1
|
Ferrario C, Leggio L, Leone R, Di Benedetto C, Guidetti L, Coccè V, Ascagni M, Bonasoro F, La Porta CAM, Candia Carnevali MD, Sugni M. Marine-derived collagen biomaterials from echinoderm connective tissues. MARINE ENVIRONMENTAL RESEARCH 2017; 128:46-57. [PMID: 27063846 DOI: 10.1016/j.marenvres.2016.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/19/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.
Collapse
|
|
8 |
35 |
2
|
Della Torre C, Maggioni D, Ghilardi A, Parolini M, Santo N, Landi C, Madaschi L, Magni S, Tasselli S, Ascagni M, Bini L, La Porta C, Del Giacco L, Binelli A. The interactions of fullerene C 60 and Benzo(α)pyrene influence their bioavailability and toxicity to zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:999-1008. [PMID: 30029334 DOI: 10.1016/j.envpol.2018.06.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to assess the toxicological consequences related to the interaction of fullerene nanoparticles (C60) and Benzo(α)pyrene (B(α)P) on zebrafish embryos, which were exposed to C60 and B(α)P alone and to C60 doped with B(α)P. The uptake of pollutants into their tissues and intra-cellular localization were investigated by immunofluorescence and electron microscopy. A set of biomarkers of genotoxicity and oxidative stress, as well as functional proteomics analysis were applied to assess the toxic effects due to C60 interaction with B(α)P. The carrier role of C60 for B(α)P was observed, however adsorption on C60 did not affect the accumulation and localization of B(α)P in the embryos. Instead, C60 doped with B(α)P resulted more prone to sedimentation and less bioavailable for the embryos compared to C60 alone. As for toxicity, our results suggested that C60 alone elicited oxidative stress in embryos and a down-regulation of proteins involved in energetic metabolism. The C60 + B(α)P induced cellular response mechanisms similar to B(α)P alone, but generating greater cellular damages in the exposed embryos.
Collapse
|
|
7 |
25 |
3
|
Binelli A, Del Giacco L, Santo N, Bini L, Magni S, Parolini M, Madaschi L, Ghilardi A, Maggioni D, Ascagni M, Armini A, Prosperi L, Landi C, La Porta C, Della Torre C. Carbon nanopowder acts as a Trojan-horse for benzo(α)pyrene in Danio rerio embryos. Nanotoxicology 2017; 11:371-381. [DOI: 10.1080/17435390.2017.1306130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
|
8 |
18 |
4
|
Tavazzi S, Tonveronachi M, Fagnola M, Cozza F, Ferraro L, Borghesi A, Ascagni M, Farris S. Wear effects on microscopic morphology and hyaluronan uptake in siloxane-hydrogel contact lenses. J Biomed Mater Res B Appl Biomater 2014; 103:1092-8. [DOI: 10.1002/jbm.b.33278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/04/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
|
11 |
14 |
5
|
Amadeo A, Coatti A, Aracri P, Ascagni M, Iannantuoni D, Modena D, Carraresi L, Brusco S, Meneghini S, Arcangeli A, Pasini ME, Becchetti A. Postnatal Changes in K +/Cl - Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy. Neuroscience 2018; 386:91-107. [PMID: 29949744 DOI: 10.1016/j.neuroscience.2018.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
The Na+/K+/Cl- cotransporter-1 (NKCC1) and the K+/Cl- cotransporter-2 (KCC2) set the transmembrane Cl- gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters' expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits.
Collapse
|
|
7 |
12 |
6
|
Proverbio M, Quartapelle Procopio E, Panigati M, Mercurio S, Pennati R, Ascagni M, Leone R, La Porta C, Sugni M. Luminescent conjugates between dinuclear rhenium complexes and 17α-ethynylestradiol: synthesis, photophysical characterization, and cell imaging. Org Biomol Chem 2019; 17:509-518. [DOI: 10.1039/c8ob02472c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New luminescent conjugates between dinuclear rhenium complexes and an estradiol moiety.
Collapse
|
|
6 |
7 |
7
|
Ghilardi A, Diana A, Bacchetta R, Santo N, Ascagni M, Prosperi L, Del Giacco L. Inner Ear and Muscle Developmental Defects in Smpx-Deficient Zebrafish Embryos. Int J Mol Sci 2021; 22:ijms22126497. [PMID: 34204426 PMCID: PMC8235540 DOI: 10.3390/ijms22126497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.
