1
|
|
|
28 |
1661 |
2
|
Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984; 311:29-33. [PMID: 6590967 DOI: 10.1038/311029a0] [Citation(s) in RCA: 714] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Molecular cloning of the transforming gene from a chemically transformed human osteosarcoma-derived cell line enables the gene to be mapped to chromosome 7 (7p11.4-7qter) and by this criterion and by direct hybridization to be shown to be unrelated to known oncogenes.
Collapse
|
|
41 |
714 |
3
|
Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000; 16:279-83. [PMID: 10858654 DOI: 10.1016/s0168-9525(00)02028-x] [Citation(s) in RCA: 639] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Members of the vertebrate Wnt family have been subdivided into two functional classes according to their biological activities. Some Wnts signal through the canonical Wnt-1/wingless pathway by stabilizing cytoplasmic beta-catenin. By contrast other Wnts stimulate intracellular Ca2+ release and activate two kinases, CamKII and PKC, in a G-protein-dependent manner. Moreover, putative Wnt receptors belonging to the Frizzled gene family have been identified that preferentially couple to the two prospective pathways in the absence of ectopic Wnt ligand and that might account for the signaling specificity of the Wnt pathways. As Ca2+ release was the first described feature of the noncanonical pathway, and as Ca2+ probably plays a key role in the activation of CamKII and PKC, we have named this Wnt pathway the Wnt/Ca2+ pathway.
Collapse
|
Review |
25 |
639 |
4
|
Franciosa JA, Park M, Levine TB. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 1981; 47:33-9. [PMID: 7457405 DOI: 10.1016/0002-9149(81)90286-1] [Citation(s) in RCA: 628] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Symptoms of congestive heart failure occur most commonly during exercise, but cardiac performance is usually quantitated at rest. The relation between exercise capacity and measurements of cardiac performance at rest is little known. Treadmill exercise was performed in 21 patients with heart failure due to cardiomyopathy. Exercise duration averaged 9.1 +/- 0.7 (standard error of the mean) minutes (normal value 12 or more minutes) and did not correlate with resting ejection fraction of 26.4 +/- 2.7 percent (r = -0.06). Left ventricular diastolic dimension of 6.6 +/0 0.2 cm, mean velocity of circumferential fiber shortening and ratio of preejection period to left ventricular ejection time did not correlate with treadmill time (r = -0.03). Repeat studies after treatment of heart failure also failed to show correlations between changes in exercise capacity and changes in left ventricular performance at rest. Thus, measures of left ventricular performance obtained at rest do not accurately reflect exercise tolerance and symptomatic status of patients with congestive heart failure.
Collapse
|
|
44 |
628 |
5
|
Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci U S A 1987; 84:6379-83. [PMID: 2819873 PMCID: PMC299079 DOI: 10.1073/pnas.84.18.6379] [Citation(s) in RCA: 412] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We isolated overlapping cDNA clones corresponding to the major MET protooncogene transcript. The cDNA nucleotide sequence contained an open reading frame of 1408 amino acids with features characteristic of the tyrosine kinase family of growth factor receptors. These features include a putative 24-amino acid signal peptide and a candidate, hybrophobic, membrane-spanning segment of 23 amino acids, which defines an extracellular domain of 926 amino acids that could serve as a ligand-binding domain. A putative intracellular domain 435 amino acids long shows high homology with the SRC family of tyrosine kinases and within the kinase domain is most homologous with the human insulin receptor (44%) and v-abl (41%). Despite these similarities, however, we found no apparent sequence homology to other growth factor receptors in the putative ligand-binding domain. We conclude from these results that the MET protooncogene is a cell-surface receptor for an as-yet-unknown ligand.
