1
|
Mosteiro M, Azuara D, Villatoro S, Alay A, Gausachs M, Varela M, Baixeras N, Pijuan L, Ajenjo-Bauza M, Lopez-Doriga A, Teulé Á, Solanes A, Palmero R, Brenes J, Jové M, Padrones S, Moreno V, Cordero D, Matías-Guiu X, Lázaro C, Nadal E. Molecular profiling and feasibility using a comprehensive hybrid capture panel on a consecutive series of non-small-cell lung cancer patients from a single centre. ESMO Open 2023; 8:102197. [PMID: 38070435 PMCID: PMC10774954 DOI: 10.1016/j.esmoop.2023.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Targeted next-generation sequencing (NGS) is recommended to screen actionable genomic alterations (GAs) in patients with non-small-cell lung cancer (NSCLC). We determined the feasibility to detect actionable GAs using TruSight™ Oncology 500 (TSO500) in 200 consecutive patients with NSCLC. MATERIALS AND METHODS DNA and RNA were sequenced on an Illumina® NextSeq 550 instrument and processed using the TSO500 Docker pipeline. Clinical actionability was defined within the molecular tumour board following European Society for Medical Oncology (ESMO) guidelines for oncogene-addicted NSCLC. Overall survival (OS) was estimated as per the presence of druggable GAs and treatment with targeted therapy. RESULTS Most patients were males (69.5%) and former or current smokers (86.5%). Median age was 64 years. The most common histological type and tumour stage were lung adenocarcinoma (81%) and stage IV (64%), respectively. Sequencing was feasible in most patients (93.5%) and actionable GAs were found in 26.5% of patients. A high concordance was observed between single-gene testing and TSO500 NGS panel. Patients harbouring druggable GAs and receiving targeted therapy achieved longer OS compared to patients without druggable GAs. Conversely, patients with druggable GAs not receiving targeted therapy had a trend toward shorter OS compared with driver-negative patients. CONCLUSIONS Hybrid capture sequencing using TSO500 panel is feasible to analyse clinical samples from patients with NSCLC and is an efficient tool for screening actionable GAs.
Collapse
|
2
|
Nadal E, Gausachs M, Castillo C, Teulé A, Brenes J, Jové M, Palmero R, Mosteiro M, Padrones S, Bosch-Barrera J, Pineda M, Tornero E, Alay A, Lopez-Doriga A, Brao I, Arellano M, Brunet J, Lazaro C. 136P Germline testing in a cohort of malignant mesothelioma (G-MESO). J Thorac Oncol 2023. [DOI: 10.1016/s1556-0864(23)00391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Vilariño N, Esparragosa I, Marín J, Alemany M, Velasco R, Jové M, Brenes J, Palmero R, Brao I, Arellano M, Sala R, Bruna J, Nadal E, Simó M. P16.01.A Factors predicting cognitive impairment after intrathecal methotrexate treatment in patients with non-small cell lung cancer and leptomeningeal disease. Neuro Oncol 2022. [DOI: 10.1093/neuonc/noac174.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Leptomeningeal disease (LD) is a devastating cancer-related neurological complication. LD accounts for 4-15% of patients with non-small cell lung cancer (NSCLC). In this population, the median overall survival (OS) with intrathecal (IT) methotrexate (MTX) plus systemic therapy (ST) is 4-6 months (m). Until now, disease and treatment-related cognitive impairment (CI) has been poorly studied in this group.
Material and Methods
Patients with NSCLC and LD treated with IT MTX in our institution between 2010 and 2021 were retrospectively studied. LD was diagnosed based on positive cerebrospinal fluid cytology or radiological findings in the brain/spinal MRI plus suitable clinical signs/symptoms. IT MTX (12mg twice weekly for 4 weeks, then 12mg weekly for 4 weeks) was given in combination with ST. Patients’ clinical characteristics and patient-reported CI were assessed at baseline and at 3-months post IT MTX. A Kaplan-Meier survival analysis was performed. Primary endpoint: predictive factors of CI at 3m post IT MTX. Secondary endpoint: prognostic factors.
