together, these results may improve our understanding of the complexity of full-length cannabis transcripts and provide a basis for understanding the molecular mechanism of cannabis male development.
Collapse
|
research-article |
3 |
|
20
|
Li L, Fan Z, Gan Q, Xiao G, Luan M, Zhu R, Zhang Z. Conservative mechanism through various rapeseed ( Brassica napus L.) varieties respond to heavy metal (Cadmium, Lead, Arsenic) stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1521075. [PMID: 39877742 PMCID: PMC11773377 DOI: 10.3389/fpls.2024.1521075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Introduction Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear. Methods Here, with 7-day seedlings as raw materials, we investigated physiological and biochemical indexes, analyzed the transcriptome sequencing for different treated materials (control, 50×, and 100×), combined with the results of transcriptome and proteome sequencing of the near-isogenic lines (F338 and F335) to reveal the response mechanism to heavy metal stress. Due to oxidative stress response caused by heavy metal stress, there are heavy effects on the emergence of rapeseeds and the growth of seedlings. Although rapeseed can alleviate oxidative stress by enhancing the enzyme activity, especially peroxidase in the oxidation system, this process has its limits. Rapeseed plants activate antioxidase, transport enzymes, and biological regulation to cope with heavy metal stress. Among these responses, peroxidase, ABC transporters, and abscisic acid are particularly significant in this process. Results and discussion Based on this study, we identified a breeding material with high adsorption capacity for heavy metals, which contributed to the research on resistance breeding in rapeseed. The results of this study may be useful to alleviate heavy metal soil pollution and tackle edible oil shortages in China.
Collapse
|
research-article |
1 |
|
21
|
Li H, Chen A, Tang H, Luan M. High-density genetic map construction and QTL analysis of the first flower node in kenaf using RAD-seq. BMC PLANT BIOLOGY 2024; 24:1191. [PMID: 39702002 DOI: 10.1186/s12870-024-05907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND In kenaf (Hibiscus cannabinus L.) which is an important natural fiber crop, the first flower node is closely linked to fiber yield. However, the genetic mechanisms controlling the first flower node remain poorly understood. RESULTS In this study, we constructed a high-density genetic linkage map using Restriction-site associated DNA sequencing (RAD-seq) technology based on 148 individual hybrid kenaf progeny. The map contained 3418 bin markers unevenly on 18 linkage groups and spanned a total of 864.607 cM with an average distance of 0.253 cM. Based on the genetic map, two major QTLs, FFN6.1 and FFN6.2, were detected on LG6 and were strongly associated with the first flower node. Based on annotation information in the GO, KEGG and NR public databases, 373 candidate genes were predicted in the FFN6.1 and FFN6.2 regions. Finally, using RT-qPCR, three genes related to the first flower node were identified. CONCLUSION The study provides a good foundation for understanding the molecular mechanisms of the first flower node trait in kenaf.
Collapse
|
|
1 |
|
22
|
Chen J, Shi Y, Zhong Y, Sun Z, Niu J, Wang Y, Chen T, Chen J, Luan M. Transcriptome Analysis and HPLC Profiling of Flavonoid Biosynthesis in Citrus aurantium L. during Its Key Developmental Stages. BIOLOGY 2022; 11:biology11071078. [PMID: 36101454 PMCID: PMC9313048 DOI: 10.3390/biology11071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Citrus aurantium L. (sour orange) is a significant Chinese medicinal and fruit crop rich in flavonoids. However, the pathways and genes involved in flavonoid biosynthesis at the key developmental stages of Citrus aurantium L. are not fully understood. This study found that the total flavonoid concentration gradually decreased as the fruit developed. Additionally, it showed that neohesperidin was the main flavonoid in the early stages of sour orange fruit development. However, as the development stage progressed, naringin content increased rapidly and emerged as the main flavonoid component. From 27 cDNA libraries, RNA sequencing yielded 16.64 billion clean bases, including 8989 differentially expressed genes. We identified 74 flavonoid related unigenes mapped to the phenylalanine, tyrosine, and phenylpropanoid biosynthesis pathways. A total of 152 UDP-glucuronosyltransferase genes (UGTs) were identified from C. aurantium L. transcriptome database, in which 22 key flavonoid-correlated UGTs were divided into five main AtGT groups: E, G, I, L, M. We observed that the ethylene responsive factors (ERF) and myeloblastosis (MYB) family mainly regulated the key genes involved in flavonoid biosynthesis. Overall, our study generated extensive and detailed transcriptome data on the development of C. aurantium L. and characterized the flavonoid biosynthesis pattern during its fruit developmental stages. These results will benefit genetic modification or selection to increase the flavonoid content in sour oranges.