Collapse
|
research-article |
38 |
412 |
6
|
Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG, Vande Woude GF. Mechanism of met oncogene activation. Cell 1986; 45:895-904. [PMID: 2423252 DOI: 10.1016/0092-8674(86)90564-7] [Citation(s) in RCA: 400] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The met oncogene activated in vitro by treatment of a human osteogenic sarcoma (HOS) cell line with N-methyl-N'-nitronitrosoguanidine (MNNG) is related to the tyrosine kinase gene family. Probes from the met oncogene locus recognize two distinct transcripts of 9.0 kb and 10.0 kb which are independently expressed in a cell-type-specific fashion. While the met proto-oncogene locus expresses the 9.0 kb RNA and maps to human chromosome 7q21-31, the locus expressing the 10.0 kb RNA, (tpr; translocated promoter region) maps to human chromosome 1. Both MNNG-HOS cells and met NIH 3T3 transformants express a novel 5.0 kb RNA which represents a hybrid transcript with 5' sequences derived from tpr and 3' sequences from the met proto-oncogene. Treating HOS cells in vitro with MNNG, a known clastogenic carcinogen, resulted in fusion of two chromosomally disparate loci, met and tpr, generating the active met oncogene.
Collapse
|
|
39 |
400 |
7
|
Shen Y, Naujokas M, Park M, Ireton K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 2000; 103:501-10. [PMID: 11081636 DOI: 10.1016/s0092-8674(00)00141-0] [Citation(s) in RCA: 394] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Listeria monocytogenes surface protein InlB promotes bacterial entry into mammalian cells. Here, we identify a cellular surface receptor required for InlB-mediated entry. Treatment of mammalian cells with InlB protein or infection with L. monocytogenes induces rapid tyrosine phosphorylation of Met, a receptor tyrosine kinase (RTK) for which the only known ligand is Hepatocyte Growth Factor (HGF). Like HGF, InlB binds to the extracellular domain of Met and induces "scattering" of epithelial cells. Experiments with Met-positive and Met-deficient cell lines demonstrate that Met is required for InlB-dependent entry of L. monocytogenes. InlB is a novel Met agonist that induces bacterial entry through exploitation of a host RTK pathway.
Collapse
|
|
25 |
394 |
8
|
Sheldahl LC, Park M, Malbon CC, Moon RT. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 1999; 9:695-8. [PMID: 10395542 DOI: 10.1016/s0960-9822(99)80310-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In studies of developmental signaling pathways stimulated by the Wnt proteins and their receptors, Xenopus Wnt-5A (Xwnt-5A) and a prospective Wnt receptor, rat Frizzled 2 (Rfz2), have been shown to stimulate inositol signaling and Ca2+ fluxes in zebrafish [1] [2] [3]. As protein kinase C (PKC) isoforms can respond to Ca2+ signals [4], we asked whether expression of different Wnt and Frizzled homologs modulates PKC. Expression of Rfz2 and Xwnt-5A resulted in translocation of PKC to the plasma membrane, whereas expression of rat Frizzled 1 (Rfz1), which activates a Wnt pathway using beta-catenin but not Ca2+ fluxes [5], did not. Rfz2 and Xwnt-5A were also able to stimulate PKC activity in an in vitro kinase assay. Agents that inhibit Rfz2-induced signaling through G-protein subunits blocked Rfz2-induced translocation of PKC. To determine if other Frizzled homologs differentially stimulate PKC, we tested mouse Frizzled (Mfz) homologs for their ability to induce PKC translocation relative to their ability to induce the expression of two target genes of beta-catenin, siamois and Xnr3. Mfz7 and Mfz8 stimulated siamois and Xnr3 expression but not PKC activation, whereas Mfz3, Mfz4 and Mfz6 reciprocally stimulated PKC activation but not expression of siamois or Xnr3. These results demonstrate that some but not all Wnt and Frizzled signals modulate PKC localization and stimulate PKC activity via a G-protein-dependent mechanism. In agreement with other studies [1] [2] [3]. [6] [7] these data support the existence of multiple Wnt and Frizzled signaling pathways in vertebrates.