Results
Out of 55 patients included, 51% were male and median age at LD diagnosis was 59 years old (range 38-78). Most patients had an ECOG PS≤1 (76.4%) and adenocarcinoma histology (83.6%). 47% of patients harbored EGFR mutation. In 23.6% of patients LD was diagnosed synchronously with lung tumor and for patients without LD at tumor diagnosis, the median time to LD development was 8m (range 0-73). Clinical features at LD diagnosis were 43.7% infratentorial symptoms, 29% CI, 20% multiple symptoms and 7% asymptomatic. At LD diagnosis, 53% of patients had synchronous brain metastases (BM) and in 38% the systemic disease was not controlled. 85.5% of patients received ST concurrently with IT MTX (N=22 chemotherapy, N=22 TKIs and N=3 immunotherapy). 14.5% of patients did not receive ST.
Median OS from IT was 5m (95% CI 1.3-8.6). ECOG PS and ST administered concurrently with IT MTX was associated with longer OS (p<0.05). 23.6% of patients developed CI at 3m post IT therapy. Median OS for patients without and with CI post IT therapy was 6m (95% CI 0.7-11.3) vs 4m (95% CI 0.5-75) respectively (p=0.15). Patients with leukoencephalopathy at baseline (score≥2in the periventricular Fazekas’ score) (p=0.033), women (p<0.01) and those ≥60 years (p=0.04) were more likely to present CI 3m post IT MTX. The presence of cardiovascular risk factors, previous brain radiotherapy and concurrent BM was not statistically associated with CI.
Conclusion
In this cohort, 24% of patients with NSCLC and LD treated with IT MTX will develop CI 3m post treatment. Baseline leukoencephalopathy, female gender, elder than 60 years old were more likely to exhibit CI after IT MTX. A better characterization of these patients is warranted to develop new treatment strategies to prevent/reduce CI.
Collapse
|
4
|
Lamas MM, Azuara D, Palmero R, Varela M, Cordero D, Baixeras N, Villatoro S, Alay A, Pijuán L, Gausachs M, Ruffinelli J, Jové M, Vilariño N, Teulè A, Solanes A, Lázaro C, Matías-Guiu X, Nadal E. EP16.03-027 Routine Molecular Testing Using the TSO500+ NGS Panel in a Cohort of Patients with NSCLC. J Thorac Oncol 2022. [DOI: 10.1016/j.jtho.2022.07.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Lai W, Ahn MJ, Shentzer T, Kowalski D, Cho B, Schmid S, Jové M, Huang M, Zhao B, El-Osta H, Navarro A. 116TiP KEYNOTE-B98: Phase Ib/II study of pembrolizumab plus investigational agents as second-line treatment for anti–PD-1/PD-L1-refractory extensive-stage small cell lung cancer (ES-SCLC). Ann Oncol 2021. [DOI: 10.1016/j.annonc.2021.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Puigarnau S, Fernàndez A, Obis E, Jové M, Castañer M, Pamplona R, Portero-Otin M, Camerino O. Metabolomics reveals that fittest trail runners show a better adaptation of bioenergetic pathways. J Sci Med Sport 2021; 25:425-431. [DOI: 10.1016/j.jsams.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
|
7
|
Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Coll C, Pérez-Brocal V, Ricart W, Moya A, Ramió-Torrentà L, Pamplona R, Jové M, Portero-Otin M, Fernández-Real JM. Subjects with detectable Saccharomyces cerevisiae in the gut microbiota show deficits in attention and executive function. J Intern Med 2021; 290:740-743. [PMID: 34051000 DOI: 10.1111/joim.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
|
8
|
Pradas I, Jové M, Huynh K, Puig J, Ingles M, Borras C, Viña J, Meikle PJ, Pamplona R. Exceptional human longevity is associated with a specific plasma phenotype of ether lipids. Redox Biol 2019; 21:101127. [PMID: 30711699 PMCID: PMC6357979 DOI: 10.1016/j.redox.2019.101127] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
A lipid profile resistant to oxidative damage is an inherent trait associated with animal lifespan. However, there is a lack of lipidomic studies on human longevity. Here we use mass spectrometry based technologies to detect and quantify 137 ether lipids to define a phenotype of healthy humans with exceptional lifespan. Ether lipids were chosen because of their antioxidant properties and ability to modulate oxidative stress. Our results demonstrate that a specific ether lipid signature can be obtained to define the centenarian state. This profile comprises higher level of alkyl forms derived from phosphatidylcholine with shorter number of carbon atoms and double bonds; and decreased content in alkenyl forms from phosphatidylethanolamine with longer chain length and higher double bonds. This compositional pattern suggests that ether lipids from centenarians are more resistant to lipid peroxidation, and that ether lipid signature expresses an optimized feature associated with exceptional human longevity. These results are in keeping with the free radical theory of aging.