Collapse
|
Journal Article |
4 |
6 |
8
|
Mazzetti S, Giampietro F, Calogero AM, Isilgan HB, Gagliardi G, Rolando C, Cantele F, Ascagni M, Bramerio M, Giaccone G, Isaias IU, Pezzoli G, Cappelletti G. Linking acetylated α-Tubulin redistribution to α-Synuclein pathology in brain of Parkinson's disease patients. NPJ Parkinsons Dis 2024; 10:2. [PMID: 38167511 PMCID: PMC10761989 DOI: 10.1038/s41531-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Highly specialized microtubules in neurons are crucial to both health and disease of the nervous system, and their properties are strictly regulated by different post-translational modifications, including α-Tubulin acetylation. An imbalance in the levels of acetylated α-Tubulin has been reported in experimental models of Parkinson's disease (PD) whereas pharmacological or genetic modulation that leads to increased acetylated α-Tubulin successfully rescues axonal transport defects and inhibits α-Synuclein aggregation. However, the role of acetylation of α-Tubulin in the human nervous system is largely unknown as most studies are based on in vitro evidence. To capture the complexity of the pathological processes in vivo, we analysed post-mortem human brain of PD patients and control subjects. In the brain of PD patients at Braak stage 6, we found a redistribution of acetylated α-Tubulin, which accumulates in the neuronal cell bodies in subcortical structures but not in the cerebral cortex, and decreases in the axonal compartment, both in putamen bundles of fibres and in sudomotor fibres. High-resolution and 3D reconstruction analysis linked acetylated α-Tubulin redistribution to α-Synuclein oligomerization and to phosphorylated Ser 129 α-Synuclein, leading us to propose a model for Lewy body (LB) formation. Finally, in post-mortem human brain, we observed threadlike structures, resembling tunnelling nanotubes that contain α-Synuclein oligomers and are associated with acetylated α-Tubulin enriched neurons. In conclusion, we support the role of acetylated α-Tubulin in PD pathogenesis and LB formation.
Collapse
|
research-article |
1 |
4 |
9
|
Tavazzi S, Rossi A, Picarazzi S, Ascagni M, Farris S, Borghesi A. Polymer-interaction driven diffusionof eyeshadow in soft contact lenses. Cont Lens Anterior Eye 2017; 40:335-339. [DOI: 10.1016/j.clae.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 11/16/2022]
|
|
8 |
4 |
10
|
Binelli A, Magni S, La Porta C, Bini L, Della Torre C, Ascagni M, Maggioni D, Ghilardi A, Armini A, Landi C, Santo N, Madaschi L, Coccè V, Mutti F, Lionetti MC, Ciusani E, Del Giacco L. Cellular pathways affected by carbon nanopowder-benzo(α)pyrene complex in human skin fibroblasts identified by proteomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:144-153. [PMID: 29803189 DOI: 10.1016/j.ecoenv.2018.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
One of the crucial and unsolved problems of the airborne carbon nanoparticles is the role played by the adsorbed environmental pollutants on their toxicological effect. Indeed, in the urban areas, the carbon nanoparticles usually adsorb some atmospheric contaminants, whose one of the leading representatives is the benzo(α)pyrene. Herein, we used the proteomics to investigate the alteration of toxicological pathways due to the carbon nanopowder-benzo(α)pyrene complex in comparison with the two contaminants administered alone on human skin-derived fibroblasts (hSDFs) exposed for 8 days in semi-static conditions. The preliminary confocal microscopy observations highlighted that carbon-nanopowder was able to pass through the cell membranes and accumulate into the cytoplasm both when administered alone and with the adsorbed benzo(α)pyrene. Proteomics revealed that the effect of carbon nanopowder-benzo(α)pyrene complex seems to be related to a new toxicological behavior instead of simple additive or synergistic effects. In detail, the cellular pathways modulated by the complex were mainly related to energy shift (glycolysis and pentose phosphate pathway), apoptosis, stress response and cellular trafficking.