Collapse
|
Comparative Study |
26 |
391 |
9
|
Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, Park M. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 2001; 8:995-1004. [PMID: 11741535 DOI: 10.1016/s1097-2765(01)00378-1] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The c-Cbl protooncogene is a negative regulator for several receptor tyrosine kinases (RTKs) through its ability to promote their polyubiquitination. Hence, uncoupling c-Cbl from RTKs may lead to their deregulation. In testing this, we show that c-Cbl promotes ubiquitination of the Met RTK. This requires the c-Cbl tyrosine kinase binding (TKB) domain and a juxtamembrane tyrosine residue on Met. This tyrosine provides a direct binding site for the c-Cbl TKB domain, and is absent in the rearranged oncogenic Tpr-Met variant. A Met receptor, where the juxtamembrane tyrosine is replaced by phenylalanine, is not ubiquitinated and has transforming activity in fibroblast and epithelial cells. We propose the uncoupling of c-Cbl from RTKs as a mechanism contributing to their oncogenic activation.
Collapse
|
|
24 |
333 |
10
|
Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, Srinivasan R, Trimboli AJ, Martin CK, Li F, Yu L, Fernandez SA, Pécot T, Rosol TJ, Cory S, Hallett M, Park M, Piper MG, Marsh CB, Yee LD, Jimenez RE, Nuovo G, Lawler SE, Chiocca EA, Leone G, Ostrowski MC. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 2011; 14:159-67. [PMID: 22179046 PMCID: PMC3271169 DOI: 10.1038/ncb2396] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (Pten) in stromal fibroblasts suppresses epithelial mammary tumors, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2, are critical events in Pten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumor angiogenesis and tumor cell invasion. Expression of the Pten-miR-320-Ets2 regulated secretome distinguished human normal breast stroma from tumor stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumor suppressor axis that acts in stromal fibroblasts to reprogram the tumor microenvironment and curtail tumor progression.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
258 |
11
|
Dean M, Park M, Le Beau MM, Robins TS, Diaz MO, Rowley JD, Blair DG, Vande Woude GF. The human met oncogene is related to the tyrosine kinase oncogenes. Nature 1985; 318:385-8. [PMID: 4069211 DOI: 10.1038/318385a0] [Citation(s) in RCA: 235] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The met oncogene was previously isolated from a chemically transformed human cell line, MNNG-HOS. Recent evidence has demonstrated that two classes of transcripts are expressed from the met proto-oncogene locus. The met oncogene, however, expresses an aberrant RNA which has sequences in common with both transcripts. We now report partial nucleotide sequencing of the human met oncogene and show that met is related to the protein kinase oncogenes and growth factor receptors. The met nucleotide sequence is not identical to that of any published gene, and it is more closely homologous to the tyrosine kinases than to the serine/threonine kinases. Within the tyrosine kinase family, the sequenced met domains are most closely related to the human insulin receptor and the viral abl gene. In situ chromosome hybridization has mapped met to human chromosome 7 band 7q21-q31, a location distinct from that of other kinases. This is also a region associated with nonrandom chromosomal deletions observed in a portion of patients with acute nonlymphocytic leukaemia. The accompanying paper shows that this chromosomal locus is also tightly linked with the human heredity disease cystic fibrosis.