Collapse
|
9
|
Alemany M, Domènech M, Vilariño N, Jové M, Brao I, Arellano M, Lucas A, Navarro A, Palmero R, Simó M, Velasco R, Nadal E, Bruna J. P05.21 T1-flair to T1-gadolinium MRI ratio as a predictive value of treatment response in non-small-cell lung cancer (NSCLC) patients affected by multiple brain metastases. Neuro Oncol 2018. [DOI: 10.1093/neuonc/noy139.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Sánchez E, Lecube A, Betriu À, Hernández C, López-Cano C, Gutiérrez-Carrasquilla L, Kerkeni M, Yeramian A, Purroy F, Pamplona R, Farràs C, Fernández E, Barbé F, Simó R, Hernández M, Rius F, Polanco D, de la Torre MS, Torres G, Godoy P, Portero-Otin M, Jové M, Colàs-Compàs L, Benabdelhak I, Miquel E, Ortega M, Valdivielso JM, Bermúdez M, Martínez-Alonso M. Subcutaneous advanced glycation end-products and lung function according to glucose abnormalities: The ILERVAS Project. DIABETES & METABOLISM 2018; 45:595-598. [PMID: 29706471 DOI: 10.1016/j.diabet.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
|
11
|
Morató L, Ruiz M, Boada J, Calingasan NY, Galino J, Guilera C, Jové M, Naudí A, Ferrer I, Pamplona R, Serrano M, Portero-Otín M, Beal MF, Fourcade S, Pujol A. Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy. Cell Death Differ 2015; 22:1742-53. [PMID: 25822341 DOI: 10.1038/cdd.2015.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/16/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and mitochondrial failure are prominent factors in the axonal degeneration process. In this study, we demonstrate that sirtuin 1 (SIRT1), a key regulator of the mitochondrial function, is impaired in the axonopathy and peroxisomal disease X-linked adrenoleukodystrophy (X-ALD). We have restored SIRT1 activity using a dual strategy of resveratrol treatment or by the moderate transgenic overexpression of SIRT1 in a X-ALD mouse model. Both strategies normalized redox homeostasis, mitochondrial respiration, bioenergetic failure, axonal degeneration and associated locomotor disabilities in the X-ALD mice. These results indicate that the reactivation of SIRT1 may be a valuable strategy to treat X-ALD and other axonopathies in which the control of redox and energetic homeostasis is impaired.
Collapse
|
12
|
Cardenal F, Nadal E, Jové M, Faivre-Finn C. Concurrent systemic therapy with radiotherapy for the treatment of poor-risk patients with unresectable stage III non-small-cell lung cancer: a review of the literature. Ann Oncol 2015; 26:278-88. [PMID: 24942274 DOI: 10.1093/annonc/mdu229] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is no consensus on the therapeutic approach to poor-risk patients with unresectable stage III non-small-cell lung cancer (NSCLC), despite the increasing number of these patients in current clinical practice. In terms of survival, the combination of concurrent systemic therapy with standard radiotherapy might be advantageous over radiotherapy alone. The purpose of this review is to ascertain the feasibility, safety and efficacy of the combination of concurrent systemic therapy and standard radiotherapy in these patients. METHODS A computer-based literature search was carried out using PubMed and Science Direct for relevant publications; data reported at major conferences in abstract form were also included. RESULTS In unresectable stage III NSCLC, advanced age, poor performance status, weight loss and comorbidities are factors that influence treatment options and disease outcomes in clinical practice. Prospective studies including poor-risk patients have been reviewed. Trials specifically recruiting poor-risk patients have been separated into those using chemotherapy and those using targeted agents with or without chemotherapy. Only two phase III studies specifically including poor-risk patients have been published. Some recent studies suggested that tolerable radio-sensitizing therapy combined with radiotherapy can provide longer survival outcomes than those reported earlier with chemo-radiotherapy or with radiotherapy alone. CONCLUSIONS There is an unmet need to develop well-designed clinical trials with tolerable combinations of systemic therapy and radiotherapy specifically tailored to this lung cancer population. Such trials should incorporate careful comorbidity measurement and, in older adults, a validated geriatric assessment.