Collapse
|
|
3 |
|
23
|
Niu J, Shi Y, Gao Z, Sun Z, Tian S, Chen X, Luan M. The β-galactosidase gene AtrBGAL2 regulates Akebia trifoliata fruit cracking. Int J Biol Macromol 2024; 275:133313. [PMID: 38936569 DOI: 10.1016/j.ijbiomac.2024.133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Cracking of Akebia trifoliata fruit at maturity is problematic for the cultivation of the horticultural crop, shortening shelf-life quality and compromising commercial value. However, the molecular mechanisms underlying this feature of A. trifoliata are not known. Genes involved in cell wall metabolism were identified by genome and transcriptome sequencing, which may play important roles in fruit cracking. One of the galactose metabolism related genes, β-galactosidase (AtrBGAL2), was identified in A. trifoliata, and overexpression (OE) of AtrBGAL2 resulted in early fruit cracking, higher water-soluble pectin contents, and lower acid-soluble pectin, cellulose, and hemicellulose content compared to the wild type. Whereas silencing of AtrBGAL2 in trifoliata by virus induced gene silencing showed opposite trends. The levels of AtrBGAL2 transcripts were 24.6 and 66.0-fold higher in OE A. trifoliata and tomato fruits, respectively, and the cell wall-related genes were also gradually greater than in control plants during fruit ripening. Whereas the expression levels of AtrBGAL2 was significantly down-regulated by 54.1 % and 73.7 % in gene silenced A. trifoliata and CRISPR/Cas9 tomato mutant plants, respectively, and cell wall-related genes were also significantly reduced. These results demonstrate that AtrBGAL2 plays important roles in regulating fruit cracking during fruit ripening.
Collapse
|
|
1 |
|
24
|
Chen J, Qiu X, Sun Z, Luan M, Chen J. Genome-wide analysis of UDP-glycosyltransferase family in Citrus sinensis and characterization of a UGT gene encoding flavonoid 1-2 rhamnosyltransferase. Int J Biol Macromol 2024; 280:135752. [PMID: 39299422 DOI: 10.1016/j.ijbiomac.2024.135752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
UDP-glycosyltransferases (UGTs) play a crucial role in the glycosylation of secondary metabolites in plants, which is of significant importance for growth and response to biotic or abiotic stress. Despite the wide identification of UGT family members in various species, limited information is available regarding this family in citrus. In this study, we identified 87 UGT genes from the Citrus sinensis genome and classified them into 14 groups. We characterized their gene structures and motif compositions, providing insights into the molecular basis underlying discrepant functions of UGT genes within each evolutionary branch. Tandem duplication events were found to be the main driving force behind UGT gene expansion. Additionally, we identified numerous cis-acting elements in the promoter region of UGT genes, including those responsive to light, growth factors, phytohormones, and stress conditions. Notably, light-responsive elements were found with a frequency of 100 %. We elucidated the expression pattern of UGTs during fruit development in Citrus aurantium using RNA-seq and quantitative real-time PCR (qRT-PCR), revealing that 10 key UGT genes are closely associated with biosynthesis of bitter flavanone neohesperidosides (FNHs). Furthermore, we identified Ca1,2RhaT as a flavonoid 1-2 rhamnosyltransferase (1,2RhaT) involved in FNHs biosynthesis for the first time. Isolation and functional characterization of the gene Ca1,2RhaT from Citrus aurantium in vitro and in vivo indicated that Ca1,2RhaT encoded a citrus 1,2RhaT and possessed rhamnosyl transfer activities. This work provides comprehensive information on the UGT family while offering new insights into understanding molecular mechanisms regulating specific accumulation patterns of FNHs or non-bitter flavanone rutinosides (FRTs) in citrus.
Collapse
|
|
1 |
|
25
|
Zhong C, Yang X, Niu J, Zhou X, Zhou J, Pan G, Sun Z, Chen J, Cao K, Luan M. Transcriptome analysis of Citrus Aurantium L. to study synephrine biosynthesis during developmental stages. PeerJ 2024; 12:e17965. [PMID: 39267946 PMCID: PMC11391941 DOI: 10.7717/peerj.17965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Citrus aurantium L., sometimes known as "sour orange," is an important Chinese herb with young, immature fruits, or "zhishi," that are high in synephrine. Synephrine is a commonly utilized natural chemical with promising applications in effectively increasing metabolism, heat expenditure, energy level, oxidative fat, and weight loss. However, little is known about the genes and pathways involved in synephrine production during the critical developmental stages of C. aurantium L., which limits the development of the industry. According to this study, the concentration of synephrine gradually decreased as the fruit developed. Transcriptome sequencing was used to examine the DEGs associated with synephrine connections and served as the foundation for creating synephrine-rich C. aurantium L. Comparisons conducted between different developmental stages to obtain DEGs, and the number of DEGs varied from 690 to 3,019. Tyrosine and tryptophan biosynthesis, glycolysis/gluconeogenesis, pentose phosphate pathway, phenylalanine, and tyrosine metabolism were the main KEGG pathways that were substantially enriched. The results showed that 25 genes among these KEGG pathways may be related to synephrine synthesis. The WGCNA and one-way ANOVA analysis adoption variance across the groups suggested that 11 genes might play a crucial role in synephrine synthesis and should therefore be further analyzed. We also selected six DEGs at random and analyzed their expression levels by RT-qPCR, and high repeatability and reliability were demonstrated by our finished RNA-seq study results. These results may be useful in selecting or modifying genes to increase the quantity of synephrine in sour oranges.
Collapse
|
|
1 |
|