Collapse
|
Comparative Study |
40 |
235 |
12
|
Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 2000; 11:1709-25. [PMID: 10793146 PMCID: PMC14878 DOI: 10.1091/mbc.11.5.1709] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial-mesenchymal transition and dispersal of epithelial cells, processes that play crucial roles in tumor development, invasion, and metastasis. Little is known about the Met-dependent proximal signals that regulate these events. We show that HGF stimulation of epithelial cells leads to activation of the Rho GTPases, Cdc42 and Rac, concomitant with the formation of filopodia and lamellipodia. Notably, HGF-dependent activation of Rac but not Cdc42 is dependent on phosphatidylinositol 3-kinase. Moreover, HGF-induced lamellipodia formation and cell spreading require phosphatidylinositol 3-kinase and are inhibited by dominant negative Cdc42 or Rac. HGF induces activation of the Cdc42/Rac-regulated p21-activated kinase (PAK) and c-Jun N-terminal kinase, and translocation of Rac, PAK, and Rho-dependent Rho-kinase to membrane ruffles. Use of dominant negative and activated mutants reveals an essential role for PAK but not Rho-kinase in HGF-induced epithelial cell spreading, whereas Rho-kinase activity is required for the formation of focal adhesions and stress fibers in response to HGF. We conclude that PAK and Rho-kinase play opposing roles in epithelial-mesenchymal transition induced by HGF, and provide new insight regarding the role of Cdc42 in these events.
Collapse
|
research-article |
25 |
222 |
13
|
Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 2000; 20:8513-25. [PMID: 11046147 PMCID: PMC102157 DOI: 10.1128/mcb.20.22.8513-8525.2000] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 08/21/2000] [Indexed: 11/20/2022] Open
Abstract
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.
Collapse
|
research-article |
25 |
222 |
14
|
Cowling BJ, Park M, Fang VJ, Wu P, Leung GM, Wu JT. Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015. ACTA ACUST UNITED AC 2015; 20:7-13. [PMID: 26132767 DOI: 10.2807/1560-7917.es2015.20.25.21163] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
South Korea is experiencing the largest outbreak of Middle East respiratory syndrome coronavirus infections outside the Arabian Peninsula, with 166 laboratory-confirmed cases, including 24 deaths up to 19 June 2015. We estimated that the mean incubation period was 6.7 days and the mean serial interval 12.6 days. We found it unlikely that infectiousness precedes symptom onset. Based on currently available data, we predict an overall case fatality risk of 21% (95% credible interval: 14–31).
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
220 |
15
|
Royal I, Park M. Hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells requires phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:27780-7. [PMID: 7499247 DOI: 10.1074/jbc.270.46.27780] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional cytokine that induces mitogenesis, motility, invasion, and morphogenesis of several epithelial and endothelial cell lines in culture. The receptor for HGF/SF has been identified as the Met tyrosine kinase. To investigate the signaling pathways that are involved in these events, we have generated chimeric receptors containing the extracellular domain of the colony-stimulating factor-1 (CSF-1) receptor fused to the transmembrane and intracellular domains of the Met receptor (MET). Madin-Darby canine kidney (MDCK) epithelial cells expressing the CSF-MET chimera dissociate and scatter in response to CSF-1. However, cells expressing a mutant CSF-MET receptor containing a phenylalanine substitution for tyrosine 1356 were unable to scatter or form branching tubules following stimulation with CSF-1. Tyrosine 1356 is essential for the recruitment of multiple substrates including the p85 subunit of PI3-kinase, phospholipase C gamma, and Grb2. In this study, we have investigated the role of PI3-kinase and a downstream target of PI3-kinase, pp70S6K, in the induction of MDCK cell scatter in response to HGF/SF. Our results demonstrate that following stimulation with HGF/SF, activation of PI3-kinase but not pp70S6K is essential for MDCK cell scatter.