Collapse
|
13
|
Jové M, Pamplona R, Prat J, Arola L, Portero-Otín M. Atherosclerosis prevention by nutritional factors: a meta-analysis in small animal models. Nutr Metab Cardiovasc Dis 2013; 23:84-93. [PMID: 23332728 DOI: 10.1016/j.numecd.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/19/2012] [Accepted: 09/28/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis prevention in small laboratory models has been used as a preclinical stage in the development of functional foods with claimed antiatherogenic properties. However, a high heterogeneity of experimental atherosclerosis models as well as species-specific differences in lipoprotein metabolism could limit the usefulness of these developments. To solve this, we have performed a meta-analysis on the effects of nutritional complements (i.e. less than 2% of diet) with potential antiatherogenic properties in mice, rabbits and hamsters, and compared the outcomes with those obtained in humans. METHODS AND RESULTS A meta-analysis comprising works dealing with dietary prevention of experimental atherosclerosis (i.e. macroscopic and/or pathological evidences of atheromatosis in aorta) has been performed (n = 110 works). Quality criteria were applied resulting in selection of 16 works comprising 511 animals. Despite high heterogeneity, there is a significant effect of nutritional interventions reducing atheroma globally (mean effect 24.38% (95% CI: 13.24-35.51%) of prevention). In mouse studies (20.64% (95% CI: 8.38-32.90%)) and in rabbits (40.48% (95% CI: 6.73-74.23%)) this effect was significant, in contrast with hamster-based works (95% CI: 13.66-49.48%). Meta-regression showed that reduction of atheroma plaque formation was not linked to changes either in total circulating cholesterol or LDL cholesterol levels. CONCLUSION Nutritional addition of selected compounds significantly prevents experimental atheromatosis, but the reproduction of positive effects observed in humans was very limited. These analyses reinforce the need for adequate standardization of atherosclerosis studies in preclinical models and for human intervention trials.
Collapse
|
14
|
Coll T, Jové M, Rodríguez-Calvo R, Eyre E, Palomer X, Sánchez RM, Merlos M, Laguna JC, Vázquez-Carrera M. Palmitate-mediated downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha in skeletal muscle cells involves MEK1/2 and nuclear factor-kappaB activation. Diabetes 2006; 55:2779-87. [PMID: 17003343 DOI: 10.2337/db05-1494] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood. Previous studies have reported that insulin-resistant states are characterized by a reduction in the expression of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1, a transcriptional activator that promotes oxidative capacity in skeletal muscle cells. However, little is known about the factors responsible for reduced PGC-1 expression. The expression of PGC-1 mRNA levels was assessed in C2C12 skeletal muscle cells exposed to palmitate either in the presence or in the absence of several inhibitors to study the biochemical pathways involved. We report that exposure of C2C12 skeletal muscle cells to 0.75 mmol/l palmitate, but not oleate, reduced PGC-1alpha mRNA levels (66%; P < 0.001), whereas PGC-1beta expression was not affected. Palmitate led to mitogen-activated protein kinase (MAPK)-extracellular signal-related kinase (ERK) 1/2 (MEK1/2) activation. In addition, pharmacological inhibition of this pathway by coincubation of the palmitate-exposed cells with the MEK1/2 inhibitors PD98059 and U0126 prevented the downregulation of PGC-1alpha. Furthermore, nuclear factor-kappaB (NF-kappaB) activation was also involved in palmitate-mediated PGC-1alpha downregulation, since the NF-kappaB inhibitor parthenolide prevented a decrease in PGC-1alpha expression. These findings indicate that palmitate reduces PGC-1alpha expression in skeletal muscle cells through a mechanism involving MAPK-ERK and NF-kappaB activation.