Collapse
|
|
7 |
2 |
11
|
Casagrande FV, Amadeo A, Cartelli D, Calogero AM, Modena D, Costa I, Cantele F, Onelli E, Moscatelli A, Ascagni M, Pezzoli G, Cappelletti G. The imbalance between dynamic and stable microtubules underlies neurodegeneration induced by 2,5-hexanedione. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165581. [DOI: 10.1016/j.bbadis.2019.165581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 01/10/2023]
|
|
5 |
2 |
12
|
Taloni A, Font-Clos F, Guidetti L, Milan S, Ascagni M, Vasco C, Pasini ME, Gioria MR, Ciusani E, Zapperi S, La Porta CAM. Probing spermiogenesis: a digital strategy for mouse acrosome classification. Sci Rep 2017. [PMID: 28623263 PMCID: PMC5473909 DOI: 10.1038/s41598-017-03867-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Classification of morphological features in biological samples is usually performed by a trained eye but the increasing amount of available digital images calls for semi-automatic classification techniques. Here we explore this possibility in the context of acrosome morphological analysis during spermiogenesis. Our method combines feature extraction from three dimensional reconstruction of confocal images with principal component analysis and machine learning. The method could be particularly useful in cases where the amount of data does not allow for a direct inspection by trained eye.
Collapse
|
|
8 |
1 |
13
|
Sugni M, Balzano A, De Felice B, Bonasoro F, Casati L, Madaschi L, Ascagni M, Parolini M. Exposure to polystyrene nanoplastics induced physiological and behavioral effects on the brittle star Ophiactis virens. MARINE POLLUTION BULLETIN 2024; 200:116061. [PMID: 38290366 DOI: 10.1016/j.marpolbul.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Nanoplastic contamination has become an issue of environmental concern but the information on the potential adverse effects of nanoplastics on marine ecosystems is still limited. Therefore, the aim of this work was to investigate the effects of the exposure to polystyrene nanoplastics (PS-NPs; 0.05, 0.5 and 5 μg/mL) on the brittles star Ophiactis virens. Diverse endpoints at different levels of biological organization were considered, including behavior, arm regeneration capacity and oxidative stress. PS-NPs were observed on the brittle star body surface but not in inner tissues. Accumulation of PS-NPs was observed in the pre-buccal cavity of animals exposed to 5 μg/mL PS-NPs which also displayed delayed righting activity and an oxidative stress condition. Nevertheless, no effect was observed on arm regeneration efficiency at any tested PS-NPs concentration. Overall, our results highlighted that prolonged exposure to high amounts of PS-NPs could interfere at least partially with the physiology of O. virens.
Collapse
|
|
1 |
|
14
|
Taloni A, Font-Clos F, Guidetti L, Milan S, Ascagni M, Vasco C, Pasini ME, Gioria MR, Ciusani E, Zapperi S, La Porta CAM. Author Correction: Probing spermiogenesis: a digital strategy for mouse acrosome classification. Sci Rep 2018; 8:17060. [PMID: 30425302 PMCID: PMC6234209 DOI: 10.1038/s41598-018-35541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
Published Erratum |
7 |
|
15
|
Mercurio S, Gattoni G, Scarì G, Ascagni M, Barzaghi B, Elphick MR, Croce JC, Schubert M, Benito-Gutiérrez E, Pennati R. A feather star is born: embryonic development and nervous system organization in the crinoid Antedon mediterranea. Open Biol 2024; 14:240115. [PMID: 39165121 PMCID: PMC11336682 DOI: 10.1098/rsob.240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Crinoids belong to the Echinodermata, marine invertebrates with a highly derived adult pentaradial body plan. As the sister group to all other extant echinoderms, crinoids occupy a key phylogenetic position to explore the evolutionary history of the whole phylum. However, their development remains understudied compared with that of other echinoderms. Therefore, the aim here was to establish the Mediterranean feather star (Antedon mediterranea) as an experimental system for developmental biology. We first set up a method for culturing embryos in vitro and defined a standardized staging system for this species. We then optimized protocols to characterize the morphological and molecular development of the main structures of the feather star body plan. Focusing on the nervous system, we showed that the larval apical organ includes serotonergic, GABAergic and glutamatergic neurons, which develop within a conserved anterior molecular signature. We described the composition of the early post-metamorphic nervous system and revealed that it has an anterior signature. These results further our knowledge on crinoid development and provide new techniques to investigate feather star embryogenesis. This will pave the way for the inclusion of crinoids in comparative studies addressing the origin of the echinoderm body plan and the evolutionary diversification of deuterostomes.
Collapse
|
research-article |
1 |
|