Collapse
|
|
30 |
204 |
16
|
Shi ZQ, Yu DH, Park M, Marshall M, Feng GS. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol Cell Biol 2000; 20:1526-36. [PMID: 10669730 PMCID: PMC85329 DOI: 10.1128/mcb.20.5.1526-1536.2000] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that activation of extracellular signal-regulated kinase (Erk) by epidermal growth factor (EGF) treatment was significantly decreased in mouse fibroblast cells expressing a mutant Shp-2 molecule lacking 65 amino acids in the SH2-N domain, Shp-2(Delta46-110). To address the molecular mechanism for the positive role of Shp-2 in mediating Erk induction, we evaluated the activation of signaling components upstream of Erk in Shp-2 mutant cells. EGF-stimulated Ras, Raf, and Mek activation was significantly attenuated in Shp-2 mutant cells, suggesting that Shp-2 acts to promote Ras activation or to suppress the down-regulation of activated Ras. Biochemical analyses indicate that upon EGF stimulation, Shp-2 is recruited into a multiprotein complex assembled on the Gab1 docking molecule and that Shp-2 seems to exert its biological function by specifically dephosphorylating an unidentified molecule of 90 kDa in the complex. The mutant Shp-2(Delta46-110) molecule failed to participate in the Gab1-organized complex for dephosphorylation of p90, correlating with a defective activation of the Ras-Raf-Mek-Erk cascade in EGF-treated Shp-2 mutant cells. Evidence is also presented that Shp-2 does not appear to modulate the signal relay from EGF receptor to Ras through the Shc, Grb2, and Sos proteins. These results begin to elucidate the mechanism of Shp-2 function downstream of a receptor tyrosine kinase to promote the activation of the Ras-Erk pathway, with potential therapeutic applications in cancer treatment.
Collapse
|
research-article |
25 |
183 |
17
|
Powell JF, Zohar Y, Elizur A, Park M, Fischer WH, Craig AG, Rivier JE, Lovejoy DA, Sherwood NM. Three forms of gonadotropin-releasing hormone characterized from brains of one species. Proc Natl Acad Sci U S A 1994; 91:12081-5. [PMID: 7991588 PMCID: PMC45380 DOI: 10.1073/pnas.91.25.12081] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most vertebrate species have more than one form of gonadotropin-releasing hormone (GnRH) in their brains, but it is not clear whether each form has a distinct function. We report that sea bream (Sparus aurata) brains have three forms of GnRH, one of which is described herein and is called sea bream GnRH (sbGnRH). The primary structures of two forms were determined by Edman degradation and mass spectral analysis. The amino acid sequence of sbGnRH is pGlu-His-Trp-Ser-Tyr-Gly-Leu-Ser-Pro-Gly-NH2. The second peptide is identical to a form originally isolated from chicken brains (cGnRH-II): pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2. cGnRH-II is the most ancient form of GnRH identified to date in jawed fish and the most prevalent form throughout the vertebrates. The third form of GnRH has previously been identified as salmon GnRH by cDNA studies and is confirmed here by chromatographic and immunological studies. Phylogenetic distribution of GnRH peptides suggests sbGnRH arose in the perch-like fish as a gene duplication of the existing cGnRH-II or salmon GnRH genes. All three identified GnRH peptides were synthesized and shown to release gonadotropin in vivo in the sea bream. The dominant form of GnRH stored in the pituitary was sbGnRH. Not only was the content of sbGnRH 500-fold greater than that of salmon GnRH but also cGnRH-II was not detected in the pituitary. The latter evidence suggests that sbGnRH is the endogenous releaser of gonadotropin II.
Collapse
|
research-article |
31 |
168 |
18
|
Maroun CR, Holgado-Madruga M, Royal I, Naujokas MA, Fournier TM, Wong AJ, Park M. The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 1999; 19:1784-99. [PMID: 10022866 PMCID: PMC83972 DOI: 10.1128/mcb.19.3.1784] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of the hepatocyte growth factor (HGF) receptor tyrosine kinase, Met, induces mitogenesis, motility, invasion, and branching tubulogenesis of epithelial and endothelial cell lines in culture. We have previously shown that Gab1 is the major phosphorylated protein following stimulation of the Met receptor in epithelial cells that undergo a morphogenic program in response to HGF. Gab1 is a member of the family of IRS-1-like multisubstrate docking proteins and, like IRS-1, contains an amino-terminal pleckstrin homology domain, in addition to multiple tyrosine residues that are potential binding sites for proteins that contain SH2 or PTB domains. Following stimulation of epithelial cells with HGF, Gab1 associates with phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2. Met receptor mutants that are impaired in their association with Gab1 fail to induce branching tubulogenesis. Overexpression of Gab1 rescues the Met-dependent tubulogenic response in these cell lines. The ability of Gab1 to promote tubulogenesis is dependent on its pleckstrin homology domain. Whereas the wild-type Gab1 protein is localized to areas of cell-cell contact, a Gab1 protein lacking the pleckstrin homology domain is localized predominantly in the cytoplasm. Localization of Gab1 to areas of cell-cell contact is inhibited by LY294002, demonstrating that phosphatidylinositol 3-kinase activity is required. These data show that Gab1 is an important mediator of branching tubulogenesis downstream from the Met receptor and identify phosphatidylinositol 3-kinase and the Gab1 pleckstrin homology domain as crucial for subcellular localization of Gab1 and biological responses.