Collapse
|
15
|
Rodríguez-Calvo R, Jové M, Coll T, Camins A, Sánchez RM, Alegret M, Merlos M, Pallàs M, Laguna JC, Vázquez-Carrera M. PGC-1beta down-regulation is associated with reduced ERRalpha activity and MCAD expression in skeletal muscle of senescence-accelerated mice. J Gerontol A Biol Sci Med Sci 2006; 61:773-80. [PMID: 16912093 DOI: 10.1093/gerona/61.8.773] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial dysfunction is involved in the development of aging. Here, we examined the effect of aging on the skeletal muscle expression of two isoforms of the transcriptional peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 (PGC-1) in an experimental murine model of accelerated aging, the senescence-accelerated mouse (SAM). The senescence-accelerated prone mice (SAM-P8) showed no changes in PGC-1alpha, but a decrease in PGC-1beta expression (52% reduction, p <.001) was observed compared to the senescence-accelerated resistant mice (SAM-R1). In agreement with the proposed role of PGC-1beta as an estrogen-related receptor (ERR) protein ligand, the expression of the ERRalpha target gene medium-chain acyl-coenzyme A dehydrogenase was strongly suppressed (85%, p <.001) in SAM-P8. The decrease in the expression of medium-chain acyl-coenzyme A dehydrogenase was consistent with the reduction in ERRalpha DNA-binding activity of SAM-P8. These findings indicate that the age-mediated decrease in PGC-1beta expression in SAM-P8 skeletal muscle affects the expression of genes involved in mitochondrial fatty acid oxidation.
Collapse
|
16
|
Jové M, Planavila A, Sánchez RM, Merlos M, Laguna JC, Vázquez-Carrera M. Palmitate induces tumor necrosis factor-alpha expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kappaB activation. Endocrinology 2006; 147:552-61. [PMID: 16223857 DOI: 10.1210/en.2005-0440] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms responsible for increased expression of TNF-alpha in skeletal muscle cells in diabetic states are not well understood. We examined the effects of the saturated acid palmitate on TNF-alpha expression. Exposure of C2C12 skeletal muscle cells to 0.75 mm palmitate enhanced mRNA (25-fold induction, P < 0.001) and protein (2.5-fold induction) expression of the proinflammatory cytokine TNF-alpha. This induction was inversely correlated with a fall in GLUT4 mRNA levels (57% reduction, P < 0.001) and glucose uptake (34% reduction, P < 0.001). PD98059 and U0126, inhibitors of the ERK-MAPK cascade, partially prevented the palmitate-induced TNF-alpha expression. Palmitate increased nuclear factor (NF)-kappaB activation and incubation of the cells with the NF-kappaB inhibitors pyrrolidine dithiocarbamate and parthenolide partially prevented TNF-alpha expression. Incubation of palmitate-treated cells with calphostin C, a strong and specific inhibitor of protein kinase C (PKC), abolished palmitate-induced TNF-alpha expression, and restored GLUT4 mRNA levels. Palmitate treatment enhanced the expression of phospho-PKCtheta, suggesting that this PKC isoform was involved in the changes reported, and coincubation of palmitate-treated cells with the PKC inhibitor chelerythrine prevented the palmitate-induced reduction in the expression of IkappaBalpha and insulin-stimulated Akt activation. These findings suggest that enhanced TNF-alpha expression and GLUT4 down-regulation caused by palmitate are mediated through the PKC activation, confirming that this enzyme may be a target for either the prevention or the treatment of fatty acid-induced insulin resistance.
Collapse
|
17
|
Abstract
The survival and infectivity of infective juveniles (IJs) of three species of entomopathogenic nematodes, Steinernema carpocapsae Weiser, S. arenarium (Artyukhovsky) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), were determined after exposure to different concentrations (250, 500, 1000 and 2000 ppm) of fipronil, an insecticide acting on the GABA receptors to block the chloride channel. Heterorhabditis bacteriophora was very tolerant to all concentrations of fipronil, with the highest mortality of 17% being observed at 2000 ppm of fipronil after 72 h exposure. Steinernema carpocapsae showed a similar response, with the highest mortality of 11.25% of IJs being observed after 72 h exposure to 2000 ppm of fipronil. Steinernema arenarium was, however, more sensitive to fipronil, and at 2000 ppm mortality rates of 94.6% and 100% were observed after 24 and 72 h, respectively. Fipronil had negligible effects on the infectivity of the three nematode species tested. The IJs which survive exposure to all concentrations of fipronil tested can infect and reproduce in Galleria larvae. The moderate effects on entomopathogenic nematodes of a lower fipronil concentration (250 ppm) and the field rates (12-60 ppm) of fipronil used as insecticide, suggest that direct mixing of entomopathogenic nematodes and fipronil at field rates is a viable integrated pest management option.
Collapse
|
18
|
Jové M, Planavila A, Laguna JC, Vázquez-Carrera M. Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells. Endocrinology 2005; 146:3087-95. [PMID: 15802498 DOI: 10.1210/en.2004-1560] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. Here, we report that exposure of C2C12 skeletal muscle cells to 0.5 mm palmitate results in increased mRNA levels (3.5-fold induction; P < 0.05) and secretion (control 375 +/- 57 vs. palmitate 1129 +/- 177 pg/ml; P < 0.001) of the proinflammatory cytokine IL-6. Palmitate increased nuclear factor-kappaB activation and coincubation of the cells with palmitate and the nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate prevented both IL-6 expression and secretion. Furthermore, incubation of palmitate-treated cells with calphostin C, a strong and specific inhibitor of protein kinase C, and phorbol myristate acetate, that down-regulates protein kinase C in long-term incubations, abolished induction of IL-6 production. Finally, exposure of skeletal muscle cells to palmitate caused a fall in the mRNA levels of glucose transporter 4 and insulin-stimulated glucose uptake, whereas in the presence of anti-IL-6 antibody, which neutralizes the biological activity of mouse IL-6 in cell culture, these reductions were prevented. These findings suggest that IL-6 may mediate several of the prodiabetic effects of palmitate.
Collapse
|
19
|
Jové M, Laguna JC, Vázquez-Carrera M. Agonist-induced activation releases peroxisome proliferator-activated receptor β/δ from its inhibition by palmitate-induced nuclear factor-κB in skeletal muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:52-61. [PMID: 15866483 DOI: 10.1016/j.bbalip.2005.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/09/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) beta/delta activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARbeta/delta agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-kappaB activation. Increased NF-kappaB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARbeta/delta and p65. Interestingly, treatment with the PPARbeta/delta agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARbeta/delta signaling through increased NF-kappaB activity.
Collapse
|
20
|
Planavila A, Rodríguez-Calvo R, Jové M, Michalik L, Wahli W, Laguna JC, Vázquez-Carrera M. Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res 2005; 65:832-41. [PMID: 15721863 DOI: 10.1016/j.cardiores.2004.11.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/05/2004] [Accepted: 11/10/2004] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) is the predominant PPAR subtype in cardiac cells and plays a prominent role in the regulation of cardiac lipid metabolism. However, the role of PPARbeta/delta activators in cardiac hypertrophy is not yet known. METHODS AND RESULTS In cultured neonatal rat cardiomyocytes, the selective PPARbeta/delta activator L-165041 (10 micromol/L) inhibited phenylephrine (PE)-induced protein synthesis ([(3)H]leucine uptake), induction of the fetal-type gene atrial natriuretic factor (ANF) and cardiac myocyte size. Induction of cardiac hypertrophy by PE stimulation also led to a reduction in the transcript levels of both muscle-type carnitine palmitoyltransferase (50%, P<0.05) and pyruvatedehydrogenase kinase 4 (30%, P<0.05), and these changes were reversed in the presence of the PPARbeta/delta agonist L-165041. Stimulation of neonatal rat cardiomyocytes with PE and embryonic rat heart-derived H9c2 cells with lipopolysaccharide (LPS) enhanced the expression of the nuclear factor (NF)-kappaB-target gene monocyte chemoattractant protein 1 (MCP-1). The induction of MCP-1 was reduced in the presence of L-165041, suggesting that this compound prevented NF-kappaB activation. Electrophoretic mobility shift assay (EMSA) revealed that L-165041 significantly decreased LPS-stimulated NF-kappaB binding activity in H9c2 myotubes. Finally, coimmunoprecipitation studies showed that L-165041 strongly enhanced the physical interaction between PPARbeta/delta and the p65 subunit of NF-kappaB, suggesting that increased association between these two proteins is the mechanism responsible for antagonizing NF-kappaB activation by PPARbeta/delta activators. CONCLUSION These results suggest that PPARbeta/delta activation inhibits PE-induced cardiac hypertrophy and LPS-induced NF-kappaB activation.