Collapse
|
research-article |
26 |
161 |
19
|
Powell JF, Reska-Skinner SM, Prakash MO, Fischer WH, Park M, Rivier JE, Craig AG, Mackie GO, Sherwood NM. Two new forms of gonadotropin-releasing hormone in a protochordate and the evolutionary implications. Proc Natl Acad Sci U S A 1996; 93:10461-4. [PMID: 8816823 PMCID: PMC38407 DOI: 10.1073/pnas.93.19.10461] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The neuropeptide gonadotropin-releasing hormone (GnRH) is the major regulator of reproduction in vertebrates. Our goal was to determine whether GnRH could be isolated and identified by primary structure in a protochordate and to examine its location by immunocytochemistry. The primary structure of two novel decapeptides from the tunicate Chelyosoma productum (class Ascidiacea) was determined. Both show significant identity with vertebrate GnRH. Tunicate GnRH-I (pGlu-His-Trp-Ser-Asp-Tyr-Phe-Lys-Pro-Gly-NH2) has 60% of its residues conserved, compared with mammalian GnRH, whereas tunicate GnRH-II (pGlu-His-Trp-Ser-Leu-Cys-His-Ala-Pro-Gly-NH2) is unusual in that it was isolated as a disulfide-linked dimer. Numerous immunoreactive GnRH neurons lie within blood sinuses close to the gonoducts and gonads in both juveniles and adults, implying that the neuropeptide is released into the bloodstream. It is suggested that in ancestral chordates, before the evolution of the pituitary, the hormone was released into the bloodstream and acted directly on the gonads.
Collapse
|
research-article |
29 |
157 |
20
|
Santos OF, Barros EJ, Yang XM, Matsumoto K, Nakamura T, Park M, Nigam SK. Involvement of hepatocyte growth factor in kidney development. Dev Biol 1994; 163:525-9. [PMID: 8200486 DOI: 10.1006/dbio.1994.1169] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using PCR, hepatocyte growth factor (HGF) and c-met (HGF receptor) expression were analyzed in the developing mouse kidney. Both HGF and c-met were expressed from Gestational Day 11.5 onward, the time at which branching morphogenesis of ureteric bud occurs. Coculturing the embryonic kidney with MDCK cells seeded in Type I collagen induced branching morphogenesis of the MDCK cells. When a monospecific antiserum against HGF was included in the culture medium, the branching morphogenesis induced by the embryonic kidney was markedly inhibited (73%). This anti-HGF serum also inhibited metanephric growth when incubated with 11.5- to 12.5-day embryonic kidneys in an organ culture assay. No inhibition was observed by nonimmune serum. Perturbation of ureteric duct development as well as extraductal metanephric development was observed in embryonic kidneys incubated with the anti-HGF serum. Together, our data indicates an important role for HGF in kidney development.