Collapse
|
21
|
Planavila A, Jové M, Cabrero A, Vázquez Carrera M. [Does the lipidic metabolism of myocardium modulate cardiac hypertrophy?]. Nefrologia 2004; 24 Suppl 4:29-33. [PMID: 15279383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
|
22
|
Jové M, Salla J, Planavila A, Cabrero A, Michalik L, Wahli W, Laguna JC, Vázquez-Carrera M. Impaired expression of NADH dehydrogenase subunit 1 and PPARγ coactivator-1 in skeletal muscle of ZDF rats. J Lipid Res 2004; 45:113-23. [PMID: 14563825 DOI: 10.1194/jlr.m300208-jlr200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilization (GLUT4 and phosphofructokinase) were decreased, whereas the expression of pyruvate dehydrogenase kinase 4 (PDK-4), which suppresses glucose oxidation, was increased. The shift from glucose to fatty acids as the source of energy in skeletal muscle of ZDF rats was accompanied by a reduction of subunit 1 of complex I (NADH dehydrogenase subunit 1, ND1) and subunit II of complex IV (cytochrome c oxidase II, COII), two genes of the electronic transport chain encoded by mtDNA. The transcript levels of PPARgamma Coactivator 1 (PGC-1) showed a significant reduction. Treatment with troglitazone (30 mg/kg/day) for 15 days reduced insulin values and reversed the increase in PDK-4 mRNA levels, suggesting improved insulin sensitivity. In addition, troglitazone treatment restored ND1 and PGC-1 expression in skeletal muscle. These results suggest that troglitazone may avoid mitochondrial metabolic derangement during the development of diabetes mellitus 2 in skeletal muscle.
Collapse
|
23
|
Cabrero A, Jové M, Planavila A, Merlos M, Laguna JC, Vázquez-Carrera M. Down-regulation of acyl-CoA oxidase gene expression in heart of troglitazone-treated mice through a mechanism involving chicken ovalbumin upstream promoter transcription factor II. Mol Pharmacol 2003; 64:764-72. [PMID: 12920214 DOI: 10.1124/mol.64.3.764] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiac expression of genes involved in fatty acid metabolism may suffer alterations depending on the substrate availability. We studied how troglitazone, an antidiabetic drug that selectively activates peroxisome proliferator-activated receptor gamma (PPARgamma), affected the expression of several of these genes. A single-day troglitazone administration (100 mg/kg/day) did not significantly alter plasma free fatty acids or triglyceride levels. In contrast, a 10-day period of troglitazone treatment significantly reduced plasma free fatty acids and triglyceride levels by 74% (P < 0.001) and 56% (P < 0.01), respectively. Cardiac mRNA expression of acyl-CoA oxidase (ACO) increased (8.3-fold induction) after 1-day troglitazone treatment, whereas after 10 days of treatment ACO mRNA levels were dramatically reduced (98% reduction, P < 0.02), as well as those of uncoupling protein 3 (41% reduction, P = 0.05). The mRNA expression of PPARalpha and several PPAR target genes, such as medium chain acyl-CoA dehydrogenase or fatty acid translocase were not altered after 10 days of troglitazone treatment, whereas muscle-type carnitine palmitoyltransferase I increased 1.7-fold (P < 0.05). The reduction in ACO expression in the hearts of 10-day troglitazone-treated mice was accompanied by an increase in the protein levels of the transcriptional repressor chicken ovalbumin upstream promoter transcription factor II (COUP-TF II). Electrophoretic mobility shift assays performed with COUP-TF II antibody to examine its interaction with a labeled peroxisome proliferator response element probe showed enhanced binding of COUP-TFII in cardiac nuclear extracts from troglitazone-treated mice for 10 days but not in the control nuclear extracts. Overall, the findings presented here show that 10 days of troglitazone treatment decreased expression of the ACO gene through a mechanism involving the transcriptional repressor COUP-TF II.
Collapse
|
24
|
Cabrero A, Cubero M, Llaverías G, Jové M, Planavila A, Alegret M, Sánchez R, Laguna JC, Carrera MV. Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages. Metabolism 2003; 52:652-7. [PMID: 12759900 DOI: 10.1053/meta.2003.50100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are key regulators of macrophage lipid metabolism. We compared the effects of three PPAR activators (bezafibrate, fenofibrate, and troglitazone) on the mRNA levels of genes involved in lipid metabolism in primary human macrophages and macrophage-derived foam cells. Treatment of human macrophages for 24 hours with 100 micro mol/L bezafibrate, a nonselective drug that activates the 3 PPAR subtypes (PPARalpha, PPARbeta/delta, and PPARgamma), caused an 87% (P <.01) and a 230% rise in CD36 and adipocyte fatty acid-binding protein (aP2) mRNA levels, respectively, whereas the expressions of PPARgamma, PPARalpha, acyl-CoA oxidase, carnitine palmitoyltransferase I (CPT-I), adenosine triphosphate (ATP)-binding cassette transporter 1 (ABCA1), neutral cholesteryl ester hydrolase, and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) were not modified. However, treatment with selective PPARalpha (fenofibrate at 100 micro mol/L) and PPARgamma (troglitazone at 5 micro mol/L) activators had different effects. Fenofibrate increased PPARalpha (62%, P <.05) and LOX-1 (180%, P <.05) mRNA levels; and troglitazone upregulated CPT-I expression (75%, P <.05). When the effects of these drugs were assessed in macrophage-derived foam cells, we found that troglitazone caused a 134% (P <.05) and a 66% (P <.01) rise in ABCA1 and CPT-I mRNA levels, respectively, whereas the 3 drugs significantly increased aP2 transcripts (about 100% induction). Given that troglitazone treatment resulted in the upregulation of genes involved in the mitochondrial beta-oxidation of fatty acids (CPT-I) and in the reverse-cholesterol-transport pathway (ABCA1), we subsequently determined whether these changes affected intracellular cholesterol ester accumulation. In macrophage-derived foam cells a significant reduction (32%, P <.01) was observed in intracellular cholesterol accumulation after troglitazone, but not after bezafibrate or fenofibrate treatment. Since CPT-I inhibition promotes cholesterol incorporation into cholesteryl esters in macrophages, study is now needed on whether CPT-I induction by troglitazone may reduce the availability of fatty acids for synthesizing cholesterol esters, leading to less foam cell formation.
Collapse
|
25
|
Jové M, Planavila A, Cabrero A, Novell F, Ros E, Zambón D, Laguna JC, Carrera MV. Reductions in plasma cholesterol levels after fenofibrate treatment are negatively correlated with resistin expression in human adipose tissue. Metabolism 2003; 52:351-5. [PMID: 12647275 DOI: 10.1053/meta.2003.50055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adipocyte-derived cytokine, resistin, has been proposed as the link between obesity and type 2 diabetes mellitus in murine models. In humans, resistin is identical to FIZZ3 (found in inflammatory zone 3), which belongs to a family of proteins that appears to be involved in inflammatory processes. To study the mechanisms by which fibrates improve glucose homeostasis, we determined resistin mRNA levels by using relative quantitative reverse-transcriptase-polymerase chain reaction (RT-PCR) in omental white adipose tissue samples obtained from patients treated with placebo or fenofibrate (200 mg/d) for 8 weeks before elective cholecystectomy. Fenofibrate treatment reduced total plasma cholesterol and low-density lipoprotein (LDL)-cholesterol levels by 24% and 35%, respectively. Compared with placebo values, a 2.4-fold induction in resistin mRNA levels was observed in white adipose tissue of fenofibrate-treated patients, whereas no changes were observed in the mRNA levels of the well-known perosixome proliferator-activated receptor (PPAR) target genes CD36, acyl-CoA oxidase, and carnitine palmitoyltransferase. These findings indicate that resistin changes were not related to PPAR activation by fenofibrate. Interestingly, resistin mRNA levels showed a negative correlation with plasma cholesterol levels (r2 =.53, P =.039, n = 8), but not with triglyceride levels (r2 =.02, P =.73, n = 8). These results suggest that cholesterol regulates resistin expression in human white adipose tissue.
Collapse
|