Collapse
|
|
31 |
157 |
21
|
Lock LS, Royal I, Naujokas MA, Park M. Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and -independent recruitment of Gab1 to receptor tyrosine kinases. J Biol Chem 2000; 275:31536-45. [PMID: 10913131 DOI: 10.1074/jbc.m003597200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gab family of docking proteins is phosphorylated in response to various growth factors and cytokines and serves to recruit multiple signaling proteins. Gab1 acts downstream from the Met-hepatocyte growth factor receptor, and Gab1 overexpression promotes Met-dependent morphogenesis of epithelial cells. Recruitment of Gab1 to Met or epidermal growth factor (EGF) receptors requires a receptor-binding site for the Grb2 adapter protein and a proline-rich domain in Gab1, defined as the Met-binding domain. To determine the requirement for Grb2 in Gab1 recruitment, we have mapped two Grb2 carboxyl-terminal SH3 domain binding sites conserved in Gab1 and related protein Gab2. One corresponds to a canonical Grb2-binding motif, whereas the second, located within the Gab1 Met-binding domain, requires the proline and arginine residues of an atypical PXXXR motif. The PXXXR motif is required but not sufficient for Grb2 binding, whereas an extended motif, PX3RX2KPX7PLD, conserved in Gab proteins as well as the Grb2/Gads-docking protein, Slp-76, efficiently competes binding of Grb2 or Gads adapter proteins. The association of Gab1 with Grb2 is required for Gab1 recruitment to the EGF receptor but not the Met receptor. Hence different mechanisms of Gab1 recruitment may reflect the distinct biological functions for Gab1 downstream from the EGF and Met receptors.
Collapse
|
|
25 |
154 |
22
|
Gonzatti-Haces M, Seth A, Park M, Copeland T, Oroszlan S, Vande Woude GF. Characterization of the TPR-MET oncogene p65 and the MET protooncogene p140 protein-tyrosine kinases. Proc Natl Acad Sci U S A 1988; 85:21-5. [PMID: 3277171 PMCID: PMC279473 DOI: 10.1073/pnas.85.1.21] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The proteins encoded by the human TPR-MET oncogene (p 65tpr-met) and the human MET protooncogene (p140met) have been identified. The p65tpr-met and p140met, as well as a truncated TPR-MET product expressed in Escherichia coli, p50met, are autophosphorylated in vitro on tyrosine residues. Using the immunocomplex kinase assay, p140met activity was detected in various human tumor epithelial cell lines. In vivo, p65tpr-met is phosphorylated on both serine and tyrosine residues, while p140met is phosphorylated on serine and threonine. p140met is labeled by cell-surface iodination procedures, suggesting that it is a receptor-like transmembrane protein-tyrosine kinase.
Collapse
|
research-article |
37 |
152 |
23
|
Vasu S, Shah S, Orjalo A, Park M, Fischer WH, Forbes DJ. Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export. J Cell Biol 2001; 155:339-54. [PMID: 11684705 PMCID: PMC2150853 DOI: 10.1083/jcb.200108007] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA undergoing nuclear export first encounters the basket of the nuclear pore. Two basket proteins, Nup98 and Nup153, are essential for mRNA export, but their molecular partners within the pore are largely unknown. Because the mechanism of RNA export will be in question as long as significant vertebrate pore proteins remain undiscovered, we set out to find their partners. Fragments of Nup98 and Nup153 were used for pulldown experiments from Xenopus egg extracts, which contain abundant disassembled nuclear pores. Strikingly, Nup98 and Nup153 each bound the same four large proteins. Purification and sequence analysis revealed that two are the known vertebrate nucleoporins, Nup96 and Nup107, whereas two mapped to ORFs of unknown function. The genes encoding the novel proteins were cloned, and antibodies were produced. Immunofluorescence reveals them to be new nucleoporins, designated Nup160 and Nup133, which are accessible on the basket side of the pore. Nucleoporins Nup160, Nup133, Nup107, and Nup96 exist as a complex in Xenopus egg extracts and in assembled pores, now termed the Nup160 complex. Sec13 is prominent in Nup98 and Nup153 pulldowns, and we find it to be a member of the Nup160 complex. We have mapped the sites that are required for binding the Nup160 subcomplex, and have found that in Nup98, the binding site is used to tether Nup98 to the nucleus; in Nup153, the binding site targets Nup153 to the nuclear pore. With transfection and in vivo transport assays, we find that specific Nup160 and Nup133 fragments block poly[A]+ RNA export, but not protein import or export. These results demonstrate that two novel vertebrate nucleoporins, Nup160 and Nup133, not only interact with Nup98 and Nup153, but themselves play a role in mRNA export.
Collapse
|
research-article |
24 |
148 |
24
|
Park M, Wu X, Golden K, Axelrod JD, Bodmer R. The wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 1996; 177:104-16. [PMID: 8660881 DOI: 10.1006/dbio.1996.0149] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Heart development in both vertebrates and Drosophila is initiated by bilaterally symmetrical primordia that may be of equivalent embryological origin: the anterior lateral plate mesoderm in vertebrates and the dorsal-most mesoderm in arthropods. These mesodermal progenitors then merge into a heart tube at the ventral midline (vertebrates) or the dorsal midline (Drosophila). These observations suggest that there may be similarities between vertebrate and invertebrate heart development. The homeobox gene, tinman, is required for heart as well as visceral mesoderm formation in Drosophila, and at least one of several vertebrate genes with similarities in protein sequence and cardiac expression to tinman is crucial for heart development in vertebrates. Inductive signals are also required for Drosophila heart development: The secreted gene product of wingless (wg) is critical for heart development during a time period distinct from its function in segmentation and neurogenesis. Here, we show that wg is epistatic to hedgehog (hh), another secreted segmentation gene product, in its requirement for heart formation. We also provide evidence show that downstream of wg in the signal transduction cascade, dishevelled (dsh, a pioneer protein) and armadillo (arm, beta-catenin homolog) are mediating the cardiogenic Wg signal. In particular, overexpression of dsh can restore heart formation in the absence of wg function. We discuss the possibility that Wg signaling is part of a combinatorial mechanism to specify the cardiac mesoderm.
Collapse
|
|
29 |
148 |
25
|
Harlow SD, Park M. A longitudinal study of risk factors for the occurrence, duration and severity of menstrual cramps in a cohort of college women. BRITISH JOURNAL OF OBSTETRICS AND GYNAECOLOGY 1996; 103:1134-42. [PMID: 8917003 DOI: 10.1111/j.1471-0528.1996.tb09597.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To describe how menstrual cramps vary from cycle to cycle within a woman over time. To examine the influence of weight and lifestyle factors on occurrence, duration, and severity of menstrual pain. DESIGN A one-year prospective menstrual diary study. PARTICIPANTS One hundred and sixty-five women aged 17 to 19 years entering a local university in 1985. MAIN OUTCOME MEASURES The occurrence, length, and maximum severity of pain during a menstrual period. RESULTS Menstrual pain occurred during 71.6% of observed menstrual bleeds, most commonly beginning the first day of menses. The median duration was two days. Sixty percent of women reported at least one episode of severe pain, while 13% reported severe pain more than half the time. Earlier age at menarche and long menstrual periods increased the occurrence, duration and severity of pain. In smokers, cramps tended to last longer. Being overweight was an important risk factor for menstrual cramps and doubled the odds of having a long pain episode. Frequent alcohol consumption decreased the probability of having menstrual cramps, but in women who had pain it increased duration and severity. Physical activity was not associated with any pain parameter. CONCLUSIONS Women who have pain lasting three days are an important target group for prophylactic therapy. The occurrence and severity of menstrual cramps is influenced by potentially modifiable characteristics including weight, smoking, and alcohol consumption. Doctors may wish to counsel women presenting with dysmenorrhoea about the importance of healthy lifestyles and about the inefficacy of alcohol consumption as a treatment for dysmenorrhoea.
Collapse
|
|
29 |
145 |